Транзитнефть. Применение серы в резиновой промышленности

Сера – элемент переодической системы химических элементов Д.И. Менделеева, с атомным номеров 16. Обозначается символом S (от латинского Sulfur). В водородных и кислородных соединениях находится в составе различных ионов, образует многие соли и кислоты.

Сера является шестнадцатым по химической распространённости элементом на Земле. Встречается в свободном (самородном) состоянии, и в виде соединений.

Сера, наряду с нефтью, углем, поваренной солью и известняком относится к пяти основным видам сырья химической промышленности и имеет стратегическое значение для обеспечения населения продовольствием, так как помимо азота, фосфора, калия, кальция и магния является необходимым питательным минеральным элементом для растений, источником плодородия почвы и повышения урожайности.

В целом, мировая серная промышленность может быть разделена на два сектора по формам добычи серы: специализированный и “побочный”. Специализированный сектор ориентируется исключительно на добычу серы или пиритов из месторождений данного сырья. Данный сектор составляет около 10,5% от всего объема общемирового производства серы.

Производство:
Современные способы промышленного производства серы могут быть сведены к трем типам:
– Добыча самородной серы(10, 5%);
– Получение из сероводорода промышленных и природных газов;
– Получение из диоксида серы, выделяющегося в процессметаллургических производств.

Извлечение серы из сероводорода, содержащегося в месторождениях нефти и природного газа, преследует, прежде всего, экологическую цель, поскольку утилизация серы или нейтрализация ее соединений обязательны при получении основной углеводородной продукции. Таким образом, в процессе переработки нефти, природного газа, а также коксохимического производства сера являетсяпобочным продуктом.

Необходимо отметить исключительное разнообразие товарных форм серы. Такой широкий спектр отражает различное происхождение серы (природная, попутная и т.д.), особенности технологии выделения или очистки, области применения. В настоящее время основными считаются комовая, гранулированная и жидкая формы серы.

Комовая Достоинства комовой серы – простота технологии приготовления, состоящей из разлива и затвердевания жидкой серы на бетонированной площадке с последующим взламыванием блоков серы высотой до 3 м, укладкой в штабеля и погрузкой на транспорт. Основной недостаток – потери до 3% при операции экскаваторного рыхления блоков серы
Гранулированная Гранулированной называют серу, состоящую из однородных частиц диаметром от 1 до 5 миллиметров. Наличие частиц меньше указанной величины и пыли серы недопустимо. Гранулированная сера удобна для потребителя и транспортировки, практически не образует пыли при погрузочно – разгрузочных операциях, что улучшает санитарно-гигиенические условия труда и культуру производства.
Чешуированная Чешуйки серы толщиной 0,5-2 мм, образующиеся при срезании застывшей серы с поверхности барабана-кристаллизатора, частично погруженного в жидкую среду и вращающегося с определенной скоростью
Жидкая Растущим спросом пользуется жидкая сера как первичная форма. Особенно это касается крупнотоннажных потребителей и перевозки насравнительно небольшие расстояния (до 800-1000 км), когда затраты энергии на поддержание серы в расплавленном состоянии меньше, чем при ее плавлении на месте использования. Капиталовложения и энергетические затраты, связанные с хранением, транспортировкой, разгрузкой жидкой серы компенсируются высокой чистотой продукта, невозможностью его загрязнения, отсутствием потерь и высокой культурой производства

Применение:
Сера используется повсеместно в химическом производстве. Сера необходима для производства серной кислоты, красителей, сульфитов, в целлюлозно-бумажной, текстильной и других отраслях промышленности.

По разным данным примерно половина использования серы приходится на производство серной кислоты.

Примерно 20-25% серы и технической серы тратится на производство разнообразных сульфитов.

Около 10-15% на нужды сельского хозяйства в качестве сырья для производства пестицидов для защиты растений от вредных насекомых.

Также сера в 10% своего выпуска применяется в процессе вулканизации резины.

Применение серы лежит также в областях исскуственных волокон, люминофоров, пигментов, красителей, при производстве спичек, взрывчатых веществ, лекарственных форм.

В последнее время в странах северной Америки и Европы сера находит такое экзотическое применение как добавка или замена битума, этому способствуют четыре основные причины:
– Первая причина заключается в возможности снижения расхода битума, цена на который в связи с растущими ценами на нефть и энергетическим кризисом значительно увеличилась. А уменьшение содержания битума в серобитумных вяжущих за счет добавок более дешевой и имеющейся в значительных количествах серы позволяет обеспечивать снижение затрат на устройство дорожного покрытия;
– Вторая причина заключается в значительном истощении доступных запасов нерудных материалов, используемых при устройстве слоев дорожного покрытия, которые приходится завозить из других, как правило, отдаленных районов. Применение серобитумных вяжущих материалов позволяет широко использовать в дорожном строительстве местные песчаные грунты, слабые каменные материалы, золы и шлаки, что также обеспечивает существенный экономический эффект.
– Третья причина заключается в значительном улучшении свойств асфальтобетонных смесей на основе серобитумного вяжущего. К их числу относятся более высокая прочность при сжатии, что дает возможность уменьшить толщины соответствующих слоев дорожных покрытий; более высокая теплоустойчивость без значительного увеличения жесткости при низких температурах, что снижает опасность образования в слоях дорожных одежд трещин в холодное (зимнее) время и пластических деформаций в жаркий (летний) период.
– Возможность приготовления смесей на основе серобитумного вяжущего при более низких температурах нагрева компонентов; более высокая устойчивость серобитумных материалов к динамическим нагрузкам; более высокая устойчивость к воздействию бензина, дизельного топлива и других органических растворителей, что позволяет использовать их при устройстве покрытий на стоянках автомобилей, станциях технического обслуживания.
– Выводы сделаны на основании двадцатилетнего опыта применения серы в дорожном строительстве США, Канады и стран Западной Европы.

Мировое производствово серы составляет 80 000 000 тонн/год (первое десятилетия XXI века).

Экология:
Соединения серы по отрицательному воздействию на окружающую среду занимают одно из первых мест среди загрязняющих веществ. Основной источник загрязнения соединениями серы является сжигание угля и нефтепродуктов. 96% серы поступает в атмосферу Земли в виде SO 2 , остальное кол-во приходится на сульфаты, H 2 S, CS 2 , COS и др.

В виде пыли элементная сера раздражает органы дыхания, слизистые оболочки человека, может вызывать экземы и другие нарушения. Предельно допустимая концентрация серы в вохдухе 0,07 мг/м 3 (аэрозоль, класс опасности 4). Многие соединения серы токсичны.

Описание и свойства серы

Сера представляет собой вещество, которое находится в в 16 группе, под третьим периодом и имеет атомный номер – 16. Она может встретиться как в самородном, также и в связанном виде. Обозначается сера литерой S. Известна формула серы – (Ne)3s 2 3p 4 . Сера как элемент входит в состав многих белков.

На фото кристаллы серы

Если говорить о строении атома элемента серы , то на внешней его орбите есть электроны, валентное число которых достигает шести.

Это объясняет свойство элемента быть максимально шестивалентным в большинстве объединений. В структуре природного химического элемента есть четыре изотопа, и это – 32S, 33S, 34S и 36S. Говоря о внешней электронной оболочке, атом имеет схему 3s2 3р4. Радиус атома – 0,104 нанометра.

Свойства серы в первую очередь делятся на физического типа. К нему относится то, что элемент имеет твердый кристаллический состав. Два аллотропических видоизменения – основное состояние, в котором устойчив этот элемент серы.

Первое видоизменение ромбическое, имеющее лимонно-желтую окраску. Его устойчивость ниже, чем 95,6 °С. Второй – моноклинный, имеющий медово-желтую окраску. Его устойчивость колеблется от 95,6 °С и 119,3 °С.

На фото минерал сера

Во время плавки химический элемент стает движущейся жидкостью, имеющей желтый цвет. Она буреет, достигая температуры более 160 °С. А при 190 °С цвет серы превращается в темно-коричневый. После достижения отметки 190 °С наблюдается уменьшение вязкости вещества, которое все же после нагревания 300 °С стает жидкотекучим.

Другие свойства серы:

    Практически не проводит тепла и электричества.

    Не растворяется при погружении в воду.

    Растворима в аммиаке, имеющем безводную структуру.

    Также растворима в сероуглероде и других растворителях, имеющих органическую природу.

К характеристике элемента серы важно добавить и ее химические особенности. Она является активной в этом отношении. Если серу нагреть, то она может просто объединяться практически с любым химическим элементом.

На фото образец серы, добытый в Узбекистане

За исключением инертных газов. При контакте с металлами, хим. элемент образовывает сульфиды. Комнатная температура способствует тому, что элемент может вступить в реакцию с . Увеличенная температура способствует увеличению активности серы.

Рассмотрим, как поведение серы с отдельными веществами:

    С металлами – является окислителем. Образовывает сульфиды.

    С водородом – при высоких температурах – до 200 °С происходит активное взаимодействие.

    С кислородом. Образовывается объединения оксидов при температурах до 280 °С.

    С фосфором, углеродом – является окислителем. Только при отсутствии воздуха во время реакции.

    С фтором – проявляет себя как восстановитель.

    С веществами, имеющими сложную структуру – также как восстановитель.

Месторождения и добыча серы

Основной источник для получения серы – ее месторождения. В целом во всем мире насчитывается 1,4 млрд т запасов этого вещества. Ее добывают как при открытом и подземном способе выработки, так и с помощью выплавки из-под земли.

На фото добыча серы в вулкане Кава Иджен

Если применим последний случай, то используется вода, которую перегревают и расплавляют ею серу. В бедных рудах элемент содержится примерно в 12 %. Богатых – 25% и больше.

Распространенные типы месторождений:

    Стратиформный – до 60%.

    Солянокупольный – до 35 %.

    Вулканогенный – до 5%.

Первый тип связан с толщами, несущими название сульфатно-карбонатных. При этом рудные тела, которые имеют мощность до нескольких десятков метров и с размером до сотни метров находятся в сульфатных породах.

Также эти пластовые залежи можно найти посреди пород сульфатного и карбонатного происхождения. Второй тип характеризуется залежами серого цвета, которые приурочиваются к соляным куполам.

Последний тип связывают с вулканами, имеющими молодую и современную структуру. При этом рудный элемент имеет пластообразную, линзовидную форму. В нем сера может содержаться в размере 40 %. Этот тип месторождения распространен в Тихоокеанском вулканическом поясе.

Месторождение серы в Евразии находится в Туркмении, в Поволжье и других местах. Породы серы находят возле левых берегов Волги, которые тянутся от Самары. Ширина полосы пород достигает нескольких километров. При этом их можно найти вплоть до Казани.

На фото сера в горной породе

В Техасе и Луизиане в кровлях соляных куполов находят огромное количество серы. Особо красивые Италийские этого элемента находят Романьи и Сицилии. А на острове Вулькано находят моноклинную серу. Элемент, который был окислен пиритом, нашли на Урале в Челябинской области.

Для добычи серы хим элемента используют разные способы. Все зависит от условия его залегания. При этом, конечно же, особое внимание уделяют безопасности.

Так как вместе с серной рудой скопляется сероводород, то необходимо особо серьезно подходить к любому способу добычи, ведь этот газ ядовитый для человека. Также и сера имеет свойство возгораться.

Чаще всего пользуются открытым способом. Так с помощью экскаваторов снимаются значительные части пород. Затем с помощью взрывов дробится рудная часть. Глыбы отправляются на фабрику для обогащения. Затем – на завод по плавке серы, где и получают серу из концентрата.

На фото сера в порту, привезенная морским транспортом

В случае глубокого залегания серы во многих объемах, используют метод Фраша. Сера расплавляется, находясь еще под землей. Затем, как и нефть выкачивается наружу через пробитую скважину. Такой подход основывается на том, что элемент легко плавится и имеет небольшую плотность.

Также известен способ разделения на центрифугах. Только этот способ имеет недостаток: сера получается с примесями. И тогда необходимо проводить ее дополнительную очистку.

В некоторых случаях используют скважный метод. Другие возможности добычи серного элемента:

    Пароводяной.

    Фильтрационный.

    Термический.

    Центрифугальный.

    Экстракционный.

Применение серы

Большая часть добытой серы уходит, чтоб изготовить серную кислоту. А роль этого вещества очень огромная в химическом производстве. Примечательно, что для получения 1 тонны серного вещества необходимо 300 кг серы.

Бенгальские огни, которые ярко светятся и имеют много красителей, также производятся с помощью серы. Бумажная промышленность – это еще одна область, куда уходит значительная часть добытого вещества.

На фото серная мазь

Чаще всего применение сера находит при удовлетворении производственных нужд. Вот некоторые из них:

    Использование в химическом производстве.

    Для изготовления сульфитов, сульфатов.

    Изготовление веществ для удобрения растений.

    Чтоб получить цветные виды металлов.

    Для придачи стали дополнительных свойств.

    Для изготовления спичек, материалов для взрывов и пиротехники.

    Краски, волокна из искусственных материалов – изготовляются при помощи этого элемента.

    Для отбеливания ткани.

В некоторых случаях элемент сера входит в мази, которые лечат кожные болезни.

Цена серы

По последним новостям необходимость в сере активно растет. Стоимость на российский продукт равняется 130 долларам. На канадский вариант – 145 долларов. А вот в Ближнем Востоке цены возросли до 8 долларов, что привело к стоимости в 149 долларов.

На фото крупный экземпляр минерала сера

В аптеках можно найти молоту в порошок серу по цене от 10 до 30 рублей. К тому же есть возможность купить ее оптом. Некоторые организации предлагают по невысокой цене приобрести гранулированную техническую газовую серу .

Халькогены — группа элементов, к которой относится сера. Ее химический знак — S — первая буква латинского названия Sulfur. Состав простого вещества записывают с помощью этого символа без индекса. Рассмотрим основные моменты, касающиеся строения, свойств, получения и применения данного элемента. Характеристика серы будет представлена максимально подробно.

Общие признаки и различия халькогенов

Сера относится к подгруппе кислорода. Это 16-я группа в современной длиннопериодной форме изображения периодической системы (ПС). Устаревший вариант номера и индекса — VIA. Названия химических элементов группы, химические знаки:

  • кислород (О);
  • сера (S);
  • селен (Se);
  • теллур (Te);
  • полоний (Po).

Внешняя электронная оболочка вышеперечисленных элементов устроена одинаково. Всего она содержит 6 которые могут участвовать в образовании химической связи с другими атомами. Водородные соединения отвечают составу H 2 R, например, H 2 S — сероводород. Названия химических элементов, образующих с кислородом соединения двух типов: сера, селен и теллур. Общие формулы оксидов этих элементов — RO 2 , RO 3 .

Халькогенам соответствуют простые вещества, которые значительно отличаются по физическим своствам. Наиболее распространенные в земной коре из всех халькогенов — кислород и сера. Первый элемент образует два газа, второй — твердые вещества. Полоний — радиоактивный элемент — редко встречается в земной коре. В группе от кислорода до полония неметаллические свойства убывают и возрастают металлические. Например, сера — типичный неметалл, а теллур обладает металлическим блеском и электропроводностью.

Элемент № 16 периодической системы Д.И. Менделеева

Относительная атомная масса серы — 32,064. Из природных изотопов наиболее распространен 32 S (более 95% по массе). Встречаются в меньших количествах нуклиды с атомной массой 33, 34 и 36. Характеристика серы по положению в ПС и строению атома:

  • порядковый номер — 16;
  • заряд ядра атома равен +16;
  • радиус атома — 0,104 нм;
  • энергия ионизации —10,36 эВ;
  • относительная электроотрицательность — 2,6;
  • степень окисления в соединениях — +6, +4, +2, -2;
  • валентности — II(-),II(+), IV(+), VI (+).

Сера находится в третьем периоде; электроны в атоме располагаются на трех энергетических уровнях: на первом — 2, на втором — 8, на третьем — 6. Валентными являются все внешние электроны. При взаимодействии с более электроотрицательными элементами сера отдает 4 или 6 электронов, приобретая типичные степени окисления +6, +4. В реакциях с водородом и металлами атом притягивает недостающие 2 электрона до заполнения октета и достижения устойчивого состояния. в этом случае понижается до -2.

Физические свойства ромбической и моноклинной аллотропных форм

При обычных условиях атомы серы соединяются между собой под углом в устойчивые цепи. Они могут быть замкнуты в кольца, что позволяет говорить о существовании циклических молекул серы. Состав их отражают формулы S 6 и S 8 .

Характеристика серы должна быть дополнена описанием различий между аллотропными модификациями, обладающими разными физическими свойствами.

Ромбическая, или α-сера — наиболее стабильная кристаллическая форма. Это ярко-желтые кристаллы, состоящие из молекул S 8 . Плотность ромбической серы составляет 2,07 г/см3. Светло-желтые кристаллы моноклинной формы образованы β-серой с плотностью 1,96 г/см3. Температура кипения достигает 444,5°С.

Получение аморфной серы

Какого цвета сера в пластическом состоянии? Это темно-коричневая масса, совершенно не похожая на желтый порошок или кристаллы. Для ее получения нужно расплавить ромбическую или моноклинную серу. При температуре выше 110°С образуется жидкость, при дальнейшем нагревании она темнеет, при 200°С становится густой и вязкой. Если быстро вылить расплавленную серу в холодную воду, то она застынет с образованием зигзагообразных цепей, состав которых отражает формула S n .

Растворимость серы

Некоторые модификации в сероуглероде, бензоле, толуоле и жидком аммиаке. Если медленно охладить органические растворы, то образуются игольчатые кристаллы моноклинной серы. При испарении жидкостей выделяются прозрачные лимонно-желтые кристаллы ромбической серы. Они хрупкие, их легко можно смолоть в порошок. Сера не растворяется в воде. Кристаллы опускаются на дно сосуда, а порошок может плавать на поверхности (не смачивается).

Химические свойства

В реакциях проявляются типичные неметаллические свойства элемента № 16:

  • сера окисляет металлы и водород, восстанавливается до иона S 2- ;
  • при сгорании на воздухе и кислороде образуются ди- и триоксид серы, которые являются ангидридами кислот;
  • в реакции с другим более электроотрицательным элементом — фтором — сера тоже теряет свои электроны (окисляется).

Свободная сера в природе

По распространенности в земной коре сера находится на 15 месте среди химических элементов. Среднее содержание атомов S в составляет 0,05% от массы земной коры.

Какого цвета сера в природе (самородная)? Это светло-желтый порошок с характерным запахом или желтые кристаллы, обладающие стеклянным блеском. Залежи в виде россыпи, кристаллические пласты серы встречаются в районах древнего и современного вулканизма: в Италии, Польше, Средней Азии, Японии, Мексике, США. Нередко при добыче находят красивые друзы и гигантские одиночные кристаллы.

Сероводород и оксиды в природе

В районах вулканизма на поверхность выходят газообразные соединения серы. Черное море на глубине свыше 200 м является безжизненным из-за выделения сероводорода H 2 S. Формула оксида серы двухвалентной — SO 2 , трехвалентной — SO 3 . Перечисленные газообразные соединения присутствуют в составе некоторых месторождений нефти, газа, природных вод. Сера входит в состав каменного угля. Она необходима для построения многих органических соединений. При гниении белков куриного яйца выделяется сероводород, поэтому часто говорят, что у этого газа запах тухлых яиц. Сера относится к биогенным элементам, она необходима для роста и развития человека, животных и растений.

Значение природных сульфидов и сульфатов

Характеристика серы будет неполной, если не сказать, что элемент встречается не только в виде простого вещества и оксидов. Наиболее распространенные природные соединения — это соли сероводородной и серной кислот. Сульфиды меди, железа, цинка, ртути, свинца встречаются в составе минералов сфалерита, киновари и галенита. Из сульфатов можно назвать натриевую, кальциевую, бариевую и магниевую соли, которые образуют в природе минералы и горные породы (мирабилит, гипс, селенит, барит, кизерит, эпсомит). Все эти соединения находят применение в разных отраслях хозяйства, используются как сырье для промышленной переработки, удобрения, стройматериалы. Велико медицинское значение некоторых кристаллогидратов.

Получение

Вещество желтого цвета в свободном состоянии встречается в природе на разной глубине. При необходимости серу выплавляют из горных пород, не поднимая их на поверхность, а нагнетая на глубину перегретый и Еще один метод связан с возгонкой из раздробленных горных пород в специальных печах. Другие способы предусматривают растворение сероуглеродом или флотацию.

Потребности промышленности в сере велики, поэтому для получения элементарного вещества используются его соединения. В сероводороде и сульфидах сера находится в восстановленной форме. Степень окисления элемента равна -2. Проводят окисление серы, повышая это значение до 0. Например, по методу Леблана сульфат натрия восстанавливают углем до сульфида. Затем из него получают сульфид кальция, обрабатывают его углекислым газом и парами воды. Образующийся сероводород окисляют кислородом воздуха в присутствии катализатора: 2H 2 S + O 2 = 2H 2 O +2S. Определение серы, полученной разными способами, порой дает низкие показатели чистоты. Рафинирование или очистку проводят дистилляцией, ректификацией, обработкой смесями кислот.

Применение серы в современной промышленности

Сера гранулированная идет на различные производственные нужды:

  1. Получение серной кислоты в химической промышленности.
  2. Производство сульфитов и сульфатов.
  3. Выпуск препаратов для подкормок растений, борьбы с болезнями и вредителями сельскохозяйственных культур.
  4. Серосодержащие руды на горно-химических комбинатах перерабатывают для получения цветных металлов. Сопутствующим производством является сернокислотное.
  5. Введение в состав некоторых сортов сталей для придания особых свойств.
  6. Благодаря получают резину.
  7. Производство спичек, пиротехники, взрывчатых веществ.
  8. Использование для приготовления красок, пигментов, искусственных волокон.
  9. Отбеливание тканей.

Токсичность серы и ее соединений

Пылевидные частицы, обладающие неприятным запахом, раздражают слизистые оболочки носовой полости и дыхательных путей, глаза, кожу. Но токсичность элементарной серы считается не особенно высокой. Вдыхание сероводорода и диоксида может вызвать тяжелое отравление.

Если при обжиге серосодержащих руд на металлургических комбинатах отходящие газы не улавливают, то они поступают в атмосферу. Соединяясь с каплями и парами воды, оксиды серы и азота дают начало так называемым кислотным дождям.

Сера и ее соединения в сельском хозяйстве

Растения поглощают сульфат-ионы вместе с почвенным раствором. Снижение содержания серы ведет к замедлению метаболизма аминокислот и белков в зеленых клетках. Поэтому сульфаты применяют для подкормок сельскохозяйственных культур.

Для дезинфекции птичников, подвалов, овощехранилищ простое вещество сжигают или обрабатывают помещения современными серосодержащими препаратами. Оксид серы обладает антимикробными свойствами, что издавна находит применение в производстве вин, при хранении овощей и фруктов. Препараты серы используют в качестве пестицидов для борьбы с болезнями и вредителями сельскохозяйственных культур (мучнистой росой и паутинным клещом).

Применение в медицине

Большое значение изучению лечебных свойств желтого порошка придавали великие врачеватели древности Авиценна и Парацельс. Позже было установлено, что человек, не получающий достаточное количество серы с пищей, слабеет, испытывает проблемы со здоровьем (к ним относятся зуд и шелушение кожи, ослабление волос и ногтей). Дело в том, что без серы нарушается синтез аминокислот, кератина, биохимических процессов в организме.

Медицинская сера включена в состав мазей для лечения заболеваний кожи: акне, экземы, псориаза, аллергии, себореи. Ванны с серой могут облегчить боли при ревматизме и подагре. Для лучшего усвоения организмом созданы водорастворимые серосодержащие препараты. Это не желтый порошок, а мелкокристаллическое вещество белого цвета. При наружном использовании этого соединения его вводят в состав косметического средства для ухода за кожей.

Гипс давно применяется при иммобилизации травмированных частей тела человека. назначают как слабительное лекарство. Магнезия понижает артериальное давление, что используется в лечении гипертонии.

Сера в истории

Еще в глубокой древности неметаллическое вещество желтого цвета привлекало внимание человека. Но только в 1789 году великий химик Лавуазье установил, что порошок и кристаллы, найденные в природе, состоят из атомов серы. Считалось, что неприятный запах, возникающий при ее сжигании, отпугивает всякую нечисть. Формула оксида серы, который получается при горении, — SO 2 (диоксид). Это токсичный газ, его вдыхание опасно для здоровья. Несколько случаев массового вымирания людей целыми деревнями на побережьях, в низинах ученые объясняют выделением из земли либо воды сероводорода или диоксида серы.

Изобретение черного пороха усилило интерес к желтым кристаллам со стороны военных. Многие битвы были выиграны благодаря умению мастеров соединять серу с другими веществами в процессе изготовления Важнейшее соединение — серную кислоту — тоже научились применять очень давно. В средние века это вещество называли купоросным маслом, а соли — купоросами. Медный купорос CuSO 4 и железный купорос FeSO 4 до сих пор не утратили своего значения в промышленности и сельском хозяйстве.

Сера относится к тому виду минерального сырья, которое обладает рядом выгодных достоинств, стимулирующих расширение объемов её применения в промышленности, в сельском хозяйстве, а также в других отраслях. Это дает основание полагать, что развитие производства, а также совершенствование методов повышения качества серы имеет большое экономическое значение. Поэтому в настоящем разделе включены результаты экспериментальной проработки собранного материала, а также общие рекомендации по освоению процесса производства серы и её реализации на мировом и внутригосударственном рынке.

Основные физико-технологические свойства элементарной серы

Общие сведения

При нормальных температурных условиях сера находится в твердом состоянии. Твердая сера существует в нескольких молекулярных модификациях. Наиболее устойчивой молекулярной модификацией является восьмиатомная сера, существующая в двух аллотропных формах. ugg bottes Ниже 95,5 0 устойчива обыкновенная желтая сера, кристаллизирующаяся в ромбической системе. Её удельный вес 2,06, температура плавления (при очень быстром нагреве) 112,0 0 . При температуре выше 95,6 0 устойчивой является форма кристаллизующаяся в моноклинической системе. Удельный вес моноклинной серы 1,96, температура плавления 119,0 0 .

Другие молекулярные модификации твердой серы (шестиатомные и четырехатомные) получаются в специальных условиях и не имеют большого практического применения

Из всех видов аморфной серы заслуживает внимания пластическая или каучукоподобная сера, нерастворимая в сероуглероде. Предполагают, что эта модификация серы представляет собой смесь нескольких модификаций, она неустойчива и при долгом стоянии быстро переходит в ромбическую серу. Скрытая теплота плавления ромбической серы (при 112, 8 0)– 9,8 ккал, а моноклинной (при 119 0)–10,8 ккал/кг При расплавлении сера переходит в желтую легкоподвижную жидкость. Выше 160 0 жидкость буреет и при 200 0 превращается в вязкую тёмно-коричневую массу.

Атомная теплоемкость твердой серы зависит от температуры; для ромбической серы эта зависимость выражается формулой С р = 4,12 + 0, 0047Т, для моноклинной — С р = 3,62 + 0,0072Т.

Сера плохо проводит тепло и электричество; под действием трения заряжается отрицательным электричеством. Она является одним из самых активных химических элементов. По своему химическому характеру сера выступает как окислитель (атом серы присоединяет два электрона, приобретая валентность – 2), а также как восстановитель (атом серы отдает 4 или 6 электронов).

Средний атомный вес серы 32,064; молекулярный вес для S 8 равен 256,56.

Строение атома характеризуется наличием трех электронных оболочек. На внешней оболочке располагается 6 электронов, этим определяется ее преимущественно металлоидный характер.

В восстановительной среде внешняя оболочка атома насыщается до 8 электронов, образуя двухвалентный анион S 2 . В окислительной же среде сера, теряя с внешней оболочки электроны, образует четырехвалентные S 4+ и шестивалентные S 6+ катионы.

Основными стойкими изотопами, входящими в состав серы, являются S 32 и S 34 , содержание которых достигает соответственно 95,1% и 4,2%. Доля других изотопов незначительна (S 33 -до 0,74% и S 36 -до 0,02%). Естественный изотопный состав несколько изменяется, в связи с чем атомный вес может иметь колебания в пределах ±0,003.

Элементарная сера отличается от большинства других химических элементов высоким полиморфизмом - способностью под влиянием внешних условий менять свои структурные и физические свойства

Разновидности серы и их свойства

Твердая сера может находиться в аморфном и кристаллическом виде. Кристаллизацияпроисходит в двух системах: ромбической (S a) и моноклинной (S  .

Ромбическая сера устойчива при температуре не выше 95,5°С, температура плавления ееравна 112,8°С. Сера S a хорошо растворяется в сероуглероде, слабее в бензине, спирте и других органических растворителях и совершенно не растворяется в воде. Плотность р 8 = (2,06 — 2,07) 10 3 кг/м 3 . Элементарная ячейка орторомбической серы - шестнадцать молекул S  в виде зигзагообразного кольца. При температуре выше 95,5°С происходит переход S  в S  с поглощением 2,6 ккал/кг и некоторым увеличением объема. Значение коэффициента объемного расширения зависит от изменения температуры.

Таблица Зависимость коэффициента объемного расширения от температуры

Температурный интервал, 0 С

0-13,2

13,2-50,3

50,3-78.0

78,0-96.5

Средний объемный коэффициент расширения  10 8 , град- 1

1,37

2,23

2,59

6,20

Удельное электрическое сопротивление  =3,90*Ю 16 ом*см (при 30°С). Скрытая теплота плавления 9,3 — 12,0 ккал/кг. Значения теплоемкости с достаточной точностью могут быть определены по уравнению:

С р = 0,112 + 1,950-10-*Т , ккал/кг -град, где Т - абсолютная температура, °К.

Величина теплопроводности изменяется в зависимости от температуры.

Таблица Зависимость теплопроводности от температуры

Температура, 0 С

21,1

37,8

48.9

60,0

71,1

82.2

93,3

98,8

Теплопроводность, ккал/м* час*град.

0,234

0,222

0,216

0,210

0,204

0,18

0,18

0,187

Моноклинная сера S   кристаллизуется в виде длинных призматических игл при охлаждении жидкой серы до твердого состояния и стабильна в узком интервале температур (119 – 95,5 0 С). Плотность s = 1,96*10 3 кг/м 3 . Коэффициент объемного расширения y s    град. — 1 (при100 о С).

Температура, о С

Скрытая теплота

плавления, ккал/кг

9,85

9,31-9,37

10,4

Расчетная 9,2-9,3

Теплоемкость моноклинной серы может быть определена по уравнению

С р = 0,111 + 2,17*10 -4 Т, ккал/кг*град, где Т – абсолютная температура, о К.

Наряду с описанными выше кристаллическими модификациями S a и S  , имеются и другие разновидности, характеризующиеся различной степенью растворимости в сероуглероде.

Физические свойства. Сера отличается резко выраженным полиморфизмом (способностью кристаллизоваться в разных формах — ромбической и моноклинной, при одном и том же химическом составе) и полимерией (способностью содержать двойное, тройное и т. п. количество одних и тех же атомов в молекуле). В природе почти исключительно встречается а — сера, кристаллическая, ромбической системы, устойчивая при обычных условиях земной поверхности. При 95°,5 и нормальном давлении а — сера переходит в |3 — серу, моноклинической системы. Кроме того, встречается еще так называемая «аморфная сера», представляющая смесь S  - растворимой в СS 2 и S . - нерастворимой в сероуглероде.

-сера, ромбически-дисфеноидальная: спайность - неясная, параллельная базису, призме и пирамиде; и з л о м - раковистый до неровного; твердость-1,5 до 2,5, хрупка; цвет- ; характерный серно-желтый; при содержании селена, красновато — коричневый; при механических примесях глинистого материала - зеленоватый; в присутствии битумов-серо-коричневый до почти черного; блеск - алмазный на гранях кристалла, в изломе жирный: прозрачна или просвечивает; черта - белая до желтой. Удельный вес: 2,03 до 2,07. Температура плавления: 114,5°. Непроводник электричества; при трении электризуется отрицательно. Растворимость: лучшая в сероуглероде (СS 2), по А. Соssа в 100 частях CS 2 растворяется: при — 6° — 18,76 частей серы, при 0° — 23,99 частей серы, при +15° — 37,15 частей серы, при +22° — 46,05 частей серы, при +38° — 94,75 части серы, при +55° — 181,34 части серы. Температура кипения насыщенной СS 2 = 55°. Менее растворима при обычной температуре, в алкоголе, бензине, толуоле, эфире, хлороформе, скипидаре; легче - около точки кипения. Хорошо растворима в керосине, нефти, анилине; в воде и в серной кислоте нерастворима.

-cера: кристаллизуется в виде мелких таблитчатых кристаллов моноклинической системы. Удельный вес - 1,95.

Расплавленная сера образует светло-желтую легкоподвижную жидкость, состоящую главным образом из S  ; при дальнейшем нагревании, начиная с 150°, окрашивается в темный цвет и становится вязкой благодаря образованию Sm и лишь начиная с 330° опять делается жидкой. 8а - существует и при более низких температурах; она аморфна и нерастворима в СS 2 .

Температура воспламенения в воздухе по одним источникам (Моissan , Д. И Щербакова) 363°, а по другим 280°. Температура кипения: 444°,6. При сгорании в воздухе образуется сернистый газ (SО 2), причем в небольших количествах образуется и серный ангидрит (SО 3). Теплота сгорания серы S  + О 2 = SО 2 + 71.080 кал; S  + О 2 = SО 2 + 71.720 кал.

Типы месторождений.

Самородная сера встречается исключительно вблизи и на земной поверхности; кажущееся разнообразие способов образования S сводится к распадению ее газообразных соединений, преимущественно сероводорода под влиянием кислорода воздуха и микроорганизмов. Можно выделить следующие типы месторождений: 1) связанные с деятельностью вулканов, где сера образуется путем непосредственной возгонки из магмы при вулканических извержениях, затем путем окисления сероводорода сольфатар и, наконец, в виде тончайшей пыли в струях углекислого газа. При температурах около 200° образующаяся таким образом сера плавится и стекает по окружающим породам. Отложения этого типа обыкновенно не велики, но иногда имеют большое промышленное значение, как например, в Японии в Ноккaidо, на острове Куushu. К этому типу также относятся месторождения Чили, Новой Зеландии, некоторые месторождения на Камчатке. 2) Поверхностные отложения серы, образующиеся при неполном окислении сероводорода: а) горячих источников, связанных с проявлениями вулканизма; некоторые из них эксплоатируются: в Калифорнии, в штате Вайоминга, в штате Ута, в штате Невада; к ним принадлежат: месторождения Исландии, многочисленные мелкие залежи Камчатки, Алагеза на Кавказе; б) окислением воды сероводородных источников иного происхождения; пример - месторождения около г. Махач-Кала в Дагестане. 3) Самые важные промышленные месторождения серы связаны с нормальными осадочными породами и с залегающими в них гипсами. Под влиянием восстановительных процессов, гипс разлагается и его продукты разложения в присутствии воды дают сероводород, распадением которого происходит самородная сера. Восстановителями гипса (или иных сульфатов) могут быть гниющие органические вещества, углеводороды и бактерии. Образующийся сероводород или окисляется в присутствии достаточного количества кислорода или разлагается серобактериями с отложением серы в их клетках.

Главнейшие мировые месторождения серы находятся в Сицилии, в Америке (Техас и Луизиана, Невада, Колорадо), Испании, Японии, Чили, Яве, странах СНГ: Предкарпатский сероносный бассейн (Роздольское, Язовское, Немировское, Подорожненское, Любеньское месторождения); Средневолжский сероносный бассейн (Воднинское, Каменноподольское, Сырейское месторождения, месторождение Дойки); Среднеазиатский сероносный бассейн (Гаурдак-Кугитанский, Западно-Туркменский и Ферганский раионы); месторождения Дальнего Востока (Северо-Камчатский и Центрально-Камчатский раионы). Кроме того, к промышленным месторождениям самородной серы могут быть отнесены Днепрово-Донецкий раион, Предуралье, Северный Кавказ, Крым, Сибирская платформа.

Производство серы

Получение серы осуществляется несколькими способами:

    выплавкой с использованием теплоты сгорания серы в калькоронах (в кучах серной руды), в печах Жилля, состоящих из ряда камер со сводчатыми потолками, в шахтных печах и т. п.;

    выплавкой и дистиляцией при помощи горючего;

    выплавкой в закрытых пространствах паром.

    и содержит примеси, от которых очищается в случае надобности дальнейшей обработкой.

    Очистка производится:

    переплавкой – для освобождения от большого количества механических примесей и, что совершеннее,

    перегонкой, обеспечивающей получение «литрованной» серы, поступающей в продажу в палочках – «черенковая сера» и в порошке – «серный цвет».

    Сера, полученная плавкой, называется сырой или комовой; при ее рафинировании (очистке от посторонних примесей) получается перегнанная или литрованная сера-рафинированная, которая поступает в продажу в виде палочек или черенковой серы или в порошке ; последняя представляет собой или результат возгонки - серный цвет или молотую серу.

  • Сырая сера содержит обычно 99,5 - 99,9% S ,остальное падает на влагу, золу и нефть. Мышьяка, селену и теллура может не быть.

    Одним из методов очистки серы — рафинирование – очистка в жидком виде. Очистка серы от мышьяка и селена проводят отстаиванием, отгонкой промывкой.

    Второстепенное значение имеет способ получения серы из её соединений: из колчеданов, из гипса, из светильного газа, из тиосульфатов (отбросов производства красок, содержащих серу), а также из двуокиси серы СО 2 .

    Применение серы и распределение по видам промышленности.

    Сера и её соединения применяется в огромных количествах как в технике, так и в сельском хозяйстве, причем распределение ее по видам промышленности изменяется из года в год и различно во всех странах Европы, Азии и в Соединенных Штатах.

    В ниже приведенной таблице, заимствованной с небольшими изменениями из материалов, издаваемых комиссией по изучению естественных производительных сил СССР при Академии наук (Сера. Сборник статей Н.И. Влодовца, П.А. Волкова и др. Л-д, 1926, 146 с.) дает представление о разнообразных применениях серы в Соединенных Штатах, являвшихся в то время крупнейшим в мире потребителем ее, с емкостью внутреннего рынка свыше миллиона тонн в год.

    1. Серная кислота -52% всего потребления:

    а. В производстве кислых и суперфосфатных удобрений.

    б. При очистке и гальваническом покрытии металлов.

    в. При производстве электролитической меди.

    г. При очистке керосина и бензола.

    д. В производству прочих кислот (азотной, соляной), основных химических продуктов (сернокислого аммония и пр.); в красильном производстве (ультрамарин, производство цинкового сульфата для литопона, свинцовые 5елила, мышьяковистокисл. кальций и пр.).

    е. В производстве взрывчатых веществ.

    ж. В сахарном производстве

    з. В аккумуляторных батареях.

    и. В разнообразных других случаях.

    2. Как источник сернистого ангидрида (SО 2) - 25% всего потребления.

    а. В производстве бумажной массы из древесной фибры при помощи сульфитного процесса.

    б. Как охладитель, отбеливающий агент и для окуривания с целью дезинфекции.

    в. В производстве химикалий, например, гипосульфита, тритионата натрия.

    3. В сельском хозяйстве - 8,8 % всего потребления.

    а. Как удобрение, или взятая сама по себе, в виде сырой серы или в смеси с сульфо-окислительными бактериями.

    б. Как составная часть компоста для удобрений.

    в. Как средство для уничтожения насекомых (дезинсектор) в виде серы, а также в смеси с негашеной известью или карбонатом натрия, иногда с сульфидом бария (тетрасульфид бария, В. Т. S.).

    г. Для обсыпки виноградной лозы с целью уничтожения вредных грибков, в виде серного цвета или механически измельченной серы (сера в порошке).

    д. В качестве водонепроницаемого цемента при лечении деревьев.

    4. В резиновом производстве - 8,3 % всего потребления.

    а. При производстве всех возможных сортов вулканизированных резиновых изделий как сама по себе, так и в виде хлористой серы.

    5. В производстве сернистого углерода (СS 2) - 3,1 °/о всего потребления.

    а. В качестве растворителя (например., для извлечения растительных масел из семян).

    б. При изготовлении искусственного шелка.

    в. Как дезинсектор.

    г. При производстве четыреххлористого углерода (как растворитель).

    6. Разнообразные другие применения - 2,8% всего потребления.

    а. В производстве кислотоупорных цементов.

    б. Для заделки железных прутьев и рельс в бетон и камень.

    в. Как непроводник тепла.

    г. Как непроводник электричества.

    д. В медицине.

    е. В производстве черного пороха.

    ж. В спичечном производстве, для фейерверков.

    з. Для многих других второстепенных целей.

    В промышленно развитых странах основная масса серы (до 70 %) идет на производство серной кислоты, примерно 21 % на производство бумаги (на приготовление сульфидных щелоков, необходимых для получения древесной массы из расчета 125 кг на одну тонну массы), остальное в прочих областях (на удобрение, для резиновой промышленности и проч.).

    Наиболее крупное применение серной кислоты в мирное время относится к области производства удобрений, затем идет очистка нефти. Во время войн главную массу кислоты поглощало производство взрывчатых веществ.

    В начале прошлого (ХХ века) страны Европы, по характеру использования серы, можно было разбить на страны с преимущественным потреблением в сельском хозяйстве: Италия, Франция, Испания, Россия; со смешанным потреблением: Германия, Австро-Венгрия; с фабричным потреблением: Англия, Швеция, Норвегия. В последнее время повсеместно растет применение серы для индустриальных целей.

    Номенклатура, рыночные марки, требования к реализуемому продукту.

    Виды серной продукции весьма разнообразны и зависят от качества исходного сырья и методов его переработки. При переработке природных (самородных) серных руд выпускают комовую, гранулированную и молотую серу.

    Из комовой (а также непосредственно из жидкой) серы могут быть получены другие её разновидности – осажденная, чешуйчатая, ультра-сера, нерастворимая  сера.

    Требования ГОСТ 127-64 к качеству элементарной серы приведены ниже.

    Показатели

    Высший

    сорт

    1 сорт

    2 сорт

    Содержание серы, %, не менее

    99,9

    99,5

    98,6

    Золы

    0,05

    Органических веществ

    0,06

    в том числе Углевода

    0,048

    0,24

    Мышьяка

    0,0005

    0,0005

    0,003

    Влаги

    Кислотность в пересчёте на, %, не более

    0,005

    0,005

    0,01

    Одним из критериев сортности серы является соответствие её качества требованиям потребителей. В связи с увеличением мощности серных производств особое значение приобретают вопросы транспортирования и хранения серы.

    Требования потребителей к сере очень разнообразны и касаются прежде всего присутствия в ней тех или иных примесей и её гранулометрического состава. Так для сельского хозяйства, резинотехнической и ряда других отраслей промышленности требуется измельченная (молотая) сера. chaussure timberland pas cher В соответствии с ГОСТ 358-53 молотую серу выпускают двух классов, характеризующихся остатком на ситах с ячейками размером в свету 0,14 мм (класс А – остаток 0,1%, класс В – 4%) и 0,071 мм (оба класса – остаток 4%).

    Для отдельных производств требуются специальные виды серной продукции: сверхтонкая (коллоидная); иногда с частицами определенной формы так называемая осажденная сера; сера определенной модификации (хлористая сера S 2 Cl 2 , аурипигмент Аs 2 S 3 , реальгар AsS и т. д.).

    Химическая промышленность потребляет серу главным образом для производства серной кислоты. Несмотря на развитие многих источников серосодержащего сырья (пириты, обжиговые газы заводов цветной металлургии, газы коксохимического производства), потребление серы непрерывно растет, так как с её применением в производстве серной кислоты упрощается технология, а с применением тонкомолотой серы — повышается эффективность, улучшаются условия труда, сокращаются объемы перевозки сырья.

    Целлюлозно-бумажная промышленность потребляет серу для получения SO 2 , необходимого в производстве сульфид-целлюлозы (115 – 130 кг серы на 1 т целлюлозы). Основным требованием к сере в этом случае является отсутствие селена.

    В нефтяной промышленности сера используется для получения серно кислоты, которая идет на очистку нефтяных продуктов. При переработке нефти помимо серной кислоты применяется сернистый ангидрид и даже элементарная сера.

    Различные сернистые соединения начали применять для производства специальных продуктов, потребляемых нефтяной промышленностъю, например красок, антидетонаторов для бензина и орга-нических стабилизаторов. Смазочные вещества для аппаратуры сверхвысоких давлений и охлаждающие масла, ускоряющие металлообработку, также содержат иногда до 18% серы.

    Общая потребность в сере для нефтяной промышленности весьма значительна, причем частично требуется чистая сера, практически полностью освобожденная от примесей.

    Резинотехническая промышленность в основном потребляет хлористую серу для холодной вулканизации и для получения белого фактиса. Кроме того, сера применяется для производства эбонита, органического полисульфида - тиокола и др.

    Требования, предъявляемые резиновой промышленностью к сере, очень высоки, поскольку элементарная сера является здесь составной частью массы, идущей на приготовление изделий. Для некоторый видов изделий резиновой промышленности требуется сера специальных сортов, например тонкодисперсная осажденная (коллоидная) сера. В последнее время появился спрос и на нерастворимую  -серу. Резинотехническое производство требует тонкомолотого продукта с минимальным содержанием загрязняющих примесей и максимальной растворимостью в СS 2 .

    Хи мико-фа рм ацевтическа я промышленность также является важной областью применения серы. Серу вводят в состав различных мазей и других лечебных препаратов. В последние годы большое значение приобрели сульфопрепараты, такие, например, как сульфидин, сульфозол и др. Сера, потребляемая фармацевтической промышленностью, должна быть очищена от примесей. Для приготовления некоторых препаратов требуется сера, измельченная до коллоидного состояния , так как это усиливает ее способность проникать в поры кожи, благодаря чему повышается терапевтический эффект и не возникает раздражения.

    Производство взрывчатых веществ и спичек . Элементарная сера и серная кислота в значительных количествах используются в производстве взрывчатых веществ. Особенно жесткие требования к сере предъявляются в производстве пороха; она должна быть, например, освобождена от малейших примесей кремнезема.

    Сера применяется в спичечной промышленности (входит в состав спичечной головки). Вредными в этом случае являются примеси кремнекислоты и углекальциевых солей, вызывающих затухание зажигательной массы.

    Прочие промышленные потребители серы. Сера, очищенная от примесей, применяется в производстве красителей. Особо чистая сера, освобожденная как от минеральных примесей, так и от следов железа и мышьяка, требуется для производства светящихся составов (самосветящиеся краски), причем она должна быть измельчена до тонкодисперсного состояния . Содержание железа зольного остатка не должно превышать 0,0001%.

    В цветной металлургии сера применяется при травлении свинца (присутствие посторонних примесей нежелательно).

    В пищевой, сахарной, крахмалопаточной, текстильной, костеобрабатывающей и других отраслях промышленности применяют серу преимущественно как дезинфицирующее средство или же в процессах отбеливания и рафинирования продукции, сжигая ее до сернистого ангидрида в небольших печах или жаровнях. Особо жестких требований к наличию в сере тех или иных примесей (кроме мышьяка) эти отрасли промышленности не предъявляют. Производства радиационной химии и ряда других отраслей промышленности требуют специальных сортов серной продукции. Расширяются также области применения разнообразных препаратов на основе соединений серы.

    В сельском хозяйстве сера в значительных количествах применяется как в чистом виде, так и в различных соединениях; она входит в состав минеральных удобрений.

    В сравнительно небольших количествах сера нужна для питания растений. Весьма важно значение серы в качестве инсектофунгицида. Сера является наилучшим средством борьбы с паутинным клещиком, поражающим виноградники. Периодическое опыление серой - эффективный способ борьбы с вредителями хлопка. В борьбе с картофельной паршей и клубневой гнилью сера также дает хорошие результаты.

    Опыление растений производится или известково-серным отваром или непосредственно тонкодисперсной серой . Действие серы как инсектофунгицида обусловливается ее способностью к сублимации (возгонке) при низких температурах, порядка 20 – 50 0 С, причем с повышением температуры сублимация серы значительно возрастает.

    Высокая дисперсность серы – основное требование сельскохозяйственного её применения. Животноводы применяют серу для окуривания чесоточных животных, для чего сжигают её в специальных камерах. Сера является основным активным инградиентом в лечебных мазях и растворах для борьбы со вшами у коз, с овечьей чесоткой и паршей крупного рогатого скота. В этой области желательно применение чистой серы.

    Сера, предлагаемая рынку не должна содержать больше 0,5% влажности по весу: содержание золы колеблется от 0,01 до 0,03%. Нефть, содержащаяся в небольших количествах в некоторых разновидностях серы, допускается от следов до 0,2%. Обычно ее содержание колеблется в пределах 0,01 до 0,04 %. Это количество не мешает правильному сгоранию серы! При содержании свыше 0,1% сера горит с трудом в печах обыкновенного типа, так как нефть соединяется с серой и образует тончайшую асфальтовую пленку на поверхности расплавленной серы, которая тотчас тушит огонь. Это явление можно избежать, перемешивая горящую серу, или сжигая её при высокой температуре, достаточной для улетучивания пленки или кипения серы.

    Под названием «соmmercial flour sulphur» идет обычно сера, полученная непосредственно из скважин, затем размолотая и отсеянная до тонкости в 100 меш (147 мкм) и мельче. Этот материал идет для обсыпки фруктовых деревьев, виноградной лозы, для картофельных полей, зараженных картофельным грибком, для смесей против насекомых, для удобрительных смесей и т. д.

    Черенковая сера (Rо11 su1рhuг) получается обычно перегонкой; особо чистые ее сорта носят название «Suреrfinе». Под названием «ground sulphur» идут различные специальные сорта молотой серы. Для керосиновой промышленности идет помол со степенью измельчения в 60 меш (200мкм).

    Сицилийская сера, сырая или комовая , поступает в продажу в кусках весом в 28 - 30 кг. Благодаря хрупкости серы, при транспортировании, они дробятся на куски, мелочь и пыль. В комовой сере содержится всегда немного механических примесей - остатков вмещающей породы, реже - битуминозные вещества и крайне редко следы мышьяка (Аs), селена (Sе), теллура (Те). Содержание влаги - около 0,5%. В зависимости от степени чистоты сера делится на 4 сорта, отличающихся уже по внешнему виду, именно: 1) первый или высший сорт- представляет собой большие блестящие янтарно-желтые куски; 2) второй сорт - с меньшим блеском, но с такой же желтизной; 3) третий сорт- имеет матовую поверхность и с меньшей желтизной, содержит обычно от 0,5 до 4% золы. Большая часть серы поступает в продажу в виде третьего сорта; 4) четвертый сорт - серо-желтого цвета, может содержать до 25 % землистых частиц.

    В Сицилии на рынок выпускают порошкообразную серу специально для обсыпки виноградников, представляющую собой мелко размолотую и отклассифицированную серу.До сих пор не вполне установлено, в каком виде лучше употреблять серу для обсыпки виноградников и хмеля-механически измельченную или полученную возгонкой. При перегонке серы, благодаря присутствию воздуха, образуется немного сернистой и серной кислоты, поэтому серный цвет имеет часто кислую реакцию, что не вредит растениям. При употреблении серы для медицинских целей, для удаления этих кислот, серный цвет промывается водой. Молотая сера растворима нацело в СS 2 ; серный цвет должен содержать около 30 % нерастворимых частиц так называемой аморфной серы . На европейском рынке приняты следующие нормы требований для степени измельчения (величины дисперсности) серы поступающей в продажу:

    Таблица:

    Сорт

    Тонкодисперсной серы

    Сито с числом отверстий на 1 см 2 (мкм)

    Проход через сито не менее

    1 –й

    10000

    2 –й

    6400

    3 – й

    5000

    4 — й

    5000

    На комовую и на дисперсную серу предусмотрены четыре сорта. Требования по отдельным сортам указаны в таблице

    Таблица сортности серы

    Сорта серы

    Инградиенты

    Сера

    не менее

    Влага

    не более

    Зольность

    не более

    Кислоты,

    не более

    Селен и мышьяк не более

    1-й

    99,5

    0,02

    0,001

    2-й

    97,0

    3-й

    95,0

    1,25

    0,15

    4-й

    75,0

    19,5

    Не нормируется

    Не нормируется

    Цены на серу!

    В 1913 году цены на серу, включая пошлину, в Одессе, Риге и Петербурге держались в пределах 6,1 копеек – 7,06 копеек за 1 кг. nike air max 90 pas cher серы комовой и 8,4 – 9,7 коп.за 1 кг серы в палочках

    Эта информация требует обновления и дополнения

    Тарифы перевозок

    ?????

    Получение молотой серы

    Процесс получения молотой серы включает операции разрушения исходного материала (дробление и измельчение), разделение частиц материала по крупности (классификация), транспортировка и пылеулавливание.

    Процессы дробления и измельчения связаны с разрушением структуры и образованием новой поверхности измельчаемого материала, которая при своем возникновении сразу же вступает в контакт с окружающей средой: воздухом, водяными парами, другими веществами окружающей среды (в том числе с ограничивающей поверхностью и рабочими телами измельчительной установки). При этом вновь образованная поверхность измельченного вещества проявляет более повышенную реракционную способность, чем та же поверхность после определенного срока выдержки («старения»). Химическая активность измельченного вещества усиливается при многократном сокращении размеров его частиц, сопровождающегося увеличением их поверхности. Возрастание химической активности вновь образованной поверхности при измельчении связана с изменением структуры поверхностных слоев твердых частиц, вызывающем появление нескомпенсированных сил межмолекулярного взаимодействия, увеличивая тем самым энергию новой поверхности. Для кристаллических твердых веществ - это результат разрушения кристаллической решетки; для полимерных материалов, структура которых определяется макромолекулами,- это разрушение макромолекул и образование новых молекул низкомолекулярных соединений (с меньшей молекулярной массой). nike x fragment При разрушении макромолекул возможно образование также свободных радикалов (химически активных частей макромолекул).

    Вновь образованная поверхность вещества твердого материала имеет также более высокую сорбционную (поглощающую) способность. Адсорбционные процессы самопроизвольно приводят к уменьшению свободной энергии системы и, поэтому, экзотермичны, т.е. проходят с выделением тепла.

    Увеличение тепловыделения в результате механического взаимодействия частиц, а также их соударения с рабочими телами и ограждающими поверхностями измельчительной установки может служить причиной самовозгорания и взрыва серы. Взрывоопасность процесса сухого размола серы или её сушки после мокрого измельчения подтверждается практикой получения молотой серы. Поэтому, в отличие от размола других материалов, этот процесс рекомендуется вести в среде инертного газа при ограниченном содержании кислорода. По нормам ГОСТА и ТУ содержание кислорода допускается до 4 %, в зарубежной практике – до 8 %.

    Процесс размола ведут на ролико-кольцевых мельницах с горизонтальным расположением размольного кольца и роликов, в десмембраторах (мельницы Суперкек) и в струйных мельницах с трубчатой помольной камерой.

    Технологическая схема процесса размола серы в ролико-кольцевых мельницах содержит приемный бункер исходного материала, валковую дробилку, приемный бункер дробленого материала, саму мельницу с классфикатором, генератор инертного газа, вентилятор высокого давления, мельничный вентилятор,циклон-пылеуловитель, рукавный фильтр с вентилятором, бункер готового продукта, весы-дозатор, зашивочную машину. Все элементы технологической схемы объединены в единый технологический комплекс с помощю ленточных конвейеров.

    Основным недостатком ролико-кольцевых мельниц также как и мельниц «.Суперкек» является сложность получения тонкодисперсных порошков, наличие подвижных частей в зоне разрушения материала,являющихся потенциальным источником искрообразования, а также засорение измельчаемогоматериала продуктами износа мелющих тел: роликов – в ролико-кольцевых мельницах и рабочих пальцев – в мельницах «Суперкек». Применение инертного газа удорожает помол, а также усложняет технологическую схему.

    Струйные мельницы более эффективны по сравнению с мельницами других типов в тех случаях, когда требуется получать чистую серу сверхтонкого помола (менее 10 мкм).

    В качестве комплектующего оборудования технологической схемы струйного измельчения могут входить: источник газового энергоносителя (рабочего тела) очиститель рабочего тела, бункер исходного материала, дробильная установка, бункер дробленого материала, газодинамический дезинтегратор (струйный измельчитель) с классификатором, пылеосадительный циклон, пылеулавливливающие циклоны, воздухоочистительное оборудование, вентилятор, весы-дозаторы, зашивочная машина.

    Ориентировочные показатели технологического режима струйного измельчения, а также расходные нормы на сырье, материалы, электроэнергию приведены ниже. До 20 т/ч

    Окружающей среды

    Атмосферное

    Подготовка энергоносителя

    600 – 1000 м 3 /ч на 1 т.

    До 60

    Перед соплом 0,3-0,6

    Охлаждающая вода на орошение (циркулирующая)

    300 – 600 л на 1000 м 3 рабоч.

    Какие области применения серы Вы узнаете из этой статьи.

    Области применения серы

    Сера в природе встречается в свободном состоянии и в разных соединениях. Ею получают из самородных руд. Также она является побочным продуктом переработки полиметаллических руд, комплексной переработки сульфатов, очистки горючих ископаемых.

    Применение серы в промышленности

    Главным потребителем серы считается химическая промышленность, которая поглощает примерно половину добываемой серной кислоты. Из нее производят черный порох, сероуглерод, различные красители, бенгальские огни и светящиеся составы. Немалую часть серы потребляет бумажная промышленность.

    В резиновой промышленности серу применяют для того, чтобы превратить каучук в резину. Свойства каучука, такие как эластичность и упругость, материал приобретает только после смешивания с серой и нагревания. Данный процесс имеет название вулканизация. Бывает 2-ух видов: горячая и холодная. Во время горячей вулканизации каучук с серой нагревают до 130-160°С. Холодная вулканизация проходит без нагревания, каучук обрабатывается хлоридом серы (S 2 C 12).

    Когда к каучуку добавляют 0,5-5% серы, то получается мягкая резина, из которой изготавливают автомобильные камеры, покрышки, трубки, мячи. Если к материалу добавить 30-50% серы, то получается жесткий, неэластичный материал – эбонит. Это твердое вещество и электрический изолятор.

    Применение серы в сельском хозяйстве осуществляется в элементарном виде и в виде соединений. Растения нуждаются в сере, поэтому изготавливают серные удобрения, которые повышают качество и количество урожая. Серные удобрения способствуют повышению морозостойкости злаков и образованию органических веществ. Также с помощью серы борются с болезнями растений хлопчатника и винограда. Ею окуривают зараженные зернохранилища, плодоовощехранилища, чесоточных животных.

    Применение серы в медицине

    Сера является основой мазей, которые излечивают грибковые заболевания кожи – чесотки, псориаза, себореи. Из органических соединений серы изготавливают сульфамидные препараты — сульфазол, сульфидин, норсульфазол, стрептоцид и сульфодимезин. Также их применяют внутрь как слабительное и отхаркивающее средство.