Количественная оценка дисбаланса расходов пара и теплоты в системах пароснабжения. Методика снижения тепловых потерь в паропроводах тепловых сетей

Потери в системах конденсации пара

    А. Пролетный пар , вызываемый отсутствием или отказом конденсатоотводчика (к.о.). Самым существенным источником потерь является пролетный пар. Классическим примером неверно понимаемой системы является преднамеренный отказ от установки к.о. в так называемых закрытых системах, когда пар всегда где-то конденсируется и возвращается в котельную.
В этих случаях отсутствие видимых утечек пара создает иллюзию полной утилизации скрытой теплоты в паре. Фактически же скрытая теплота в паре, как правило, не выделяется вся на теплообменных агрегатах, а ее значительная часть расходуется на нагрев конденсатопровода или выбрасывается в атмосферу вместе с паром вторичного вскипания. Конденсатоотводчик позволяет полностью утилизировать скрытую теплоту в паре при данном давлении. В среднем потери от пролетного пара составляют 20-30%.

Б. Утечки пара , вызываемые периодической продувкой систем пароиспользования (СПИ), при нерегулируемом отводе конденсата, неправильно выбранном к.о. или его отсутствии.

Данные потери особенно велики при пуске и прогреве СПИ. «Экономия» на к.о. и их установка с недостаточной пропускной способностью, необходимой для автоматического отвода повышенного объема конденсата, приводят к необходимости открытия байпасов или сбросу конденсата в дренаж. Время прогрева систем увеличивается в несколько раз, потери очевидны. Поэтому к.о. должен иметь достаточный запас по пропускной способности, чтобы обеспечить отвод конденсата при пусковых и переходных режимах. В зависимости от типов теплообменного оборудования запас по пропускной способности может составлять от 2-х до 5.

Чтобы избежать гидроударов и непроизводительных ручных продувок, следует обеспечивать автоматический дренаж конденсата при остановах СПИ или при колебаниях нагрузок с помощью установки к.о. с разными диапазонами рабочих давлений, промежуточных станций сбора и перекачки конденсата или принудительной автоматической продувки теплообменных агрегатов. Конкретная реализация зависит от фактических технико-экономических условий. В частности, следует иметь в виду, что к.о. с перевернутым стаканом при перепаде давления, превышающим его рабочий диапазон, закрывается. Поэтому схема автоматического дренажа теплообменника при падении давления пара, приведенная ниже, является просто реализуемой, надежной и эффективной.

Следует иметь в виду, что потери пара через нерегулируемые отверстия непрерывны, и любые средства имитации к.о. нерегулируемыми устройствами типа «прикрытый вентиль», гидрозатвор и т.п. в конечном итоге приводят к большим потерям, чем первоначальный выигрыш. В табл.1 приведен пример количества пара, безвозвратно теряемого за счет утечек через отверстия при различных давлениях пара.


    Таблица 1. Утечки пара через отверстия различного диаметра

    Давление. бари

    Условный диаметр отверстия

    Потери пара, тонн / мес

    21/8" (3.2 мм)

    ¼" (6.4 мм)

    15.1

    ½" (25 мм)

    61.2

    81/8" (3.2 мм)

    11.5

    ¼" (6.4 мм)

    41.7

    ½" (25 мм)

    183.6

    105/64" (1.9 мм)

    #38 (2.5 мм)

    14.4

    1/8" (3.2 мм)

    21.6

    205/64" (1.9 мм)

    16.6

    #38 (2.5 мм)

    27.4

    1/8" (3.2 мм)

    41.8

В. Невозврат конденсата при отсутствии системы сбора и возврата конденсата.

Неконтролируемый сброс конденсата в дренаж не может быть оправдан ничем, кроме как недостаточным контролем за водоотведением. Затраты на химводоподготовку, забор питьевой воды и тепловая энергия в горячем конденсате учтены в расчете потерь, представленном на сайте:

Исходные данные для расчета потерь при не возврате конденсата приняты следующие: стоимость холодной воды на подпитке, химикатов, газа и электроэнергии.
Следует иметь в виду также потерю внешнего вида зданий и, более того, разрушение ограждающих конструкций при постоянном «парении» дренажных точек.

Г. Присутствие воздуха и неконденсируемых газов в паре

Воздух, как известно, обладает отличными теплоизоляционными свойствами и по мере конденсации пара может образовывать на внутренних поверхностях теплообмена своеобразное покрытие, препятствующее эффективности теплообмена (табл.2).

Табл. 2. Снижение температуры паровоздушной смеси в зависимости от содержания воздуха.

    Давление Температура насыщенного пара Температура паровоздушной смеси в зависимости от количества воздуха по объему, °С

    Бар абс.

    °С

    10%20%30%

    120,2

    116,7113,0110,0

    143,6

    140,0135,5131,1

    158,8

    154,5150,3145,1

    170,4

    165,9161,3155,9

    179,9

    175,4170,4165,0


Психрометрические диаграммы позволяют определить процентное отношение количества воздуха в паре при известном давлении и температуре путем нахождения точки пересечения кривых давления, температуры и процентного содержания воздуха. Например, при давлении в системе 9 бар абс. и температуре в теплообменнике 160 °С по диаграмме находим, что в паре содержится 30% воздуха.

Выделение СО2 в газообразной форме при конденсации пара ведет при наличии влаги в трубопроводе к образованию крайне вредной для металлов угольной кислоты, которая является основной причиной коррозии трубопроводов и теплообменного оборудования. С другой стороны, оперативная дегазация оборудования, являясь эффективным средством борьбы с коррозией металлов, выбрасывает СО2 в атмосферу и способствует формированию парникового эффекта. Только снижение потребления пара является кардинальным путем борьбы с выбросами СО2 и рациональное применение к.о. является здесь наиболее эффективным оружием. Д. Неиспользование пара вторичного вскипания .


При значительных объемах пара вторичного вскипания следует оценивать возможность его непосредственного использования в системах, имеющих постоянную тепловую нагрузку. В табл. 3 приведен расчет образования пара вторичного вскипания.
Пар вторичного вскипания является следствием перемещения горячего конденсата под высоким давлением в емкость или трубопровод, находящийся под меньшим давлением. Типичным примером является "парящий" атмосферный конденсатный бак, когда скрытая теплота в конденсате высокого давления высвобождается при более низкой температуре кипения.
При значительных объемах пара вторичного вскипания следует оценивать возможность его непосредственного использования в системах, имеющих постоянную тепловую нагрузку.
На номограмме 1 приведена доля вторичного пара в % от объема конденсата, вскипающего в зависимости от перепада давлений, испытываемого конденсатом. Номограмма 1. Расчет пара вторичного вскипания.
Е. Использование перегретого пара вместо сухого насыщенного пара.

Если технологические ограничения не требуют использования перегретого пара высокого давления, следует всегда стремиться к применению насыщенного сухого пара возможно самого низкого давления.
Это позволяет использовать всю скрытую теплоту парообразования, которая имеет более высокие значения при низких давлениях, добиться устойчивых процессов теплопередачи, снизить нагрузки на оборудование, увеличить срок службы агрегатов, арматуры и трубных соединений.
Применение влажного пара имеет место, как исключение, только при его использовании в конечном продукте, в частности, при увлажнении материалов. Поэтому целесообразно использовать в таких случая специальные средства увлажнения на последних этапах транспортировки пара к продукту.

Ж. Невнимание к принципу необходимого разнообразия
Невнимание к разнообразию возможных схем автоматического управления, зависящих от конкретных условий применения, консерватизм и стремление использовать типовую схему может быть источником непреднамеренных потерь.

З. Термоудары и гидроудары.
Термо- и гидроудары разрушают системы пароиспользования при неправильно организованной системе сбора и отвода конденсата. Использование пара невозможно без тщательного учета всех факторов его конденсации и транспортировки, влияющих не только на эффективность, но и на работоспособность, и на безопасность ПКС в целом.


Паропровод - трубопровод для транспортировки пара.

Паропроводы монтируется на объектах:
1. предприятиях, использующих пар для технологического пароснабжения (паро-конденсатные системы на заводах железобетонных изделий, паро-конденсатные системы на рыбо-перерабатывающих предприятиях, паро-конденсатные системы на молочных заводах, паро-конденсатные системы на мясоперерабатывающих заводах, паро-конденсатные системы на заводах фармацевтической промышленности, паро-конденсатные системы на заводах по производству косметики, паро-конденсатные системы на фабриках прачечных)
2. в системах парового отопления заводов и промышленных предприятий. Применялось в прошлом но сих пор на многих предприятиях используется. Как правило заводские котельные строились по типовым чертежам с применением котлов ДКВР для технологического пароснабжения и отопления. В настоящее время даже на тех предприятиях и заводах где потребность в технологическом паре стала отсутствовать, отопление так и осуществляется паром. В ряде случаев неэффективно без возврата конденста.
3. на тепловых электростанциях для подачи пара на турбины пара для выработки электроэнергии.

Паропроводы служат для передачи пара от котельной (паровых котлов и парогенераторов) к потребителям пара.

Основными элементами паропровода являются:
1.стальные трубы
2. соединительные элементы (отводы, отводы, фланцы, компенсаторы теплового удлинения)
3.запорная и запорно-регулирующая арматура (задвижки, вентили, клапаны)
4. арматура для удаления конденсата из паропроводов - конденсатоотводчики, сепараторы,
5.Устройства для снижения давления пара до необходимого значения - регуляторы давления
6. Механические фильтры-грязевики со сменными фильтрующими элементами для очистки пара перед редукционными клапанами.
7.элементы крепления - скользящие опоры и неподвижные опоры, подвески и крепления,
8. тепловая изоляция паропроводов – используется температуростойкая базальтовая минеральная вата Роквул или Парок, также применяется асбестовый пухшнур.
9.контрольно-измерительные приборы (КИП) – манометры и термометры.

Требования к проектированию, конструкции, материалам, изготовлению, монтажу, ремонту и эксплуатации паропроводов регламентированы нормативными документами.
-На трубопроводы, транспортирующие водяной пар с рабочим давлением более 0,07 МПа (0,7 кгс/см2), распространяется действие «Правил устройства и безопасной эксплуатации трубопроводов пара и горячей воды» (ПБ 10-573-03).
-Расчет на прочность таких паропроводов производится в соответствии с «Нормами расчета на прочность стационарных котлов и трубопроводов пара и горячей воды» (РД 10-249-98).

Трассировка паропроводов производится с учётом технической возможности прокладки по наиболее короткому пути прокладки для минимизации потерь тепла и энергии из-за длины прокладки и аэродинамического сопротивления парового тракта.
Соединение элементов паропроводов производится сварочными соединениями. Установка фланцев при монтаже паропроводов допускаются только для соединения паропроводов с арматурой.

Опоры и подвески паропроводов могут быть подвижными и неподвижными. Между соседними неподвижными опорами на прямом участке устанавливают лирообразные или П-образные компенсаторы], которые снижают последствия деформации паропровода под воздействием нагрева (1 м паропровода удлиняется в среднем на 1,2 мм при нагреве на 100°).
Паропроводы монтируются с уклоном и в нижних точках устанавливают конденсато-отводчики, для отвода конденсата, образующегося в трубах. Горизонтальные участки паропровода должны иметь уклон не менее 0,004 На входе паропроводов в цеха, на выходе паропроводов из котельных, перед паро-потребляющим оборудованием устанавливают сепараторы пара в комплекте с конденсато-отводчиками.
Все элементы паропроводов должны быть покрыты теплоизолированы. Тепловая изоляция защищает персонал от ожогов. Тепловая изоляция предотвращает избыточное появление конденсата.
Паропроводы являются опасным производственным объектом и должны быть зарегистрированы в специализированных регистрирующих и надзорных органах (в России - территориальном управлении Ростехнадзора). Разрешение на эксплуатацию вновь смонтированных паропроводов выдается после их регистрации и технического освидетельствования.

Толщина стенки паропровода по условию прочностии должна быть не менее где
P - расчетное давление пара,
D - наружный диаметр паропровода,
φ - расчетный коэффициент прочности с учётом сварных швов и ослабления сечения,
σ - допускаемое напряжение в металле паропровода при расчетной температуре пара.

Диаметр паропровода, как правило, определяют исходя из максимальных часовых расходов пара и допускаемых потерь давления и температур методом скоростей или методом падения давления. Метод скоростей.
Задавшись скоростью протекания пара в трубопроводе, определяют его внутренний диаметр из уравнения массового расхода, например, по выражению:
D= 1000 √ , мм
Где G-массовый расход пара, т/час;
W-скорость пара, м/с;
ρ- плотность пара, кг/м3.

Выбор скорости пара в паропроводах имеет важное значение.
Согласно СНиП 2-35-76 скорости пара рекомендуются не более:
-для насыщенного пара 30 м/с (при диаметре труб до 200 мм) и 60 м/с (при диаметре труб свыше 200 мм),
-для перегретого пара 40 м/с (при диаметре труб до 200 мм) и 70 м/с (при диаметре труб свыше 200 мм).

Заводы по производству парового оборудования рекомендуют при выборе диаметра паропровода скорость пара принимать в пределах 15-40 м/с. Поставщики паро-водяных теплообменников со смешением рекомендуют принимать максимальную скорость пара 50 м/с.
Существует так же метод падения давления, основанный на расчете потерь давления, вызванный гидравлическими сопротивлениями паропровода. Для оптимизации выбора диаметра паропровода целесообразно также выполнить оценку падения температуры пара в паропроводе с учетом применяемой теплоизоляции. В этом случае появляется возможность выбора оптимального диаметра по отношению падения давления пара к уменьшению его температуры на единице длины паропровода (существует мнение, что оптимально если dP/dT=0,8…1,2).
Правильный выбор парового котла и давления пара которое он обеспечивает, выбор конфигурации и диметров паропроводов, парового оборудования по классу и по производителям, это составляющие хорошей работы паро-конденсатной системы в дальнейшем.

Абрамов С. Р., начальник ОДС
ОАО «Пензенская теплосетевая компания», г. Пенза

В ОАО «Пензенская теплосетевая компания» имеется три источника по отпуску тепловой энергии в паре потребителям города. Основными и единственными потребителями являются промышленные предприятия. При указанных условиях отпуск тепловой энергии в паре суммарный от ТЭЦ-1 (возьмем один из источников) в 1993 году составлял 372,1 т/час (с потерями около 10%). В результате сокращения производства у части потребителей, перехода некоторых потребителей на собственные котельные, а также закрытия части производств в связи с их банкротством в период с 1993 по 2005 годы, произошло снижение потребления тепловой энергии в паре и соответственно его отпуск с коллекторов. В 2005 году потребление тепловой энергии в паре по ТЭЦ-1, при хорошем раскладе, составляет 43 т/час, но отпуск с коллекторов, в этом случае, составляет 95 т/час, т.е. потери составляют 50-60% от отпускаемого пара. Такая же картина и по остальным источникам. По некоторым паропроводам потери тепловой энергии доходят до абсурда (составляют 70-90%). Практически все потребители на паропроводах имеют узлы учета. Сравнивая величину потерь 1993 года (37,2 т/час или 26,04 Гкал/час) и величину потерь 2005 года (52 т/час или 36,4 Гкал/час) видим значительное увеличение потерь в натуральном исчислении (в т/час), а точнее на 14,8 т/час (или 10,36 Гкал/час). Рассматривая ситуацию в денежном выражении, мы видим, что при тарифе на 1 Гкал в паре 371,06 руб. мы на данный момент ежечасно при отпуске на 24675,49 руб. теряем 13506,58 руб. при реализации 11168,91 руб. А сколько будет за год? С одной станции при реализации 97839651,60 руб. потери составят 118317640,80 руб. И это только по одной станции одной энергосистемы! А если взять по РАО? Это же огромные убытки.

Описанная картина показывает всю убыточность отпуска тепловой энергии в паре потребителям на сегодняшних условиях. Однако, отказать в поставке потребителям тепловой энергии в паре полностью мы не можем, так как являемся монополистами в этом виде деятельности.

В связи со всем вышеизложенным мы искали выход из создавшейся ситуации с привлечением разных специалистов, в том числе и Урал ОРГРЭСС.

Провели испытания паропроводов, установили на паропроводах теплоизоляцию согласно требований СНиП толщиной 200 мм. Испытания и установка теплоизоляции согласно СНиП показали факт снижения потерь при максимальном потреблении пара потребителями, но в рабочей обстановке потери остаются на прежнем уровне. Единственное достижение - это сдвиг критической точки перехода пара из перегретого состояния в насыщенное по длине паропровода и улучшение качества пара у потребителей (давление осталось на прежнем уровне, а температура увеличилась со 180 0 С до 200 0 С).

Нами проведена фотография работы паропровода в обычном режиме. Взят паропровод воздушной прокладки протяженностью 3150 м и диаметром 500-400 мм. Выход с источника в процессе испытания составлял 41,5-42,0 т/час при температуре 260-270 0 С, а потребитель получил 35,0 т/час с температурой 209-210 0 С. Потери составили 6,5-7,0 т/час пара и потери произошли по массе при отсутствии каких либо утечек пара из паропровода.

Параметры получаемого потребителями пара, по показаниям приборов, соответствуют параметрам перегретого пара, т.е. влажности быть не должно. Однако при анализе всего изложенного напрашивается вывод, что влажность все-таки присутствует.

Данную тему затрагивает к.т.н. Ю.В. Рубинштейн (ЗАО «Энергоинжцентр», Санкт-Петербург) в своей статье «Измерения расхода газа и пара»(О коммерческом учете пара в паровых системах теплоснабжения).

Нами была разработана методика выполнения измерений влажности пара и сконструирована установка (КУ-1) для её определения. Методика зарегистрирована в Федеральном Реестре в г. Москва в 2002 году. Расчет по методике ведется косвенным методом по количеству тепловой энергии передаваемой воде в калориметрической установке пробой отобранного с паропровода пара. Данная установка позволяет определить влажность пара получаемого потребителем и ввести поправку на показания его прибора учета. Введением данной поправки мы находим потерянную массу. Разработанная нами установка (КУ-1) может принести прибыль многим энергетикам. Ориентировочная стоимость установки 50 тысяч рублей. Доход от её внедрения можно оценить сразу. Единственно необходимо подвести под её использование законодательную базу.

При сокращении потребления пара промышленными предприятиями, сократился производственный отбор с турбин. На втором источнике тепловой энергии в г. Пенза (ТЭЦ-2) установлены противодавленческие турбины Р-12-35/5м с рабочим противодавлением 9-10 кгс/см 2 (выработка при полной загрузке 8,4 МВт). Мы снизили противодавление в турбине до 3 кгс/см 2 и получили выработку с турбины 12 МВт при полной загрузке, а отработавший пар выпустили на подогреватели сетевой воды без включения РОУ. Тем самым мы снизили удельные и получили дополнительную прибыль от реализации дополнительных 3,6 МВт в час электроэнергии при полной загрузке. В денежном выражении это дает ежечасно дополнительную прибыль.

Нас очень интересует наличие проблем с потерями тепловой энергии в паре при транспортировке её потребителям в других регионах. Особенно если протяженность паропроводов составляет 5-6 км при диаметре 600-300 мм (изменение по длине).

Хотелось бы услышать, какие меры принимаются в других регионах по данному вопросу.

Тепловой расчет паропровода

Для уменьшения потерь теплоты в окружающую среду и обеспечения безопасности труда персонала все трубопроводы, имеющие температуру теплоносителя выше 50 ?С внутри помещений и выше 60 ?С вне помещений, должны иметь тепловую изоляцию. Температура поверхности изоляции должна быть не выше 45 ?С внутри помещений и не более 60 ?С на открытом воздухе.

Потерю теплоты, Вт/м, через изоляцию на 1 метр длины трубопровода определяют по формуле:

где - температура среды в трубопроводе, ?С;

Температура окружающего воздуха, ?С;

Суммарное термическое сопротивление, м??С/Вт.

где,- термическое сопротивление внутренней и наружной поверхностей изолированного трубопровода, м??С/Вт;

Термическое сопротивление стенки трубы и слоя изоляции, м??С/Вт;

где - внутренний диаметр трубы, м;

Коэффициент теплоотдачи от теплоносителя к стенке трубы, Вт/м 2 ??С.

где - наружный диаметр трубы, м;

Коэффициент теплоотдачи от стенки трубы к изоляции, Вт/м 2 ??С.

где - теплопроводность стенки трубы, Вт/м??С;

где - теплопроводность тепловой изоляции, Вт/м??С;

Диаметр тепловой изоляции, м.

Величина, связана уравнением теплоотдачи с заданной температурой наружной поверхности изоляции:

где - температура наружной поверхности изоляции.

Необходимое значение диаметра тепловой изоляции определяется из совместного решения уравнений (18) и (24).

Тепловой расчет наружного участка паропровода

коэффициент теплоотдачи от пара к стенке - 10 000 Вт/м 2 ??С;

температура пара - 280 ?С;

средняя температура наружного воздуха зимнего периода - -8 ?С

температура поверхности изоляции - 30 0 ?С.

м. Тогда толщина изоляции 77 мм.

Для эффективной работы тепловой изоляции необходимо, чтобы соблюдалось условие:

Условие (26) соблюдается.

Тогда термическое сопротивление паропровода согласно формуле (25) будет равно:

Определяем падение температуры пара по длине наружного участка.

Расход пара кг/сек.

Длина паропровода м.

Теплоемкость пара кДж/кг??С.

Тепловой расчет внутреннего участка паропровода

Принимаем следующие исходные данные:

внутренний диаметр трубы - 351 мм;

наружный диаметр трубы - 377 мм;

коэффициент теплоотдачи от пара к стенке - 10000 Вт/м 2 ??С;

коэффициент теплоотдачи от наружной поверхности изоляции к окружающему воздуху - 20 Вт/м 2 ??С;

теплопроводность стенки стальной трубы - 58 Вт/м??С.

в качестве изоляционного материала выбираем минеральную вату с коэффициентом теплопроводности - 0,08 Вт/м 2 ??С

температура пара - 280 ?С;

средняя температура воздуха в помещении котельной - 30 ?С;

температура поверхности изоляции - 45 ?С.

Определяем необходимую толщину тепловой изоляции.

По формулам (19)-(23) определяем термическое сопротивление изолированного трубопровода:

Суммарное термическое сопротивление трубопровода:

Для нахождения диаметра тепловой изоляции решаем совместно уравнения (18) и (24):

м. Тогда толщина изоляции 153 мм.

Термическое сопротивление паропровода согласно формуле (25) будет равно:

Определяем падение температуры пара по длине внутреннего участка.

Коэффициент местных потерь теплоты.

Расход пара кг/сек.

Длина паропровода м.

Теплоемкость пара кДж/кг??С.

Температура в конце участка будет равна:

Падение температуры незначительное?С.

Таким образом, гарантируется температура перегретого пара у потребителя - 279 ?С.

К.т.н. А.Б. Попов, ведущий специалист, ОАО «Энел ОГК-5», г. Москва

Вопрос о том, что дренажные линии паропроводов, работающие в критическом режиме истечения вскипающего конденсата, могут быть «узким местом» при транспортировке влажного пара в непредназначенных для этого паропроводах, ранее не поднимался. Но эта особенность дренирования является значимой при рассмотрении эксплуатационной надежности и безопасности паропроводов.

Введение

Снижение уровня промышленного потребления пара является известным фактом и серьезной проблемой тепловых электростанций, поскольку это делает проблематичной полноценную загрузку турбин, спроектированных специально для этих целей (например, турбин типа ПТ-60 и ПТ-80). Столь же серьезно проблема стоит и для владельцев сетевых паропроводов, т.к. транспортировка малых расходов влажного пара через большие проходные сечения существующих паропроводов весьма убыточна, и приводит к значительным потерям пара и конденсата.

В настоящее время в нормативной документации отсутствует сформировавшееся представление об особенностях и критериях безопасности таких режимов эксплуатации. Поэтому владельцы паропроводов, будучи связанными юридическими обязательствами, вынуждены продолжать эксплуатацию существующих паропроводов в малорасходных режимах.

Особенности подхода к проектированию и эксплуатации паропроводов влажного и перегретого пара

Проектирование паропроводов, предназначенных для обеспечения паром в промышленных масштабах, как правило, первоначально проводилось в предположении, что транспортироваться будет именно перегретый пар. Поскольку в нынешних условиях транспортируется влажный пар, целесообразно выяснить, в чем состоят наиболее существенные особенности подхода к проектированию паропроводов влажного и перегретого пара (см. таблицу).

Паропроводы влажного пара Паропроводы перегретого пара
Имеют, как правило, небольшую протяженность и прокладываются преимущественно в пределах производственных помещений с положительной температурой. Проходят, в основном, по открытой местности и имеют протяженность до нескольких километров.
Снабжаются системой возврата конденсата, которая функционирует постоянно. Для надежного отвода конденсата применяются уклоны трассы порядка 4 мм/м, а также специальные вертикальные участки для разделения расходов конденсата по зонам дренирования. Расстояние между узлами дренирования составляет 30-50 м. Конденсат образуется в переходных режимах прогрева и остывания паропроводов. Конденсат сбрасывается в ливневую или промышленную канализацию. При нормальной эксплуатации паропровода система дренирования отключается, поскольку предполагается, что конденсат при рабочих параметрах и расходах пара не образуется.

Расстояние между узлами дренирования диктуется особенностями местности и прокладки паропровода и может составлять от нескольких сотен метров до километра.

Нормальный уклон трассы считается равным 2 мм/м.

Направление уклонов горизонтальных участков должны в основном совпадать с направлением движения пара. Направление уклонов по отношению к направлению движения пара не имеет принципиального значения.
На всем протяжении трассы устанавливаются специальные карманы того же диаметра, что и основной трубопровод для накопления конденсата, сепараторы для улавливания влаги из потока, а также конденсатоот- водчики постоянного действия. На контруклонах (если их не удается избежать) конденсатоотводчики устанавливаются с меньшим шагом, чем на участках с уклоном. Специальные карманы для накопления конденсата, сепараторы и конденсатоотводчики, как правило, не устанавливаются. В случае, если карманы для накопления конденсата все же заложены в конструкцию паропровода, их диаметр принимается меньшим, чем диаметр основного паропровода.
В местах сопряжения труб различного диаметра применяют специальные эксцентрические переходники, позволяющие избегать местного скопления конденсата. Устанавливаются концентрические переходники.
Для измерения необходимых характеристик потока влажного пара у потребителя применяются специальные приборы. Расход пара измеряется с помощью расходомерных шайб.

Таким образом, основные различия особенностей проектирования паропроводов влажного и перегретого пара концентрируются вокруг условий отвода конденсата, а также в особенностях сведения теплового баланса.

Для паропроводов влажного пара все вопросы дренирования продумываются заранее, а для паропроводов, спроектированных для транспортировки перегретого пара, но используемых для транспортировки влажного пара, их приходится решать «как получится». В последнем случае удовлетворительное решение является весьма затруднительным и затратным, поскольку существующие паропроводы уже вписаны в техническую инфраструктуру, внесение изменений в которую (например создание условий для возврата конденсата) весьма проблематично. Кроме того, не все потребители готовы оплачивать безвозвратные потери, сопровождающие транспортировку влажного пара, если это не было предусмотрено исходными договорными отношениями.

Использование паропроводов перегретого пара для транспортировки влажного пара на практике выглядит следующим образом: во время эксплуатации все дренажные линии паропровода частично открываются и образующийся конденсат постоянно сливается в ливнестоки или промышленную канализацию. Если паропровод проходит по открытой местности, то надежное использование на нем конденсатоотвод- чиков (особенно при неравномерном суточном графике потребления пара) становится проблематичным, поскольку зимой они легко обмерзают и выходят из строя, допуская при этом существенный «проскок пара» в атмосферу.

Степень открытия дренажных линий проверяется и корректируется обслуживающим персоналом вручную один раз в полторы-две недели. Процесс корректировки осуществляется изменением положения запорных органов дренажных линий «на слух» - по специфическим шумовым характеристикам истечения. В силу этого процесс регулировки носит субъективный характер и зависит от текущего расхода пара к потребителям и квалификации персонала, проводящего обход. По существу, для обслуживающего персонала регулировка является лишь изменением проходного сечения задвижки: стабильное истечение обеспечивает степень открытия, при которой из дренажа идет пароводяная смесь с расходом, практически не зависящим от положения управляющего органа в достаточно широком диапазоне его перемещений. При дальнейшем увеличении проходного сечения задвижки из дренажа появляется большое количество пара, что считается браком в регулировке.

Распределение удаляемых объемов конденсата через отдельные узлы дренирования по длине паропровода неравномерно и зависит, по существу, от размеров участков, где осуществляется сбор конденсата, а эти размеры, в свою очередь, определяются рельефом местности, по которой проложен паропровод.

Ввиду того что конденсат в паропроводе находится на линии насыщения, его сброс через приоткрытую дренажную линию в окружающую среду приводит к вскипанию и резкому повышению паросодержания. Это, в свою очередь является причиной резкого изменения физических свойств потока дренажа. В частности, существенно изменяется характеристика, которая определяет темп эвакуации конденсата из паропровода, - скорость звука. Величина скорости звука задает величину предельного расхода конденсата через минимальное проходное сечение дренажной линии. На рис. 1 приведены известные экспериментальные данные по зависимости скорости звука а от объемного расходного паросодержания двухфазного потока β. Здесь скорость звука а=1500 м/с соответствует воде на линии насыщения, скорость звука а=330 м/с - насыщенному пару. В промежутке между значениями объемного паросодержания β=0,2-0,8 скорость звука резко снижается - ориентировочно до 20 м/с. Этот показатель не является стабильным и зависит от структуры двухфазного потока. При этом в отдельных случаях скорость звука может снижаться до 5-10 м/с.

Вопрос о том, что дренажные линии, работающие в критическом режиме истечения вскипающего конденсата, могут быть «узким местом» при транспортировке влажного пара в непредназначенных для этого паропроводах, ранее не поднимался, и общепринятых норм для оценки этого фактора не существует. Но, как будет показано ниже, эта особенность дренирования является значимой при рассмотрении эксплуатационной надежности и безопасности паропроводов.

Известно, что паропроводы влажного пара имеют следующие особенности эксплуатации, влияющие на их надежность и безопасность.

1. При возникновении дисбаланса между притоком и оттоком конденсата им в первую очередь заполняются участки паропроводов с более низкими геодезическими отметками.

2. Возникновение волн на поверхности ручья конденсата (при его достаточно высоком уровне) может привести к полному перекрытию проходного сечения трубопровода и возникновению конденсатной пробки. Такая водяная пробка, двигаясь со скоростью пара, обладает огромной кинетической энергией, которая высвобождается при встрече с препятствием (например гибом или запорным органом); в результате возникает явление гидравлического удара, который может привести к повреждению или разрушению паропровода или его отдельных элементов.

3. Явления, близкие к гидравлическим ударам, более вероятны при встречном направлении движения пара и конденсата, когда волны, образующиеся на поверхности потока, захватываются встречным потоком пара.

4. Если уровень расходного паросодержа- ния в паропроводе снижается до значения 0,3, возможно возникновение снарядного режима течения конденсата, которое по своему воздействию на паропровод аналогично продолжительной серии гидравлических ударов.

5. Возникновение снарядного режима течения возможно также в протяженных дренажных линиях, связывающих узлы отвода конденсата с ливнестоками, что может привести к повреждению штуцеров в зонах присоединения дренажных линий к основному паропроводу.

Если арматура дренажных линий в условиях эксплуатации осуществляет пропуск критических расходов конденсата, то при неравномерном суточном потреблении пара, а также при изменении температуры окружающей среды, возможно возникновение условий, при которых темп притока конденсата и темп его эвакуации будут существенно отличаться.

Дисбаланс между притоком и оттоком конденсата с учетом возможности его накопления может стать причиной полного или частичного заполнения отдельных участков паропровода конденсатом и, как следствие, - возникновения гидравлических ударов.

Под условиями накопления конденсата следует понимать профиль прокладки паропровода, при котором на трассе имеется участок относительно небольшой протяженности, в котором уровень конденсата может полностью или частично перекрыть проходное сечение трубы. Это может быть участок между двумя вертикально расположенными компенсаторами или участок с уклоном и контруклоном, или участок с уклоном, ограниченный вертикальным компенсатором.

Рассмотрим пример конкретного паропровода общей протяженностью около 5 км, на котором длина одного из участков сбора конденсата

Ду500 мм, ограниченного уклоном и контруклоном, составляет примерно 1 км.

Пар от ТЭЦ имеет начальное давление 1,37 МПа и температуру 250 ОС. Паропровод первоначально рассчитывался на пропуск примерно 35 кг пара в секунду. Этот расход обеспечивал сохранение перегрева на всей протяженности паропровода от ТЭЦ до потребителей. В настоящее время реальный расход пара составляет 7-10 кг/с, при этом на большей длине паропровода транспортируется влажный пар. Расчетная схема рассматриваемого паропровода приведена на рис. 2.

Конкретная задача для рассматриваемого паропровода сформулирована следующим образом. Предположим, что положение запорных органов дренажной линии при начальных условиях теплообмена с окружающей средой и некотором заданном потреблении пара обеспечивает полную эвакуацию образующегося конденсата (нулевой баланс между его притоком и стоком). Необходимо получить ответ на вопрос: может ли при изменившихся условиях теплообмена с окружающей средой или условиях потребления пара за интервал времени между очередными проверками в паропроводе скопиться достаточное количество конденсата, чтобы полностью или частично (на 50-70%) перекрыть его проходное сечение?

Теплогидравлический расчет рассматриваемого паропровода проводился в следующих приближениях:

■ поправочный коэффициент на местные тепловые потери принимался равным β=1,15;

■ толщина тепловой изоляции на участках трубопровода Ду400, Ду500 и Ду600 мм принималась равной 100 мм; на Ду150, Ду200 и Ду250 мм - 80 мм;

■ принято, что трубопровод покрыт теплоизоляцией из минеральной ваты с коэффициентом теплопроводности λиз=0,045+0,00021χtм, где

Температура металла трубы;

■ в двухфазной области поток пара принимался равновесным и гомогенным, что позволяло использовать в качестве одной из основных характеристик потока расходное паросодержание х;

■ термическое сопротивление теплоотдаче от пара к стенке трубы определялось по формуле: Rn=1/(π*αn*d), где αn - коэффициент теплоотдачи от пара к стенке; d - внутренний диаметр трубопровода;

■ термическое сопротивление тепловой изоляции подсчитывалось по формуле: Rиз=ln[(D+2δ)/D]/(2πλиз), где D - внутренний диаметр трубопровода; δ - толщина слоя тепловой изоляции;

■ термическое сопротивление теплоотдаче от поверхности тепловой изоляции к воздуху принималось равным Rв=1/[παв(D+2δ)], где αв - коэффициент теплоотдачи от поверхности тепловой изоляции к воздуху; принимался равным 29 Вт/(м2. О С).

■ суммарное термическое сопротивление:

R=Rп+Rиз+Rв;

■ удельные тепловые потери паропровода определялись по формуле: q=Δt/R, где Δt - разница между температурой пара и температурой воздуха;

■ тепловые потери Q участка паропровода длиной l определялись по формуле: Q=qx/x β, где β - коэффициент местных тепловых потерь;

■ количество конденсата, выпавшего на участке паропровода единичной длины в единицу времени, определялось по формуле: Gк=q×l×β/r, где r - скрытая теплота парообразования;

■ массовое расходное паросодержание потока корректировалось с учетом Gк;

■ коэффициент трения принимался равным значению 0,004, что учитывало как потери давления в местных сопротивлениях, так и состояние внутренней поверхности трубопровода.

Система дифференциальных уравнений, описывающих изменение давления и энтальпии на каждом шаге по длине трубы, решалась методом Рунге-Кутта. Предварительно определялась величина минимального шага, для которой конечный результат решения отличался от варианта вдвое большего шага не более чем на 5%.

Физические свойства воды и водяного пара рассчитывались на основе известных полиномиальных аппроксимаций экспериментальных данных, приведенных в .

Зона перехода от свойств перегретого пара к свойствам насыщенного пара определялась в итерационном процессе с десятикратным уменьшением шага по длине трубы.

Программа проведения расчета режима транспортировки была написана на языке VBA.

Анализ документации по профилю прокладки рассматриваемого паропровода показал, что для перекрытия значительной части сечения трубы Ду500 мм достаточно ее заполнения конденсатом на длине паропровода порядка 150 м. Это соответствует объему около 30,6 м3 или (при плотности ρ=872 кг/м3) примерно Ркр=26683 кг конденсата.

Если расход конденсата g1, полученного на рассматриваемом участке, полностью удаляется из паропровода в критическом режиме истечения (т.е. при истечении через установленное при регулировке проходное сечение задвижки), а изменившийся расход конденсата равняется g2 и g2>g1, то разница Δg=g2-g1 будет характеризовать скорость заполнения паропровода конденсатом. Отметим также, что при g2

Поставленная задача является многопараметрической. В частности, расход пара от ТЭЦ определяется не только потребностями его потребителей. На пути до них пар теряет давление, температуру и становится влажным. Изменение этих характеристик зависит от начального расхода пара, его распределения по потребителям и температуры наружного воздуха. Часть пара конденсируется и отводится через дренажные линии. Расход отводимого конденсата, в свою очередь, зависит от распределения расходов между потребителями и температуры наружного воздуха.

Если интервал времени t между осмотрами и регулировкой дренажной системы равен 10 суткам (что составляет 240 ч или 864 тыс. с), то массу скопившегося в паропроводе за это время конденсата можно определить по формуле: P=c^g.

Таким образом, для выполнения условия Р>Ркр для рассматриваемого паропровода необходимо и достаточно, чтобы выполнялось условие:

Δgκр>Pκр/τ=26683/864000=0,030883 (кг/с).

С другой стороны, значение критического расхода двухфазного потока конденсата дкр

можно определить из зависимости, характеризующей условия его истечения из задвижки с заданным проходным сечением F0 :

g кр =μ Rd роWкр,

где μ - коэффициент, зависящий от условий истечения: для относительно плавного сужения и расширения канала, характерного для седла запорного органа, μ=2,4 (при скачкообразном изменении профиля течения значение μ выше); ро

Плотность потока пароводяной смеси за задвижкой, зависящая от расходного паросодержания потока x; wkf, - скорость звука в пароводяной смеси. Из результатов теплогидравлических расчетов, некоторые из которых будут приведены ниже, следует, что расход конденсата через дренажную линию на рассматриваемом участке в среднем составляет g=0,3 кг/с.

Проходное сечение задвижки представим круглым отверстием с эквивалентным диаметром 0кр, тогда при wkf,=20 м/с получим:

dκр=0,5=(0,007956/ρо)0,5.

Для оценки значения 0кр рассмотрим три случая:

1. x=0,9 (во вскипающем потоке преобладает пар), тогда ро=0,65589 кг/м3 и 0кр1=0,1101 м (110,1 мм);

2. x=0,5 (во вскипающем потоке половина пара и половина воды), тогда ро=1,18 кг/м3 и 0кр2=0,08211 м (82,11 мм);

3. x=0,1 (во вскипающем потоке преобладает вода), тогда ро=5,87 кг/м3 и 0кр3=0,0368 м (36,8 мм).

Дренажные трубопроводы на рассматриваемом паропроводе выполнены в основном из труб Ду150 мм. На это же проходное сечение рассчитаны и установленные задвижки. Как видно из приведенных данных, полученные критические проходные сечения лежат в пределах регулировочного диапазона проходного сечения задвижек. Таким образом, возникновение критического режима истечения из дренажных линий с последующим накоплением конденсата возможно.

При проведении теплогидравлических расчетов рассматриваемого паропровода учитывалось, что расход пара к потребителю № 5 незначителен и равен примерно 5% расхода к потребителю № 4 (см. рис. 2).

Для наглядного представления некоторые результаты расчетов для контрольного участка представлены в графическом виде на рис. 3. Как следует из этих данных, в значительном диапазоне расходов пара от ТЭЦ количество конденсата, образующегося на контрольном участке, зависит только от температуры окружающего воздуха и не зависит от распределения нагрузки между потребителем № 1 и суммарной нагрузки потребителей № 5 и 4. Эта часть диапазона паровых нагрузок в принципе может быть

отслежена сотрудниками компании-владельца паропровода и учтена при выборе момента для проведения регулировки в том случае, когда температура воздуха снижается. Однако, начиная с расхода пара от ТЭЦ порядка 8 кг/с, количество образующегося конденсата начинает существенно зависеть от перераспределения паровой нагрузки между потребителем № 1, с одной стороны, и потребителями № 5 и 4 - с другой. Это перераспределение не может быть отслежено по внешним признакам в условиях, когда общий расход пара от ТЭЦ сохраняется, а температура воздуха остается стабильной.

Из результатов расчетов также следует, что при расходе пара 10 кг/с и выше в месте разветвления потока к потребителю № 1 и потребителями № 5 и 4 пар сохраняет перегрев. Во всех остальных режимах в точке разветвления находится влажный пар.

При минимальном расходе пара от ТЭЦ, равном 7 кг/с, доле общего расхода на потребителей № 5 и 4, равной 0,4, и температуре воздуха 20 ОС расходное паросодержание x в потоке к потребителю № 4 равно примерно 0,2. По существу, это поток пароводяной смеси, движущейся в снарядном режиме. Близкая характеристика расходного паросодержания получается для этого режима и при -10 ОС. Во всех остальных режимах пар у потребителя № 4 сохраняет относительно приемлемые характеристики расходного паросодержания.

Рассмотрим случай зимнего режима потребления пара, когда эвакуация конденсата на контрольном участке задана при исходном расходе пара 10 кг/с, доле расхода на потребителей № 5 и 4, равной 0,7, и температуре окружающего воздуха

5 ОС (зависимости для этой температуры на рис. 3 не показаны. - Прим. ред.). Этому случаю соответствует расход конденсата на контрольном участке, равный g1=0,2702 кг/с. При снижении расхода пара от ТЭЦ до 9 кг/с при той же доле расхода к потребителям № 5 и 4, и той же температуре наружного воздуха расход конденсата на контрольном участке увеличится до g2=0,32719 кг/с. Для этого случая Δg=0,05699 кг/с, т.е. больше Δgкp=0,030883 кг/с.

Рассмотрим случай летнего режима потребления пара, когда эвакуация конденсата на контрольном участке задана при расходе пара 9 кг/с, доле расхода на потребителей № 5 и 4, равной 0,5, и температуре окружающего воздуха 20 ОС. Этому случаю соответствует расход конденсата, равный g1=0,24798 кг/с. При снижении расхода пара от ТЭЦ до 8 кг/с, при той же доле расхода к потребителям № 5 и 4, и той же температуре воздуха расход конденсата увеличится до g2=0,29481 кг/с. Для этого случая Δg=0,04683 кг/с, т.е. больше Δgкp.

Заключение

Таким образом, результаты выполненных теплогидравлических расчетов подтверждают реальную возможность возникновения опасных режимов эксплуатации паропроводов, спроектированных для транспортировки перегретого пара в малорасходных режимах с конденсацией. Кроме того, на нескольких гибах рассмотренного выше контрольного участка паропровода при визуальном контроле были обнаружены трещины на растянутых образующих, а также смещения некоторых скользящих опор со своих оснований в направлении движения потока пара, что является прямым свидетельством имевших место опасных режимов.

Литература

1. М.П. Вукалович, С.Л. Ривкин, А.А. Александров. Таблицы теплофизических свойств воды и водяного пара. - М.: Изд-во стандартов, 1969. - 408 с.

2. Е.И. Идельчик. Справочник по гидравлическим сопротивлениям. - М.: Машиностроение, 1992. - 672 с.