Где используется магний в промышленности. Свойства и область применения чистого магния

ОПРЕДЕЛЕНИЕ

Магний - двенадцатый элемент Периодической таблицы. Обозначение - Mg от латинского «magnesium». Расположен втретьем периоде, IIА группе. Относится к металлам. Заряд ядра равен 12.

Магний весьма распространен в природе. В больших количествах он встречается в виде карбоната магния, образуя минералы магнезит MgCO 3 и доломит MgCO 3 ×CaCO 3 . Сульфат и хлорид магния входят в состав минералов каинита KCl×MgSO 4 ×3H 2 O и карналлита KCl×MgCl 2 ×6H 2 O. Ион Mg 2+ содержится в морской воде, сообщая ей горький вкус. Общее количество магния в земной коре составляет около 2% (масс.).

В виде простого вещества магний представляет собой серебристо-белый (рис. 1), очень легкий металл. На воздухе он мало изменяется, так как быстро покрывается тонким слоем оксида, защищающего его от дальнейшего окисления.

Рис. 1. Магний. Внешний вид.

Атомная и молекулярная масса магния

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии магний существует в виде одноатомных молекул Mg, значения его атомной и молекулярной масс совпадают. Они равны 24,304.

Изотопы магния

Известно, что в природе магний может находиться в виде трех стабильных изотопов 24 Mg (23,99%), 25 Mg (24,99%) и 26 Mg (25,98%). Их массовые числа равны 24, 25 и 26 соответственно. Ядро атома изотопа магния 24 Mg содержит двенадцать протонов и двенадцать нейтронов, а изотопов 25 Mg и 26 Mg- такое же количество протонов, тринадцать и четырнадцать нейтронов соответственно.

Существуют искусственные изотопы магния с массовыми числами от 5-ти до 23-х и от 27-ми до 40-ка.

Ионы магния

На внешнем энергетическом уровне атома магния имеется два электрона, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 .

В результате химического взаимодействия маний отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Mg 0 -2e → Mg 2+ .

Молекула и атом магния

В свободном состоянии магний существует в виде одноатомных молекул Mg. Приведем некоторые свойства, характеризующие атом и молекулу магния:

Сплавы магния

Главная область применения металлического магния - это получение на его основе различных легких сплавов. Прибавка к магнию небольших количеств других металлов резко изменяет его механические свойства, сообщая сплаву значительную твердость, прочность и сопротивляемость коррозии.

Особенно ценными свойствами обладают сплавы, называемые электронами. Они относятся к трем системам: Mg-Al-Zn, Mg-Mn и Mg-Zn-Zr. Наиболее широкое применение имеют сплавы системы Mg-Al-Zn, содержащие от 3 до 10% алюминия и от 0,2 до 3% цинка. Достоинством магниевых сплавов является их малая плотность (около 1,8 г/см 3).

Примеры решения задач

ПРИМЕР 1

На вопрос Где используется МАГНИЙ? заданный автором Лерка)) лучший ответ это МАГНИЙ (Magnesium) Mg, химический элемент 2-й (IIa) группы Периодической системы. Атомный номер 12, относительная атомная масса 24,305. Природный магний состоит из трех природных изотопов 24Mg (78,60%), 25Mg (10,11%) и 26Mg (11,29%). Степень окисления +2, очень редко +1.
Распространение магния в природе и его промышленное извлечение.Магний есть в кристаллических горных породах в виде нерастворимых карбонатов или сульфатов, а также (в менее доступной форме) в виде силикатов. Оценка его общего содержания существенно зависит от используемой геохимической модели, в частности, от весовых отношений вулканических и осадочных горных пород. Сейчас используются значения от 2 до 13,3%. Возможно, наиболее приемлемым является значение 2,76%, которое по распространенности ставит магний шестым после кальция (4,66%) перед натрием (2,27%) и калием (1,84%).
Характеристика простого вещества и промышленное получение металлического магния. Магний - серебристо-белый блестящий металл, сравнительно мягкий, пластичный и ковкий. Его прочность и твердость минимальны по распространенности для литых образцов, выше - для прессованных.
В обычных условиях магний устойчив к окислению за счет образования прочной оксидной пленки. Вместе с тем он активно реагирует с большинством неметаллов, особенно при нагревании. Магний воспламеняется в присутствии галогенов (при наличии влаги), образуя соответствующие галогениды, и горит ослепительно ярким пламенем на воздухе
Магний - самый легкий конструкционный материал, используемый в промышленных масштабах. Его плотность (1,7 г см-3) составляет менее двух третей плотности алюминия. Сплавы магния весят вчетверо меньше стали. Кроме того, магний прекрасно обрабатывается и может быть отлит и переделан любыми стандартными методами металлообработки (прокатка, штамповка, волочение, ковка, сварка, пайка, клепка). Поэтому его основная область применения - в качестве легкого конструкционного металла.

Ответ от Валентина Базанова [гуру]
я знаю что в салюте он применяется


Ответ от OlGosh [гуру]
Мне кажется, в сварке должен применяться, для повышения температуры.


Ответ от Ilya O. Volkov [гуру]
В виде сплавов с другими металлами (в первую очередь, с алюминием) -- в самолётах в качестве конструкционного материала (лёгкий и прочный).


Ответ от Анатолий Горный [гуру]
Мы в детстве из него салюты делали!Напилишь его в стружку,разогреешь и каааак бросишь об стенку!Суппер!


Ответ от ! VS [гуру]
В авиации, в частности в тормозных барабанах на колёсах самолёта.
Ещё он используется как легирующий элемент в металлургической промышленности.


Ответ от Jeka [гуру]
Всё о нём это используется в лекарствах например, в изготовлении взрывпакетов, раньше при фотографировании для вспышки!!!


Ответ от Jef [гуру]
В клапанах ЗИЛовских моторов при СССР был чистый магний для лучшего теплоотвода. Сейчас это дорого. Применяется в авиастроении как компоненит сплавов. В чистом виде очень редко. Хороший металл, в детстве в школьный унитаз бросали - разрывало как ромашку


Ответ от Андрей Лубенец [гуру]
Магний, Mg, горючий серебристо-белый металл. Ат. масса 24,32; плотн. 1740 кг/м3; т. плавл. 651 °С; т. кип. 1107 °С; тепл. crop, до MgO -25 104 кДж/кг. На воздухе способен воспламеняться; во влажной среде сгорает со взрывом. Т. гор. 2800 °С; т. само¬воспл.: компактного металла 650 °С, стружки 510 "С, пыли 420- 440 °С; нижн. конц. предел распр. пл. 10-20 г/м3; макс. давл. взрыва 670 кПа; скорость нарастания давл.: средн. 6,8 МПа/с, макс. 12,3 МПа/с; мин. энергия зажигания 20 мДж; скорость горения слоя стружки по поверхности 3-Ю3 м/с; МВСК 3% (об.) для горения аэровзвеси, 9% (об.) для горения стружки; при предва¬рительном подогреве стружки до 600 °С МВСК 2,5% (об.). Горит в атмосфере диоксида углерода, т. самовоспл. 715 °С. В атмосфере чистого сухого азота магний не воспламеняется. При т-ре более 400 °С пыль и порошок энергично взаимодействуют с азотом, выделяя тепло. Поэтому атмосфера азота не может считаться инерт¬ной. Даже в атмосфере аргона, содержащей 0,5% кислорода,
443
магний может воспламеняться с повышением давления до 255 кПа. Средства тушения: фторид кальция, смесь хлоридов и фторидов щелочных и щелочноземельных металлов, сухой песок. Для тушения небольших пожаров пригодны полевой шпат, карбонат натрия, бура, инфузорная земля, борная кислота; необходимо покрывать горящий металл сплошным слоем толщиной не менее 1,5 см .
МагнкЯ фосфорнокислый двузамещенный, MgHPO4-3H2O, него¬рючий белый порошок .
Магний фосфорнокислый трехзамещенный, Mg3(PC4)2, негорю¬чий белый порошок .
Магк^й кальций-кремний, горючее вещество. Состав, % (масс): магний 20, кальций 25, кремний 50, железо 4. Дисперсность образца 42 мкм. Т. самовоспл. 670 °С; нижн. конц. предел распр. пл. 125 г/м3; макс. давл. взрыва 1 МПа; макс, скорость нарастания давл. 21,7 МПа/с . С

Магний – самый легкий конструкционный материал, используемый в промышленных масштабах. Его плотность (1,7 г см –3) составляет менее двух третей плотности алюминия. Сплавы магния весят вчетверо меньше стали. Кроме того, магний прекрасно обрабатывается и может быть отлит и переделан любыми стандартными методами металлообработки (прокатка, штамповка, волочение, ковка, сварка, пайка, клепка). Поэтому его основная область применения – в качестве легкого конструкционного металла.

Особенно широко применяют сплавы магния с алюминием, цинком и марганцем. Каждый из компонентов этого содружества вносит свой вклад в общие свойства: алюминий и цинк увеличивают прочность сплава, марганец повышает его антикоррозионные свойства. Магний придает сплаву легкость-детали из магниевого сплава на 20-30% легче алюминиевых и на 50-75% легче чугунных и стальных. Сплавы этого элемента все чаще используются в автомобилестроении, текстильную промышленности, полиграфии.

Магниевые сплавы обычно содержат более 90% магния, а также 2–9% алюминия, 1–3% цинка и 0,2–1% марганца. Сохранение прочности при высокой температуре (до 450° С) заметно улучшается при сплавлении с редкоземельными металлами (например, празеодимом и неодимом) или торием. Эти сплавы можно использовать для корпусов автомобильных двигателей, а также фюзеляжей и шасси самолетов. Магний применяют не только в авиации, но и для изготовления лестниц, мостков в доках, грузовых платформ, транспортеров и подъемников, а также в производстве фотографического и оптического оборудования.

Широкое применение магниевые сплавы находят в самолетостроении. Еще в 1935 году в СССР был построен самолет «Серго Орджоникидзе», почти на 80% состоящий из магниевых сплавов. Самолет успешно выдержал все испытания и длительное время эксплуатировался в тяжелых условиях. Ракеты, ядерные реакторы, детали моторов, баки для бензина и масла, корпуса вагонов, автобусов, легковых машин, колеса, маслопомпы, отбойные молотки, пневмобуры, фото- и киноаппараты, бинокли - вот далеко не полный перечень приборов, узлов и деталей, где используют магниевые сплавы.

Немалую роль играет магний в металлургии. Он применяется как восстановитель в производстве некоторых ценных металлов – ванадия, хрома, титана, циркония. Магний, введенный в расплавленный чугун, модифицирует его, т.е. улучшает его структуру и повышает механические свойства. Отливки из модифицированного чугуна с успехом заменяют стальные поковки. Кроме того, металлурги используют магний для раскисления стали и сплавов.

Широкое применение находят многие соединения магния, особенно его оксид, карбонат и сульфат.

Магний в виде чистого металла а так же его химические соединения(бромид, перхлорат) применяются для производства очень мощных резервных электрических батарей (например магний-перхлоратный элемент, серно-магниевый элемент, хлористосвинцово-магниевый элемент, хлорсеребряно-магниевый элемент,хлористомедно-магниевый элемент,магний-ванадиевый элемент и др), и сухих элементов (марганцево-магниевый элемент, висмутисто-магниевый элемент и др). Химические источники тока на основе магния отличаются очень высокими значениями удельных энергетических характеристик и высоким разрядным напряжением. В последние годы в ряде стран обострилась проблема разработки аккумулятора с большим сроком службы, так как теоретические данные позволяют утверждать очень большие перспективы его широкого использования(высокая энергия, экологичность, доступность сырья).

Магний – это жизненно важный микроэлемент, щелочноземельный металл, без которого не обходятся основные этапы метаболизма. Обозначается символом Mg , латинское название Magnesium. Элемент открыт в 1755 году.

Метаболизм (или обмен веществ) является основой жизнедеятельности любого живого организма, представляет собой каскад химических реакций, которые обеспечивают организм необходимыми веществами, а также достаточным количеством энергии. В метаболизме участвуют витамины, микроэлементы, ферменты и множество других соединений. Магний участвует во многих биохимических реакциях и является одним из важнейших компонентов в регуляции большинства физиологических процессов. Без магния невозможна активация не менее трехсот ферментов, а также витаминов группы В. Магний принимает участие во всех видах обмена: углеводном, липидном и белковом. Этот микроэлемент необходим для поддержания электролитного баланса.

Особая роль принадлежит магнию в функционировании нервной и мышечной тканей, которые обладают спонтанной электрической активностью и проводимостью: магний в данном случае регулирует проницаемость клеточных мембран для других ионов и адекватную работу калий/натриевого насоса в них. Не последнюю роль играет магний в иммунологических процессах организма.

Магний участвует в терморегуляции организма, обмене кальция, натрия, аскорбиновой кислоты, фосфора, в синтезе фосфолипидов, оказывает сосудорасширяющее действие и препятствует агрегации эритроцитов. В организме магний активен в виде ионов Mg двухвалентного, так как только в такой форме он может образовывать соединения с органическими веществами и выполнять свои функции в биохимических процессах.

Потребность в магнии

Суточная потребность организма в магнии в среднем составляет около 400 мг . Для беременных женщин эта цифра возрастает до 450 мг .

Детям необходимо ежесуточное поступление 200 мг микроэлемента.

У спортсменов и людей, подвергающихся высокой физической нагрузке, потребность в магнии значительно возрастает – до 600 мг/сут , особенно во время длительных тренировок, в стрессовых ситуациях.

В организме микроэлемент распределяется в тканях органов и систем, при этом наибольшая концентрация его наблюдается в печени, в костях, в мышцах и в тканях центральной и периферической нервной системы. Попадает в организм с пищей, водой и солью. Выводится в основном кишечником и, в меньшей степени, почками.

Для определения содержания ионов магния в организме проводится анализ крови , взятой из локтевой вены с утра натощак, перед сдачей анализа необходимо воздержаться от приема солей магния не менее чем на трое суток. В норме этот показатель составляет: у взрослых от 0,66 ммоль/л до 1,07 ммоль/л (для категории 20-60 лет) и от 0,66 ммоль/л до 0,99 моль/л (для категории 60-90 лет), у детей от 0,70 ммоль/л до 0,95 ммоль/л (возраст 5 мес.-6 лет) и от 0,70 моль/л до 0,86 ммоль/л (6-9 лет).

Причиной повышения концентрации магния в плазме крови может послужить почечная недостаточность, надпочечниковая недостаточность и обезвоживание различного происхождения. Снижение концентрации наблюдается при остром панкреатите, недостаточном поступлении магния с пищей, во 2 и 3 триместре беременности, при дефиците витамина Д, а также при усиленной функции паращитовидных желез, алкоголизме.

Для поддержания нормального уровня магния в плазме крови организм берет его из так называемых «депо» - органов и тканей. Поэтому указанные показатели долгое время могут оставаться на должном уровне, то есть в пределах нормы, даже если в организм поступает недостаточное количество магния. Изменение нормальных показателей в плазме крови говорит о далеко зашедшем процессе.

Дефицит магния

О дефиците магния в организме могут сигнализировать ряд симптомов, выраженных в большей или меньшей степени. Нередко, несмотря на плохое самочувствие, люди не обращают внимания на их появление, списывая все на большую загруженность на работе и усталость. Нарушение сна, повышенная утомляемость, так называемый «синдром хронической усталости», снижение памяти, головокружение, головная боль, депрессия и плаксивость – все это может быть следствием недостаточного количества магния.

Со стороны сердечно-сосудистой системы это: аритмия , боль в грудной клетке . Со стороны ЖКТ: спастические боли в области желудка, поносы. Появляются «необъяснимые» боли в различных областях тела: деснах, конечностях, суставах. Судороги в икроножных мышцах, различные тики, тремор конечностей. Наблюдается повышенная ломкость ногтей и волос, сухость кожи, кариес. Длительно существующий дефицит магния значительно повышает риск развития сахарного диабета.

Женщины переносят дефицит магния хуже, чем мужчины. Это связано с различной физиологией мужчин и женщин. Женщинам магний необходим для нормальной менструальной и репродуктивной функции. В зависимости от фазы менструального цикла в женском организме колеблется концентрация магния. Достоверно известно, что симптомы предменструального синдрома (ПМС), а именно: раздражительность, увеличение веса, отечность, зябкость и другие многочисленные явления, связаны именно с дефицитом магния.

Избыток микроэлемента магния не менее вреден для здоровья. В большой концентрации магний тормозит усвоение организмом кальция (магний замещает его). При концентрации его в плазме крови 15-18 мг% вызывает наркоз. Признаки избытка магния в организме: общее угнетение нервной системы, сонливость и вялость. Также может возникнуть остеопороз, снижение артериального давления, брадикардия (урежение сердечных сокращений).

Передозировка

Передозировка магния может наблюдаться при неправильном дозировании препаратов магния, в основном при внутривенном введении. Не стоит опасаться избыточного поступления в организм с пищей , так как в повседневном рационе присутствуют в основном рафинированные продукты, бедные магнием. Часть микроэлемента теряется при термической обработке и при консервации. Поэтому рекомендуется употреблять овощи и фрукты по возможности в сыром виде. Недостаточно магния получают жители районов, где мягкая питьевая вода.

Как уже указывалось ранее, источниками магния для организма являются: пища, вода (жесткая), соль. К продуктам, богатым солями магния относятся: крупы (гречневая и пшенная), бобовые (горох, фасоль), арбуз, шпинат, салат, молоко, тахинная халва, орехи. Богаты этим микроэлементом некоторые сорта хлеба – ржаной, и в меньшей степени пшеничный.

Черный шоколад полезен не только известным антиоксидантным и тонизирующим свойством, но и высоким содержанием магния. В мясной продукции содержание магния не так велико, по сравнению с крупами. Совсем немного его содержится в яблоках и сливах. Сухофрукты богаты различными элементами, в том числе и магнием, особенно это относится к кураге, инжиру, бананам. Лидером по содержанию магния является кунжут.

При необходимости с профилактической или лечебной целью назначают препараты магния, которые доступны в аптечной сети без рецепта врача. Однако не рекомендуется самостоятельно начинать прием препаратов без предварительной консультации специалиста. Только он может достоверно определить есть ли необходимость в приеме данных препаратов, и подберет правильный режим приема и дозировку с учетом возраста, физической активности и пола. Часто достаточным оказывается коррекция питания.

Взаимодействие с другими веществами

В организме магний и препараты, содержащие его, взаимодействуют с другими микро и макроэлементами, при этом оказывая синергическое (взаимодополняющее) или антагонистическое (противоположное) действие друг на друга. Так, витамин В6 улучшает усвоение магния и проникновение его внутрь клетки. Соли кальция уменьшают всасывание магния в желудочно-кишечном тракте, если одновременно попадают туда, так как они являются антагонистами.

Полезным будет знать, что препараты, содержащие магний снижают всасывание, а, следовательно, и эффективность антибиотиков тетрациклинового ряда. Поэтому рекомендуется соблюсти трехчасовой интервал между приемом этих медикаментов. Таким же образом влияет магний на препараты железа и антикоагулянты, принимаемые внутрь.

24.01.2017

Авиация


Магний широко используют в двигателях, корпусах и шасси самолетов. Основными факторами, определяющими использование магния, являются высокая удельная прочность в случае отливок и высокая удельная жесткость в случае деформированных изделий в сочетании с такими факторами, как высокие свойства при повышенных температурах, высокие усталостные и ударные свойства, а также хорошая обрабатываемость резанием. Стоимость здесь не является решающим фактором ввиду того, что каждые 45 кг сэкономленной массы дают дополнительный доход на авиалинии несколько тысяч фунтов стерлингов в год. Самолетостроение является очень важным рынком сбыта для магния и стимулирует разработку литейных сплавов с высоким сопротивлением ползучести, а также сплавов, содержащих цирконий.
Корпуса самолетов и корпуса редукторов. Чтобы проиллюстрировать степень применения отливок из магниевых сплавов в английском самолетостроении, можно воспользоваться примерами конструкций самолетов «Комета», «Британия» и «Трайдент», каждый из которых содержит несколько сот отливок из магниевых сплавов.
Большинство литых деталей, используемых в конструкциях самолетов, получают литьем в землю. Литье в металлические изложницы используется реже.

Деформируемые магниевые сплавы находят в Англии следующее применение. Бомбардировщик «V» содержит около 1 т листов, главным образом из сплава ZW3. Вертолет S55 имеет обшивку из того же сплава (120 кг) (рис. 293). Другие английские вертолеты содержат большое число поковок из сплава ZW3 (рис. 294). Рычаг рулевого управления из сплава AZM, полученный путем ковки, показан на рис. 294, г. Сварные конструкции из листа и труб, изготовленных из сплава ZW1 (рис. 295), были использованы в турбовинтовом самолете «Британия», а также для сидения штурмана-наблюдателя в самолете «Биверли». Самолет «Гнат» имеет панели и обширные воздухопроводы (рис. 296) также из сплава ZW1. Используются также сварные трубчатые сидения в самолетах, например в «Виска-унте».

В США деформируемые магниевые сплавы нашли значительно большее применение. Экспериментальный самолет F80C с монококовой конструкцией крыла в основном сделан из магния (рис. 297). На рис. 298 показано упрощение конструкции фюзеляжа самолета в результате применения магния. Наиболее хорошо иллюстрируется применение магния в конструкциях самолетов США, по-видимому, на примере бомбардировщика В36, На рис. 299 показаны места, в которых применяется магний в самолетах этого типа. На рис. 300 показано использование магния в некоторых других военных самолетах. Бомбардировщик В36 содержит около 3400 кг магниевых листов и около 1100 кг магниевых отливок, прессованных изделий и поковок, не считая двигателей, колес, тормозов и другого вспомогательного оборудования Общее количество магниевых сплавов, примененных в этом самолете, составляет около 8600 кг. Замена магния алюминием увеличила бы общую массу приблизительно на 4,5 т. Другой бомбардировщик В52 содержит 635 кг листов, 90 кг прессованных изделий и свыше 200 кг отливок из магниевых сплавов.
Удачным примером монококовой конструкции из магния является обшивка фюзеляжа экспериментального скоростного самолета «Скайроккет» (рис. 301).

Пол, сделанный из прессованных изделий сплава ZK60, используется в «Глобемастерс» и грузовом «Сьюпер констеллыйшнз».
Следует упомянуть также беспилотный реактивный самолет мишень «Файерби». Около 1/3 его конструкции состоит из листов сплава AZ31-H24 и прессованных изделий из сплава AZ31. Один из этих самолетов сбивали в море, извлекали, промывали, восстанавливали и вновь использовали 21 раз.
В США производятся крупные прессовки, например, для самолета В47 и реактивного двигателя J33.
Двигатели . Типичными деталями из магниевых сплавов в двигателях являются воздухозаборники - отливки из сплавов AS, RZ5 и ZRE1, корпус диффузора и компрессора отливки из сплавов ZRE1, ZT1 и НК31, поковки из сплава ZTY; основные поддерживающие плиты - отливки из сплава ZT1.
Турбовинтовой двигатель «Дарт», используемый в пассажирских самолетах «Вискаунт» и «Газель», содержит около 80 магниевых отливок, что составляет около Vs массы двигателя.
Магниевые сплавы используют также в поршневых двигателях, например для картера двигателя в «Джипси Куин» и для задней крышки двигателя «Сентаурус». В обоих примерах использовался сплав AZ91.
По мере повышения рабочих температур реактивных двигателей создается тенденция к ограничению применения отливок из магниевых сплавов в воздухозаборниках и в деталях компрессора. Однако для изготовления картера компрессора продолжают использовать поковки из сплава ZTY.
Почти все отливки для авиационных двигателей получают литьем в землю. Отливкой в кокиль получают крышки камер сгорания из сплава ZREI и детали турбовинтовых и реактивных двигателей из сплава RZ5.

Колеса . Колеса шасси из литейных магниевых сплавов применяют в самолетах в течение многих лет Сначала использовали обработанный на твердый раствор сплав А8, затем колеса стали отливать из сплава Z5Z или в небольшом объеме изготавливали из поковок сплава ZW3 (рис. 302). Высокое качество поверхности обода колеса и однородность усталостных свойств в отливке в сочетании с хорошей устойчивостью против ударных нагрузок и малой чувствительностью к надрезу как при ударных, так и при усталостных нагрузках являются важными факторами применения магниевых сплавов для изготовления колес.
Некоторые носовые колеса и колесные фланцы отливают в кокиль из сплава А8.
Бортовое оборудование и груз. Небольшие магниевые детали часто используют в системах навигации, связи, вентиляции и герметизации, внутренней арматуры и распределения и т. д. Из магниевых сплавов изготавливают и такие детали, как телевизионные камеры (рис. 303).
Военно-воздушные силы США используют изготовленные из магниевых сплавов геодезические конструкции очень больших размеров (рис. 304). Одна из них представляет собой полусферу диаметром 15 м, массой всего лишь 550 кг без покрытия из пластика. Другая размером 24x15x10 м весит 680 кг без покрытия и может быть установлена без крана.

Управляемые снаряды и исследование космоса. Некоторые свойства магния, имеющие значение для управляемых снарядов и использования в космосе . В дополнение к высокой прочности и жесткости при минимальной массе в сочетании с хорошей технологичностью к материалам, предназначенным для использования в конструкциях управляемых снарядов и космических аппаратов, предъявляются и другие требования. Условия полета в космосе являются очень жесткими. Они включают в себя аэродинамический нагрев до высоких температур, внезапное попадание в тень, близость некоторых компонентов к ожижженному топливу, наличие озона в верхней атмосфере, бомбардировку жесткой электромагнитной радиацией, частицами высоких энергий и микрометеоритами, вакуум до 10в-11 мм рт. ст. и т. д.

Магний обладает довольно высокими теплопоглотительными свойствами (табл. 83). Так, по температуропроводности магний не уступает ни одному из конкурирующих с ним металлов, вследствие чего температуры, возникающие при передаче на поверхность магния данного количества тепловой энергии, относительно низки. Это иллюстрируется гипотетической кривой нагрева (рис. 305). Кроме того, в связи с тем, что произведение упругого модуля на коэффициент расширения (модуль термического напряжения) является низким, неоднородный нагрев компонентов будет вызывать относительно низкие термические напряжения.

Так как давление паров магния составляет порядка 10в-7 мм при 200° С, то можно ожидать медленной сублимации магниевых сплавов при весьма умеренных температурах на Луне и в межпланетном пространстве. Без сомнения, этот эффект может быть подавлен использованием подходящих нелетучих покрытий, в частности анодирующей обработки НАЕ.
Эмиссионная способность поверхности является важным свойством при космических полетах. Она может контролироваться применением соответствующих покрытий. Так, магниевая сфера спутника «Вангуард» была покрыта наряду с прочими материалами пленкой двуокиси кремния толщиной 6000А для облегчения излучения поглощенной солнечной энергии в диапазоне 10 мкм при 20° С. Контролируемая эмиссионная способность в пределах 0,15-0,96 может быть получена с помощью окрашивающих пленок при соответствующем выборе пигмента. Краски с низкой эмиссионной способностью могут быть использованы для уменьшения радиационной передачи тепла радиолокатору, вычислительному устройству и электронному оборудованию от поверхностей, подверженных аэродинамическому нагреву.

Для некоторых целей, например для изготовления корпусов электронного оборудования, применяют литейные магниевые сплавы с высокой демпфирующей способностью. Так, отливки из сплава ZA (K1A) использовали в контрольном оборудовании на управляемом снаряде «Найк-Геркулес».
Другие ценные качества магния как материала для космоса - хорошие свойства на растяжение в условиях быстрого нагрева и нагружения и отсутствие какого-либо перехода из пластичного в хрупкое состояние при низких температурах.
Исследовательские ракеты и управляемые снаряды. Детали, отлитые в землю, из сплава ZRE1 используют в исследовательских ракетах «Скайларк», впервые запущенных во время Международного геофизического года.
Об английских управляемых снарядах имеется ограниченная информация, тем не менее известно, что отливки из сплавов Z5Z и RZ5 широко используют в качестве элементов конструкций. У одного из снарядов рули и труба корпуса изготовлены из прессованного сплава ZW6. Отливки из сплава MSR и поковки из сплава ZTY, вероятно, найдут широкое применение в будущем.

В США широко распространено применение магния в управляемых снарядах. Некоторые наиболее важные случаи перечислены в табл. 84. На рис. 306 показано, в каких местах используются магниевые сплавы в управляемых снарядах «Титан», «Юпитер», «Тор» и «Поларис». Общее содержание магния в «Титане» составляет около 900 кг, причем около 40% оболочки составляют листы из сплавов НМ21 и НК31. Имеются также прессованные изделия из сплава НМ31. Листы из сплава HM21 могут подвергаться кратковременному нагреву до 375-425° С. Особый интерес среди небольших снарядов представляет «Фалькон» (рис. 307), в котором 90% конструкции состоит из магниевых сплавов. «Мэйс» содержит 435 кг магниевых сплавов. «Бомарк» содержит 90 кг листов магниевоториевых сплавов, образующих ведущие и хвостовые кромки поверхностей крыльев и рулей, и, кроме того, прямоточный реактивный двигатель содержит листы из магниевоториевого сплава и свыше 145 кг отливок из сплавов HK31 и ZRE1. «Снарк» содержит 680 кг листов AZ31 и 140 кг отливок. В «Тэлосе» передний обтекатель изготовлен из листов магниевого сплава НМ21 (рис. 308), а внутренний корпус - из листов и отливок сплава НК31. В этом случае способность магниевых конструкций противостоять без коробления резкому снижению давления делает магниевые сплавы более предпочтительными, чем сплавы на основе титана, алюминия или стали. «Найк-Геркулес» (рис. 309), содержащий 18 кг магниевых листов и 135 кг отливок, представляет особый интерес в связи с используемым в нем подвижным контрольным электронным оборудованием. Данное оборудование включает свыше 1350 кг отливок из магниевых сплавов, в том числе и отливку массой 680 кг.

Национальное управление по аэронавтике и исследованию космического пространства США широко использует магниевые сплавы для изготовления рулей и переходных поверхностей запускаемых с воздуха исследовательских сверхзвуковых ракет, достигающих скоростей вплоть до 15 Маха. Хвостовые рули этих ракет состоят из листов сплава AZ31 с ведущими кромками из полосок сплава Инконель с подкладкой из меди (рис. 310). Магниевые сплавы используют ввиду их малой плотности, высокой теплопоглотительной способности, демпфирующей способности, легкости и экономичности изготовления изделий. Широко использует магниевые сплавы для исследовательских ракет Национальный консультативный комитет по авиации (рис. 311). Третья ступень запускающей спутники ракеты «Скаут» Национального управления по аэронавтике и исследованию космического пространства имеет оболочку из магниевых сплавов.
В ходе выполнения программы США по управляемым снарядам было разработано много методов обработки магниевых сплавов.

Ракеты для запуска искусственных спутников. Выше упоминалось об изготовлении из магниевых сплавов оболочки в ракете «Скаут» Н.А.С.А. В запускающей ракете «Вэнгуард» (рис. 312) магниевые сплавы используют для оболочки второй ступени, для промежуточной секции и для хвостовой камеры сгорания. Об использовании магниевых сплавов в качестве конструкционного материала в ракете «Редстоун» сведений не имеется, однако предполагается, что их используют в наводящей системе. Точно также магниевые сплавы не используют в конструкции «Атласа», но применяют для вычислительного устройства и контрольного отсека и для платформы начального наведения
Вспомогательное оборудование . Магний широко используют в электронном оборудовании, связанном с управляемыми снарядами. Относящиеся к этому случаю отливки для «Найк-Геркулес» уже упоминались. В других случаях применение магниевых сплавов обусловлено требованиями легкости и быстрой сборки оборудования. Отливки из магниевых сплавов используют для изготовления изоляции от вибраций каркасов внутренних конструкций, корпусов редукторов, держателей катодов ламп и т. д. Магниевые сплавы используют также для изготовления трейлеров, контейнеров, катушек лент для самописцев, дисков памяти счетнорешающих приборов, волноводов, параболических антенн. Высокие требования предъявляются к точности изготовления волноводов. Один из волноводов изготавливают точным литьем, другие - из прессованных полуфабрикатов.

Спутники и межпланетные станции . Американские спутники в значительной степени состоят из магния. «Вэнгуард» имеет диаметр 50 см и весит 9,75 кг. Он сделан из двух полусферических листовых оболочек толщиной 0,7 мм, изготовленных из сплава AZ31. Полусферы получают вытяжкой при температуре около 350° С за один удар. Каждую оболочку обкатывают до требуемой формы при 315° С и затем обрабатывают резанием до конечной толщины на точном чугунном шаблоне. После полировки и покрытия обе половинки собирают с помощью крошечных ювелирных винтов. Другая деталь из магниевого сплава на спутнике «Вэнгуард» - это барокамера, получаемая путем обкатки из плоской плиты и свариваемая на месте, а также трубчатый каркас Чтобы получить желаемое сочетание высокой отражательной способности (для легкости слежения) и достаточной эмиссионной способности, на магниевые оболочки после полировки наносят пять слоев Au, Cr, SiO, Al и SiO в указанной последовательности.
Спутник «Дискаверер» имеет длину 5,8 м и диаметр 1,5 м. Он содержит свыше 270 кг магниевоториевых сплавов, что составляет более чем 1/3 общей массы спутника (680 кг). Помимо 90 кг листов сплавов НМ21 и НК31, в спутнике имеется 180 кг отливок и прессованных изделий (20 типов). Оболочка и обтекатели изготовлены из листов сплава НМ21-Т8 толщиной 1,8-3,6 мм с допуском ±0,05 мм с тем, чтобы обеспечить контроль массы. Использование магниевых сплавов в «Дискаверере» дает возможность уменьшить массу по сравнению с использованием титановых сплавов на 25% и даже более в случае использования сталей.
Первый спутник «Эхо», состоящий из пластмассового шара диаметром 30,5 м, содержал магниевую сферу диаметром 5,7 м, весящую 11 кг и изготовленную из магниевых листов, плит и прессованных полуфабрикатов. Запускающая ракета «Тор» содержит значительное количество магния, главным образом в виде отливок.
Спутник связи «Гелстар» содержит около 13,5 кг магния в виде труб из сплава ZK21 (Mg-2% Zn-0,6% Zr), а также листов и прессованных изделий из сплава AZ31 (рис. 313).
У «Эксплорера III» корпуса приборов отлиты из магния. «Пайэнир V» имеет детали из листов и плит магниевых сплавов. Межпланетная станция «Сервэйер», предназначенная для исследования поверхности Луны, будет состоять в основном из магния.
Капсула «Меркурий» сделана из титана и бериллия в связи с тем, что должна возвращаться в плотные слои атмосферы, однако в ней использован магний для вспомогательного оборудования - камеры, ленточных самописцев и катушек.