Лазерная сварка и сверление металлов. Сухое сверление бетона

Выполняются заказы по лазерной резке широкого круга материалов, конфигураций и размеров.

Сфокусированное лазерное излучение позволяет резать практически любые металлы и сплавы, независимо от их теплофизических свойств. При лазерной резке отсутствует механическое воздействие на обрабатываемый материал и возникают незначительные деформации. Вследствие этого можно осуществлять лазерную резку с высокой точностью, в том числе и легкодеформируемых и нежестких деталей. Благодаря большой мощности лазерного излучения обеспечивается высокая производительность процесса реза. При этом достигается такое высокое качество реза, что в полученных отверстиях можно нарезать резьбу.

Широко применяется в заготовительном производстве. Основное преимущество лазерной резки - она позволяет переходить с одного типа деталей любой геометрической сложности на другой тип практически без затрат времени. По сравнению с традиционными методами резки и механообработки скорость различается в несколько раз. Из-за отсутствия теплового и силового воздействия на изготавливаемую деталь, она не претерпевает деформаций в процессе изготовления. Качество изготавливаемой продукции позволяет совершать сварку встык без смещений кромок среза и предварительной обработки соединяемых сторон.

Твердотельные лазеры неметаллические материалы режут значительно хуже газовых, однако имеют преимущество при резке металлов - по той причине, что волна длиной 1 мкм отражается хуже, чем волна длиной 10 мкм. Медь и алюминий для волны длиной 10 мкм - почти идеально отражающая среда. Но, с другой стороны, сделать CО2-лазер проще и дешевле, чем твердотельный.

Точность лазерной резки достигает 0,1 мм при повторяемости +0,05 мм, причем качество реза стабильно высокое, поскольку зависит только от постоянства скорости перемещения лазерного луча, параметры которого остаются неизменными.

Краткая характеристика реза: окалина обычно отсутствует, небольшая конусность (завист от толщина), получаемые отверстия круглые и чистые, возможно получение совсем небольших деталей, ширина реза 0,2-0,375 мм, прижоги незаметны, тепловое воздействие очень мало, имеется возможность резки неметаллических материалов.

Прошивка отверстий

Немаловажным фактором для лазерной резки является прошивка первоначального отверстия для ее начала. У некоторых лазерных установок имеется возможность с помощью процесса так называемой летающей прошивки в холоднокатаной стали толщиной 2 мм получать до 4 отверстий в секунду. Получение одного отверстия в более толстых (до 19,1 мм) листах из горячекатаной стали при лазерной резке осуществляют с помощью силовой прошивки примерно за 2 с. Применение обоих этих методов позволяет увеличить производительность лазерной резки до уровня, достигаемого на вырубных прессах с ЧПУ.

Пробивка отверстий

С помощью этого метода можно получать отверстия диаметром 0,2-1,2 мм при толщине материала до 3 мм. При соотношении высоты отверстий к их диаметру 16:1 лазерная пробивка превосходит по экономичности почти все другие методы. Объектами применения этой технологии являются: сита, ушки игл, форсунки, фильтры, ювелирные изделия (подвески, четки, камни). В промышленности с помощью лазеров осуществляется пробивка отверстий в часовых камнях и в волочильных фильерах, причем производительность достигает 700 тыс. отверстий в смену.

Скрайбирование

Часто используемым является режим несквозной резки, так называемое скрайбирование. Оно широко используется в промышленности, в частности, в микроэлектронике, для разделения кремниевых шайб на отдельные элементы (фрагменты) по заданному контуру. В этом процессе также оказывается существенным взаимная ориентация проекции вектора электрического поля падающего излучения и направления сканирования для обеспечения высокой эффективности и качества процесса.

Скрайбирование широко используется в промышленности (микроэлектроника, часовая промышленность и др.) для разделения тонких пластин поликора и сапфира, реже для разделения кремниевых шайб. При этом для осуществления дальнейшего механического разделения достаточно скрайбирования на глубину около трети от полной толщины разделяемой пластины.

Процессы микрообработки

Высокая степень автоматизации в последние годы позволила вновь на новой стадии использовать на практике такие процессы, как подгонка номиналов резисторов и пьезоэлементов, отжиг имплантированных покрытий на поверхности полупроводников, напыление тонких пленок, зонная очистка и выращивание кристаллов. Возможности многих процессов к настоящему моменту еще не до конца раскрыты.

Laser technologies are capable of playing an evermore important role in industrial processing of materials. They successfully carry out cutting, welding, drilling, thermal surface machining, scribing and other operations. The advantages of this include higher productivity, perfect quality, uniqueness of operations performed in out-of-reach places or very small surfaces. Automatic systems for positioning and focusing the laser complexes make their application even more efficient and ease of operation creates preconditions for their wide implementation into production processes

С.Н. Колпаков, А.А. Приёмко,
ООО «Альт лазер», г. Харьков

В настоящее время лазер успешно выполняет целый ряд технологических операций, прежде всего, таких, как резка, сварка, сверление отверстии, термическая обработка поверхности, скрайбирование, маркировка, гравировка и т. п., а в ряде случаев обеспечивает преимущества по сравнению с другими видами обработки. Так, сверление отверстий в материале может быть выполнено быстрее, а скрайбирование разнородных материалов является более совершенным. Кроме того, некоторые виды операции, которые раньше были невозможны из-за повышенной трудоемкости, выполняются с большим успехом. Например, сварка материалов и сверление отверстий могут осуществляться через стекло в вакууме или атмосфере различных газов

Промышленная обработка материалов стала одной из областей наиболее широкого использования лазеров. До появления лазеров основными тепловыми источниками для технологической обработки являлись газовая горелка, электродуговой разряд, плазменная дуга и электронный поток. С появлением лазеров, излучающих большую энергию, оказалось возможным создавать на обрабатываемой поверхности высокие плотности светового потока. Роль лазеров как световых источников, работающих в непрерывном, импульсном режимах или в режиме гигантских импульсов, состоит в обеспечении на поверхности обрабатываемого материала плотности мощности, достаточной для его нагревания, плавления или испарения, которые лежат в основе лазерной технологии.

В настоящее время лазер успешно выполняет целый ряд технологических операций, прежде всего, таких, как резка, сварка, сверление отверстий, термическая обработка поверхности, скрайбирование, маркировка, гравировка и т. п., а в ряде случаев обеспечивает преимущества по сравнению с другими видами обработки. Так, сверление отверстий в материале может быть выполнено быстрее, а скрайбирование разнородных материалов является более совершенным. Кроме того, некоторые виды операций, которые раньше выполнить было невозможно из-за трудной доступности, выполняются с большим успехом. Например, сварка материалов и сверление отверстий могут выполняться через стекло в вакууме или атмосфере различных газов.

Слово «лазер» составлено из начальных букв в английском словосочетании Light Amplification by Stimulated Emission of Radiation, что в переводе на русский язык означает: усиление света посредством вынужденного испускания. Классически так сложилось, что при описании лазерных технологий обработки материалов основное внимание уделяется только непосредственно лазерам, принципам их работы и техническим параметрам. Однако для того, чтобы реализовать любой процесс лазерной размерной обработки материалов, кроме лазера, необходимы ещё система фокусировки луча, устройство управления движением луча по поверхности обрабатываемого изделия или устройство перемещения изделия относительно луча, система поддува газов, оптические системы наведения и позиционирования, программное обеспечение управления процессами лазерной резки, гравировки и т. д. В большинстве случаев выбор параметров устройств и систем, обслуживающих непосредственно лазер, является не менее важным, чем параметры самого лазера. Например, для маркировки подшипников диаметром менее 10 мм или прецизионной точечной лазерной сварки время, затрачиваемое на позиционирование изделия и фокусировку, превышает время гравировки или сварки на один-два порядка (время нанесения маркировочной надписи на подшипник приблизительно 0,5 с). Поэтому без использования автоматических систем позиционирования и фокусировки использование лазерных комплексов во многих случаях становятся экономически нецелесообразными. Аналогия лазерных систем с автомобилями показывает, что лазер выполняет функции двигателя. Каким бы хорошим двигатель ни был, но без колёс и всего остального автомобиль не поедет.

Ещё одним немаловажным фактором в выборе лазерных технологических систем является простота их обслуживания. Как показала практика, операторы имеют невысокую квалификацию обслуживания подобного оборудования. Одной из причин этого является то, что лазерные комплексы устанавливают в большинстве случаев на замену устаревшим технологическим процессам (ударная и химическая маркировки изделий, механическая гравировка, ручная сварка, ручная разметка и т. п.). Руководители предприятий, которые проводят модернизацию своего производства, как правило, из этических соображений, заменяя старое оборудование новым, оставляют старый (в прямом и переносном смыслах) обслуживающий персонал. Поэтому для внедрения лазерных технологических систем в производство при данных начальных условиях его развития (в постсоветских республиках) необходимо предусматривать максимально возможный уровень автоматизации и простоты обучения. Не следует отбрасывать и тот факт, что зарплата неквалифицированного персонала ниже, чем подготовленного специалиста. Поэтому экономически выгодней покупать сложное оборудование с возможностью простоты в его обслуживании, чем приглашать высококвалифицированный персонал.

Таким образом, задачу использования лазерных технологий в современном производстве следует рассматривать не только с точки зрения технических параметров непосредственно лазера, но и с учётом характеристик оборудования, программного обеспечения, которые позволяют использовать специфические свойства лазера для решения отдельно взятой технологической задачи.

Любая лазерная система, предназначенная для размерной обработки материалов, характеризуется следующими параметрами:

  • скоростью обработки (реза, гравировки и т. п.);
  • разрешающей способностью;
  • точностью обработки;
  • размером рабочего поля;
  • диапазоном материалов обработки (чёрные металлы, цветные металлы, дерево, пластмасса и т. д.);
  • диапазоном размеров и массы изделий, предназначенных для обработки;
  • конфигурацией изделий (например, гравировка на плоской, цилиндрической, волнообразной поверхностях);
  • необходимым временем изменения выполняемых задач (смена рисунка гравировки, конфигурации линии реза, изменение материала обработки и т. п.);
  • временем установки и позиционирования изделия;
  • параметрами условий окружающей среды (диапазон температур, влажность, запылённость), в которых может эксплуатироваться система;
  • требованиями к квалификации обслуживающего персонала.

Исходя из этих параметров, выбирается тип лазера, устройство развертки луча, разрабатывается конструкция крепежа изделия, уровень автоматизации системы в целом, решается вопрос о необходимости написания специализированных программ для подготовки файлов рисунков, линий реза и т. д.

Основными техническими характеристиками, определяющими характер обработки, являются энергетические параметры лазера — энергия, мощность, плотность энергии, длительность импульса, пространственная и временная структуры излучения, пространственное распределение плотности мощности излучения в пятне фокусировки, условия фокусировки, физические свойства материала (отражательная способность, теплофизические свойства, температура плавления и т. д.).

Лазерное сверление отверстий в металлах

Использование лазера в качестве сверлящего инструмента дает преимущества.

Отсутствует механический контакт между сверлящим инструментом и материалом, а также поломка и износ сверл.

Увеличивается точность размещения отверстия, так как оптика, используемая для фокусировки лазерного луча, используется также и для наводки его в необходимую точку. Отверстия могут быть ориентированы в любом направлении.

Достигается большее отношение глубины к диаметру сверления, чем это имеет место при других способах сверления.

При сверлении, так же как и при резании, свойства обрабатываемого материала существенно влияют на параметры лазера, необходимые для выполнения операции. Сверление осуществляют импульсными лазерами, работающими как в режиме свободной генерации с длительностью импульсов порядка 1 мкс, так и в режиме с модулированной добротностью с длительностью в несколько десятков наносекунд. В обоих случаях происходит тепловое воздействие на материал, его плавление и испарение. В глубину отверстие растет в основном за счёт испарения, а по диаметру — за счет плавления стенок и вытекания жидкости при создаваемом избыточном давлении паров.

Как правило, глубокие отверстия желаемого диаметра получаются при использовании повторяющихся лазерных импульсов малой энергии. В этом случае образуются отверстия с меньшей конусностью и лучшего качества, нежели отверстия, полученные с более высокой энергией одиночного импульса. Исключение составляют материалы, содержащие элементы, способные создавать высокое давление паров. Так, латунь сваривать очень трудно лазерным импульсным излучением из-за высокого содержания цинка, однако при сверлении латунь имеет некоторые преимущества, так как атомы цинка значительно улучшают механизм испарения.

Поскольку многоимпульсный режим позволяет получать отверстия лучшего качества нужной геометрии и с небольшим отклонением от заданных размеров, то на практике этот режим получил распространение при сверлении отверстий тонких металлов и неметаллических материалов. Однако при сверлении отверстий в толстых материалах предпочтительными являются одиночные импульсы большой энергии. Диафрагмирование лазерного потока позволяет получить фигурные отверстия, однако этот способ чаще используется при обработке тонких пленок и неметаллических материалов. В том случае, когда лазерное сверление производится в тонких листах толщиной меньше 0,5 мм, имеет место некоторая унификация процесса, состоящая в том, что отверстия диаметром от 0,001 до 0,2 мм могут быть изготовлены во всех металлах при относительно низких мощностях.

Высверливание отверстий в металлах может быть использовано в ряде случаев. Так, с помощью импульсных лазеров может быть произведена динамическая балансировка деталей, вращающихся с высокой скоростью. Дисбаланс выбирается путем локального выплавления определенного объема материала. Лазер может быть использован также для подгонки электронных элементов либо локальным испарением материала, либо за счет общего разогрева. Высокая плотность мощности, малый размер пятна и малая длительность импульса делают лазер идеальным инструментом для этих целей.

Лазеры, применяемые для сверления отверстий в металле, должны обеспечить в фокусированном луче плотность мощности порядка 10 7 -10 8 Вт/см 2 . Сверление отверстий металлическими сверлами диаметром меньше 0,25 мм является трудной практической задачей, в то время как лазерное сверление позволяет получать отверстия диаметром, соизмеримым с длиной волны излучения, с достаточно высокой точностью размещения. Специалистами фирмы «Дженерал Электрик» (США) подсчитано, что лазерное сверление отверстий по сравнению с электроннолучевой обработкой имеет высокую экономическую конкурентоспособность (табл. 1). В настоящее время для сверления отверстий используются в основном твердотельные лазеры. Они обеспечивают частоту следования импульсов до 1000 Гц и мощность в непрерывном режиме от 1 до 10 3 Вт, в импульсном — до сотен киловатт, а в режиме с модуляцией добротности — до нескольких мегаватт. Некоторые результаты обработки такими лазерами приведены в табл. 2.

Лазерная сварка металлов

Лазерная сварка в своем развитии имела два этапа. Первоначально получила развитие точечная сварка. Это объяснялось наличием в то время мощных импульсных твердотельных лазеров. В настоящее время, при наличии мощных газовых СО 2 и твердотельных Nd:YAG-лазеров, обеспечивающих непрерывное и импульсно-непрерывное излучение, возможна шовная сварка с глубиной проплавления до нескольких миллиметров. Лазерная сварка имеет ряд преимуществ по сравнению с другими видами сварки. При наличии высокой плотности светового потока и оптической системы возможно локальное проплавление в заданной точке с большой точностью. Это обстоятельство позволяет производить сваривание материалов в труднодоступных участках, в вакуумной или газонаполненной камере при наличии в ней окон, прозрачных для лазерного излучения. Сваривание, например, элементов микроэлектроники в камере с атмосферой инертного газа представляет особый практический интерес, поскольку в этом случае отсутствуют реакции окисления.

Сваривание деталей происходит при значительно меньших плотностях мощности, чем резка. Это объясняется тем, что при сварке необходимы только разогрев и плавление материала, т. е. необходимы плотности мощности, еще недостаточные для интенсивного испарения (10 5 -10 6 Вт/см 2), при длительности импульса около 10 -3 -10 -4 с. Поскольку излучение лазера, сфокусированное на обрабатываемом материале, является поверхностным тепловым источником, то передача тепла в глубину свариваемых деталей осуществляется за счет теплопроводности, и зона проплавления с течением времени при правильно подобранном режиме сварки изменяется. В случае недостаточных плотностей мощности имеет место непроплавление свариваемой зоны, а при наличии больших плотностей мощности наблюдаются испарение металла и образование лунок.

Сварку можно производить на установке для газолазерной резки при меньших мощностях и использовании слабого поддува инертного газа в зону сварки. При мощности СО 2 -лазера около 200 Вт удается сваривать сталь толщиной до 0,8 мм со скоростью 0,12 м/мин; качество шва получается не хуже, чем при электроннолучевой обработке. Электроннолучевая сварка имеет несколько большие скорости сваривания, но зато проводится в вакуумной камере, что создает большие неудобства и требует значительных общих временных затрат.

В табл. 3 приведены данные по стыковой сварке СО 2 -лазером, мощностью 250 Вт различных материалов.

При других мощностях излучения СО 2 -лазера получены данные шовной сварки, приведенные в табл. 4. При сварке внахлест, торцовой и угловой были получены скорости, близкие к указанным в таблице, при полном проплавлении свариваемого материала в зоне воздействия луча.

Лазерные сварочные системы способны сваривать разнородные металлы, производить минимальное тепловое воздействие за счет малого размера лазерного пятна, а также сваривать тонкие проволочки диаметром менее 20 мкм по схеме провод-провод или провод-лист.

Литература

1. Крылов К.И., Прокопенко В.Т., Митрофанов А.С. Применение лазеров в машиностроении и приборостроении. — Л.: Машиностроение. Ленингр. отд-ние, 1978. — 336 с.

2. Рыкалин Н.Н. Лазерная обработка материалов. — М., Машиностроение, 1975. — 296 с.

В состав бетонных смесей, используемых при строительстве, входят такие крупнозернистые материалы, как щебень и гравий. Кроме того, бетонные конструкции армируют. Поэтому инструмент при сверлении должен преодолевать металлические и каменные преграды. Качество отверстия, просверленного в бетоне, напрямую зависит от правильного выбора инструмента и способа сверления.

Сухой способ сверления бетона – это процесс формирования отверстия без применения воды или какой-либо другой охлаждающей жидкости. На сегодняшний день сложно себе представить более надежный, безопасный и точный метод, чем сверление бетонных поверхностей инструментами с алмазным напылением . Такое сверление выполняется специальными установками, которые в свою очередь требуют определенных навыков обращения с ними. Поэтому за помощью лучше обращаться к профессионалам, которые хорошо знают, как это сделать быстро и качественно.

Алмазный инструмент позволяет сверлить отверстий диаметром от 15 до 1000 мм и глубиной до 5 м

Перечень задач, решаемых с помощью сверления, очень широк.

В основном, алмазное сверление используют при создании отверстий в перекрытиях и стенах для:

  • труб отопления, газоснабжения, электроснабжения;
  • систем противопожарной безопасности;
  • вентиляционных систем и кондиционеров;
  • различных коммуникаций (интернет, телефон и пр.);
  • установки ограждений и перил на лестничных проемах;
  • монтажа химических анкеров;
  • монтажа оборудования для бассейнов.

С помощью технологии алмазного сверления можно также выполнять резку проемов в перекрытиях и стенах под вентиляционные короба, двери, окна и прочие нужды в том случае, когда нет возможности использовать для этого специальное оборудование для резки бетона.

Технология данного метода заключается в том, что по периметру будущего проема высверливаются отверстия диаметром 130-200 мм. Затем края проема выравниваются с помощью перфоратора или цементно-песчаной смеси. Несмотря на то, что этот способ требует больших затрат времени, результат практически ничем не отличается от резки. Называется такая технология строчным алмазным сверлением.

Сверление бетона без удара

Технология алмазного сверления основывается на уникальной особенности алмаза – его непревзойденной твердости. Режущая кромка сверлильного инструмента покрыта алмазосодержащим напылением, так называемой «матрицей». В процессе сверления алмазные сегменты инструмента производят в зоне реза безударное локальное разрушение. Одновременно с разрушением бетона происходит истирание и самой матрицы, но так как она многослойна, то на ее поверхность выступают новые алмазные зерна и рабочая кромка долгое время остается острой.

Алмазное сверление имеет одно очень важное преимущество – полное отсутствие жестких воздействий на бетонную поверхность и невыносимого шума . Такие положительные качества делают алмазную технологию незаменимой при проведении ремонтных работ в квартирах многоэтажных домов. Алмазное сверление позволяет избежать образования трещин на поверхностях стен, которые рано или поздно приводят к полной утрате их несущих способностей, снижению уровня тепло- и звукоизоляции, ухудшению прочностных характеристик.

Поскольку при монолитном строительстве невозможно заранее заложить все технологические отверстия под различные нужды, сверление алмазным инструментом становится единственным способом создания проемов при прокладке труб отопления, водоснабжения и прочих коммуникаций. Использование отбойного молотка для подобной работы является не только экономически невыгодным, но и крайне небезопасным , поскольку динамические нагрузки на армирующие пояса способны вызвать образование трещин в бетонных поверхностях.

Алмазный инструмент популярен благодаря такому его достоинству, как способность сверлить бетон с любой степенью армирования

Алмазное сверление может производиться двумя способами: с применением воды, уменьшающей нагрев инструмента, а также «всухую». Технологически сухое сверление намного проще и поэтому удобнее. Выполняют его с помощью специальных коронок, называемых «сухорезами» . В корпусе этих коронок имеются сквозные отверстия, обеспечивающие отвод тепла и уменьшающие риск деформации.

В отличие от инструмента для «мокрого сверления», алмазные сегменты которого крепятся к рабочей поверхности с помощью припоя, коронки для сухого сверления изготавливают исключительно с применением лазерной сварки.

Почему так важна лазерная сварка алмазных сегментов при сухом способе сверления? Ответ очень прост: температура в зоне сверления без использования охлаждающей жидкости очень быстро поднимается до 600 градусов.

Такая температура является точкой плавления обычного припоя, поэтому сегмент, припаянный с его помощью, напросто отлетает и остается в отверстии. Для продолжения работы сегмент необходимо достать из отверстия, поскольку просверлить его невозможно. Инструмент с сегментами, приваренными лазерной сваркой, способен выдерживать достаточно высокие температуры и не «засаливается» во время работы .

Идею сухого сверления отверстий в бетонных поверхностях одной из первых предложила компания Husqvarna. Ею был разработан для этого способа специальный переходник с возможностью подключения к пылесосу.

Пылесос вытягивает пыль, образовавшуюся в ходе сверления, и одновременно охлаждает коронку . Так как переходник подключается к основанию коронки, то пыль собирается непосредственно в зоне сверления и не распространяется по всему помещению.

Преимущества сухого сверления

Основное преимущество сухого алмазного сверления – возможность использования данного способа в тех случаях, когда применение водяного охлаждения недопустимо. Кроме того, установку для сухого сверления можно использовать в относительно небольших помещениях . Установка для мокрого способа занимает намного большую площадь, поскольку она оснащена, как правило, довольно внушительной емкостью для воды, используемой для охлаждения инструмента.

Сухой способ сверления отверстий в бетоне особенно актуален тогда, когда работы проводятся:

  • в непосредственной близости от электропроводки;
  • на объектах, где отсутствует водоснабжение;
  • в помещениях с чистовой отделкой;
  • с риском затопления водой нижних помещений.

К сожалению, сухой способ имеет немало недостатков. Главный из них – невозможность работы с максимальной производительностью и степенью нагрузки. Это связано с быстрым нагревом алмазных сегментов, что приводит к снижению ресурсоемкости инструмента и его быстрому выходу из строя. При сухом способе процесс сверления периодически прерывается для охлаждения инструмента воздушно-вихревыми потоками .

Сухое сверление имеет ограничения по диаметру и глубине отверстий

Таким образом, мокрое сверление является преимущественным способом, несмотря на то, что его применение влечет дополнительные усилия по организации работ, а именно, необходимо заботиться о подаче и отводе воды. Однако, при проведении работ достаточно большого объема, дополнительные усилия, связанные с подачей воды, будут не так обременительны по сравнению с издержками сухого способа. Иначе говоря, намного легче позаботиться о подаче и отводе воды, чем производить сверление с большими затратами усилий и времени .

Используемый инструмент для обработки

Для сухого сверления используют алмазные коронки, не нуждающиеся в дополнительном охлаждении. Они охлаждаются за счет воздушных потоков и качественной смазки. Коронка имеет вид пустотелого металлического цилиндра. На одном конце этого стакана располагается режущая кромка с алмазным напылением. Другая или тыльная сторона коронки предназначена для крепления в используемом оборудовании и имеет заглушку.

Коронка во время сверления производит круговые режущие движения. Эти движения происходят на большой скорости и под давлением, поэтому инструмент очень точно разрушает нужный участок бетонной поверхности. От силы давления напрямую зависит скорость сверления и изнашиваемость инструмента. Очень высокое давление приводит к быстрому разрушению инструмента, а очень низкое существенно снижает скорость сверлильных работ . Поэтому очень важен правильный расчет силы механического воздействия. При расчете этой силы необходимо учитывать общую площадь алмазных сегментов и тип обрабатываемого материала.

Существует огромное количество разновидностей алмазных коронок. В зависимости от размеров их делят на:

  • малогабаритные;
  • средние;
  • крупногабаритные;
  • сверхрупные.

К малогабаритным относят коронки диаметром 4-12 мм. Их, в основном, используют для сверления небольших отверстий под электропроводку. Средние насадки имеют диаметр 35-82 мм и используются для сверления отверстий под розетки, небольшие трубы и т. п.

Крупногабаритные коронки диаметром 150-400 мм применяют для сверления отверстий в капитальных железобетонных конструкциях, например, для ввода высоковольтных электрокабелей или канализации. Насадки с диаметрами 400-1400 мм находят применение при разработке довольно мощных объектов инфраструктуры. На самом деле и 1400 мм для коронок – не предел.

Под заказ можно сделать и более крупную насадку. Важным параметром является также длина сверлильного инструмента. Длина самых коротких насадок не превышает 15 см . Длина коронок среднего класса составляет 400-500 см.

В зависимости от формы режущей поверхности различают корончатые сверла по бетону следующих видов:

  • кольцевые . Имеют вид сплошной алмазной матрицы в форме кольца, прикрепленной к корпусу. Обычно такие сверла имеют небольшой диаметр, но бывают и исключения;
  • зубчатые являются самым распространенным видом корончатых сверл. ;
  • комбинированные . Такие коронки используются, в основном, для специальных видов работ по бетону.

Режущая часть зубчатых коронок состоит из отдельных алмазных элементов, которых может быть от 3 до 32

Материал, из которого изготавливаются сегменты и в котором закрепляются алмазы, называют связкой, а на языке профессионалов – матрицей. Она придает алмазному сегменту форму и прочность. Матрица во время практического применения должна изнашиваться таким образом, чтобы «рабочие» алмазы после затупления отламывались, а в качестве их «замены» на режущую поверхность выступали новые и острые алмазы.

В зависимости от расположения алмазов в матрице режущих сегментов коронки делятся на:

  • однослойные . Матрица в этом случае имеет всего один поверхностный слой алмазных резцов. Их плотность составляет не более 60 шт/карат. Однослойные алмазные насадки считаются самыми недолговечными. Их применяют, в основном, для сверления бетона без арматуры;
  • многослойные . Плотность микрорезцов в таких матрицах может составлять до 120 шт/карат. Многослойные коронки называют также самозатачивающимися. При износе поверхностного слоя алмазов обнажается следующий слой;
  • импрегнированные . Такие коронки также имеют матрицу с несколькими слоями алмазных зерен, но их плотность составляет около 40-60 шт/карат.

Несмотря на разнообразие типов алмазного инструмента, структура его конструкции идентична. Как правило, он состоит из несущего металлического корпуса и алмазосодержащего слоя, который непосредственно взаимодействует с материалом и является основой инструмента. Этот слой представляет собой связку из алмазов и металлического порошка.

Чем более точно подобран состав связки, тем эффективнее и качественнее будет работать алмазный инструмент в целом . Стандартной рецептуры изготовления связки не существует.

Каждый крупный производитель разрабатывает собственную формулу алмазоносного слоя для каждого инструмента и тем самым обеспечивает ему уникальность.

Наибольшей популярностью сейчас пользуются расходные материалы следующих производителей:

  • Bosh . Продукция, выпускаемая под этим брендом, обеспечивает высококачественное проведение строительных работ, поскольку отличается надежностью и продолжительным сроком эксплуатации;
  • Husqvarna . Этот производитель славится тем, что при изготовлении алмазного инструмента использует инновационные технологии;
  • Cedima является одним из ведущих производителей режущего инструмента для бетона;
  • Rothenberger . Данная компания занимается производством алмазного оборудования для сверления и комплектующих частей к нему;
  • Hilti специализируется на производстве оборудования очень высокого качества и постоянно совершенствует процесс своего производства;
  • Энкор – отечественная компания. Изначально она занималась продажей иностранного оборудования, но с 2007 года стала производить собственные инструменты.

Фирма Husqvarna является пионером в области алмазного сверления промышленного бетона

Вращение коронки происходит за счет силы оборудования для сверления. Коронку можно устанавливать как на обычной дрели, так и на специальной установке. Установка вращает инструмент с высокой скоростью, но при этом отсутствуют ударные воздействия. Насадка просто вращается и постепенно давит на бетонную поверхность. Таким образом, она миллиметр за миллиметром вгрызается в толщу бетона.

Поскольку коронка внутри пустотелая, то в бетон врезаются только ее стенки. Это существенно ускоряет и упрощает рабочий процесс . В поверхность стены коронка углубится до необходимого положения уже за несколько минут и тогда ее надо будет просто выдернуть вместе с вырезанным куском бетона.

Основные этапы техпроцесса

Алгоритм работы по сверлению бетонных конструкций выглядит следующим образом:

  • подбор коронки;
  • сборка сверлильной установки;
  • подготовка рабочей площадки;
  • разметка рабочей поверхности с точным указанием центра сверления;
  • монтаж установки на рабочей поверхности;
  • установка сверлильной коронки;
  • выполнение сверления;
  • завершение сверления;
  • проверка качества работы.

Установку необходимо собирать очень тщательно. Особенное внимание рекомендуется обращать на крепление сверлильного инструмента . Очень важно, чтобы во время сверления вокруг не было ничего лишнего, поэтому рабочую площадку необходимо очистить от мусора и прочих ненужных предметов. Разметку рабочей поверхности начинают с вычерчивания двух пересекающихся перпендикулярных линий. Затем от их центра строят окружность необходимого диаметра. Эта окружность и будет местом установки коронки.

Во время сверления также необходимо учитывать некоторые нюансы. Для начала коронку необходимо очень тщательно отрегулировать, поместив точно в нарисованную окружность. Сначала на протяжении 4-8 секунд производят пробное сверление. Таким образом, создается небольшой канал, который упрощает установку коронки и выполнение капитального сверления.

В конце рабочего процесса коронку вынимают и проверяют степень ее изношенности. Центральная часть вырезанного отверстия удаляется вместе с коронкой , но иногда бывает необходимо немножко поддеть ее ломом или перфоратором. Интересен также тот факт, что изношенную насадку можно отремонтировать в специальной мастерской. Качество выполненной работы напрямую зависит от качества используемого оборудования. Одними из лучших считаются бурильные установки от таких производителей, как Hilti, Husqvarna, Cedima, Tyrolit.

Ресурс алмазного инструмента зависит во многом от типа материала, в котором сверлится отверстие, от типа алмазного сегмента и от правильности использования бурильной установки. Как правило, коронки большого диаметра имеют и больший рабочий ресурс, что связано с большим количеством алмазных сегментов . Средний ресурс алмазных коронок диаметром 200 мм с хорошей насыщенностью режущих сегментов составляет при сверлении железобетона порядка 18-20 погонных метров.

Нежесткое крепление установки и нструмента приводят к отламыванию режущих сегментов инструмента

При этом основной расход алмазных сегментов приходится на преодоление арматуры. Такие факторы, как чрезмерно сильная или неравномерная подача коронки или ее биение при нежестком закреплении опорной стойки, могут очень сильно сократить ресурс насадки или даже вовсе вывести ее из строя.

Лазерное сверление бетона

Промышленное сверление отверстий лазером началось вскоре после его изобретения. Сообщение об использовании лазера для сверления небольших отверстий в алмазных зернах появилось еще в 1966 году. Достоинство лазерного сверления наиболее ярко проявляется при создании отверстий глубиной до 10 мм и диаметром в десятые-сотые доли миллиметр а. Именно в таком диапазоне размеров, а также при сверлении хрупких и твердых материалов преимущество лазерной технологии неоспоримо.

Сверлить отверстия лазером можно в любых материалах. Для этой цели используют, как правило, импульсные лазеры с энергией импульса 0,1-30 Дж. С помощью лазера можно сверлить глухие и сквозные отверстия с разными формами поперечного сечения . На качество и точность изготовления отверстия влияют такие временные параметры импульса излучения, как крутизна его переднего и заднего фронтов, а также его пространственные характеристики, обусловленные угловым распределением в пределах диаграммы направленности и распределением интенсивности излучения в плоскости лазерной апертуры.

На данный момент существуют специальные методы формирования вышеперечисленных параметров, которые позволяют создавать отверстия различной формы, например, треугольные и точно соответствующие заданным качественным характеристикам. На пространственную форму отверстий в их продольном сечении существенное влияние оказывает расположение фокальной плоскости объектива относительно поверхности мишени, а также параметры фокусирующей системы. Таким образом, можно создавать цилиндрические, конические и даже бочкообразные отверстия.

За последние двадцать лет произошел резкий скачок мощности излучения лазеров. Связано это с появлением и дальнейшим развитием компактных лазеров новой архитектуры (волоконных и диодных лазеров). Относительная дешевизна излучателей, мощность которых составляет более 1 кВт, обеспечила их коммерческую доступность для специалистов, занимающихся исследованиями в различных сферах. В результате этих исследований мощное лазерное излучение стали применять для резки и сверления таких твердых материалов, как бетон и природные камни.

Лазерные технологии, свободные от шума и вибраций, наиболее эффективно применяются в сейсмических районах при создании отверстий в уже существующих бетонных зданиях. Их там используют для укрепления аварийных домов с помощью стальной стяжки, а также при реставрации памятников архитектуры. В атомной отрасли мощное лазерное излучение широко используют для дезактивации бетонных ядерных сооружений, которые уже выведены из эксплуатации. Пользователей в этом случае привлекает низкое пылевыделение во время обработки бетонных конструкций. Важную роль играет также дистанционное управление процессом, т. е. удаленное расположение оборудования от объекта.

Для сверления отверстий в бетонных стенах и прочих поверхностях используют лазерную электродрель . Состоит она из электродвигателя, редуктора, шпиндель-вала, лазерного устройства, инструмента для сверления. Последний имеет вид шнека, который непосредственно связан с корпусом редуктора. На одном конце этого шнека закреплена высокотемпературная коронка, а другой его конец соединен со шпиндель-валом. Лазерное устройство располагается в верхней части корпуса редуктора.

Лазерный луч существенно увеличивает скорость сверления в твердых бетонных стенах и гранитных блоках

Меры безопасности

Во время сверления отверстий в бетонных конструкциях следует использовать индивидуальные средства защиты. К ним относятся очки, брезентовые рукавицы, респиратор. Оператор должен быть одет в рабочую одежду из плотной ткани и резиновую обувь. Во время работы надо следить, чтобы какие-либо элементы одежды не попали в движущиеся части сверлильного оборудования .

По статистике наибольшее количество травм получают рабочие на стройплощадках из-за неисправности электроинструмента или его неправильного использования. Поэтому электроинструмент должен быть исправен. Кроме того, перед каждым его применением необходимо проверять питающий кабель на наличие повреждений. Во время проведения работ кабель должен располагаться так, чтобы его нельзя было каким-либо образом повредить.

Сверлить бетон наиболее безопасно стоя на полу, но, к сожалению, так получается не всегда. Таким образом можно просверлить отверстие лишь на уровне человеческого роста. Если отверстие располагается выше, необходимо использовать дополнительное основание. Основным правилом при этом является надежность основания. Оно должно обеспечивать рабочему во время работы устойчивое ровное положение. Дополнительной мерой безопасности при проведении работ на высоте является удаление любых предметов из рабочей зоны, о которые можно пораниться при случайном падении.

При сверлении отверстий в бетонных стенах высока вероятность повреждения различных коммуникаций. Это может быть электропроводка, трубы центрального отопления и пр. Электрический провод под напряжением можно легко обнаружить с помощью детектора скрытой проводки.

При сверлении отверстий с помощью лазера следует избегать попадания различных частей тела в его зону действия, чтобы не получить ожоги. Нельзя смотреть на сам лазерный луч или его отражение, чтобы не повредить роговицу глаз. По этой же причине необходимо работать только в специальных защитных очках. При работе с лазерным оборудованием следует соблюдать те же правила безопасности, что и при использовании любого электрического инструмента.

Стоимость работ

На формирование цены услуг по сверлению бетона оказывают влияние такие факторы, как:

  • диаметр требуемого отверстия . С увеличением диаметра увеличивается и стоимость сверления;
  • материал поверхности , в которой будет производиться сверление. В железобетонных конструкциях сверление обходится дороже, чем в стенах из кирпича;
  • глубина сверления . Естественно, что чем больше длина будущего отверстия, тем дороже будет стоить само сверление.

На стоимость сверлильных работ могут оказывать влияние и дополнительные факторы. Например, сверление на высоте требует применения дополнительного оборудования. Сверление под углом невозможно выполнить без использования специального инструмента.

Стоимость работ может также увеличиться, если они будут проводиться на открытом воздухе и при неблагоприятных погодных условиях

Ориентировочная стоимость сверления отверстий алмазным инструментом:

Диаметр отверстия, мм Стоимость 1 см сверления, руб
Кирпич Бетон Железобетон
16 – 67 20 26 30
72 – 112 22 28 35
122 – 142 24 30 37
152 – 162 28 35 44
172 – 202 39 50 66
250 57 77 94
300 72 88 110
400 110 135 155
500 135 175 195
600 145 195 210

Выводы

Алмазные технологии сегодня являются, бесспорно, самым безопасным, быстрым и экономически выгодным вариантом сверления отверстий в самых твердых строительных материалах. Используя кольцевые сверла можно создавать отверстия точно соответствующие заданному диаметру. По форме отверстия также получаются идеальными и не требуют никакой дополнительной обработки, что существенно экономит время, а самое главное – средства заказчика услуги.

Такие достоинства алмазного сверления, как отсутствие шума и вибраций дают возможность производить работы не только на больших строительных объектах, но и в жилых помещениях, которые находятся как на стадии ремонта, так и в отделанном (чистовом) состоянии. Благодаря алмазному инструменту и профессиональному оборудованию, настенные и напольные покрытия при проведении работ в чистом помещении полностью сохраняют свой первозданный вид.

Практические нюансы сухого сверления бетона алмазной коронкой представлены в видео:

Специалисты разработали немало способов обработки бриллиантов для улучшения качеств этих камней. Самым проверенным способом повышения качества бриллиантов считается лазерное сверление.

Такой вид обработки алмазов впервые применили в коммерческой практике в 70-х годах прошлого века. Темные включения такие, как магнетиты, пирротины и углеродные включения не улучшают оптические характеристики камня и тем более не привлекают покупателей. В процессе лазерного сверления эти включения выжигают , растворяют с помощью азотной или серной кислот или же осветляют.

Лазерный луч специального аппарата, квантового генератора ИК-диапазона с длиной волн около 1060 нм, высверливает микроотверстие диаметром не более 20-60 мкм. 20 мкм равно 0,02 мм, такова толщина человеческого волоса. Сверление алмаза проводится на глубину не более 1,6 мм. Этот процесс занимает в среднем от 30 минут и более.

Существует способ осветления темных включений. Через отверстие, высверленное лазерным лучом, поступает воздух, под воздействием которого окраска включения может стать значительно светлее. Еще один способ осветления заключается в том, что в канал лазерного отверстия в вакуумной среде вводят реактив, который осветляет или полностью растворяет включение. Конечный результат зависит от химического состава данного включения.

При десятикратном увеличении под микроскопом или под лупой рассмотреть каналы лазерных отверстий нетрудно, даже если их запломбировали. Они имеют вид воронкообразных выемок на поверхности и прямых линий беловатого цвета внутри. Для заполнения каналов с недавнего времени используются такие вещества, как синтетическая смола или воск из-за высокого коэффициента преломления. После заполнения канала соответствующим веществом канал пломбируют. Хотя запломбированные отверстия менее заметны на поверхности и в меньшей степени подвержены загрязнению, в отраженном свете можно увидеть «кратер» в месте сверления. Выемки круглой формы на поверхности можно нащупать и острием иглы. Следует учитывать, что если в процессе сверления отверстия лазерный луч попал в зону сильного внутреннего напряжения, то вокруг канала образуются легко различимые трещинки напряжения и спайности.

При оценке подобных камней возникают трудности. Конечно, визуальные геммологические характеристики заметно улучшаются, но сверление создает искусственные дефекты в виде мелких трещинок.

Бриллианты относят к определенной группе чистоты с учетом их внешнего вида и наличия просверленных отверстий. Следует отметить, что целью лазерного сверления является не повышение степени чистоты бриллианта, а осветление темных включений. Это приводит к улучшению внешнего вида камня и больше привлекает покупателей.

В соответствующих сертификатах качества, накладных и других документах в обязательном порядке должна содержаться информация о результатах вмешательства со стороны человека и наличии отверстий лазерного сверления.

Недавно был разработан новый метод лазерной обработки алмазов, при котором канал не выводится на поверхность. Этот вид обработки подходит для алмазов с темными включениями, расположенными недалеко от поверхности. Но применение этого метода все же не гарантирует отсутствия новых трещин спайности и напряжения, «перьев» и микротрещин вокруг включений. Дефекты подобного рода, существовавшие до обработки, после применения данного метода могут усилиться. С другой стороны, новые трещинки, достигая поверхности, могут сыграть роль каналов. При введении кислот в эти каналы включения осветляются. Данный метод подходит не для всех камней, но бриллианты с темными включениями , находящимися около поверхности, с мелкими трещинками - идеальный материал для этого способа облагораживания.

Суть данного метода лазерной обработки заключается в том, что лазеры в пульсирующем режиме фокусируют точно на место включения. В результате процесса выделяется значительное количество тепла, которое способствует распространению трещинок до поверхности камня. Таким образом, отпадает необходимость сверлить канал с образованием воронки на поверхности. Растворитель, легко проникающий по новым трещинкам к включению, либо осветляет его, либо растворяет. Но и этот способ может привести к образованию ямок и каверн на поверхности камня с тем отличием, что их форма будет не такой идеально круглой, а размеры будут незначительно меньше.

Еще один метод лазерной обработки разработали израильские специалисты в начале 2000-х годов. Его назвали КМ(сокращение от слов«КидуахМеухад» ), что в переводе с иврита означает «специальное сверление». Способ, ставший популярным в Антверпене, применяется для осветления темных включений с микротрещинами с помощью кислоты при соблюдении особых условий. На ближайший к поверхности дефект направляют лазерный луч, в результате чего дефект распространяется до поверхности.

После лазерноговоздействия алмаз опускают в концентрированную кислоту и нагревают до высокой температуры под давлением. Благодаря созданным условиям, кислота проникает внутрь до включения и растворяет его.

Алмазы после обработки методом КМ можно идентифицировать по наличию голубовато-коричневатых оттенков в отраженном свете в местах искусственно созданных трещин , особенно при перекатывании камня. Чего нельзя сказать об алмазах, которые обрабатываются по традиционной технологии лазерного сверления с образованием заметных отверстий на поверхности. Более того, в алмазах, обработанных методом КМ, иногда можно заметить незначительные остатки веществачерноватого цвета в виде неправильных линий на поверхности трещин напряжения, которые образовались в процессе лазерного воздействия.

Технические характеристики:

Максимальный размер заготовки, мм

600 х 650 (другие по согласованию)

Длина волны UV-лазера, нм

Частота импульсов, кГц

Мощность UV-лазера(Вт) при 60 кГц, не менее

Точность позиционирования по осям Х, Y, мкм

Мин. диаметр отверстия, мкм

от 50 (зависит от настроек станка)

Макс. отношение диаметр/глубина отверстия

Поле обработки (без движения осей станка), мм

Макс.: 40х40

Макс. компенсация изменения высоты поверхности заготовки, мм

Габариты и вес:

Размеры установки (Ш-Г-В)

1320 х 1286 х 2286 мм

Вес установки

Станок предназначен для применения в производстве высокоточных печатных плат (ПП), гибко-жёстких ПП, гибких ПП и гибких кабелей, ПП со встроенными компонентами.

Основной отличительной особенностью станка является использование в качестве излучателя УФ лазера с длинной волны 355 нм. Применение УФ лазера с длиной импульса ~ 35 нс позволяет производить обработку различных видов материалов, обеспечивая при этом высочайшее качество обработки (минимизация нагара, гибкое управление процессом, остановка точно на заданном слое меди при выполнении глухих отверстий). Кроме того, в отличие от технологии использующей ИК лазер, применение станка LaserFlex позволяет избавиться от подготовительных операций, необходимых для обработки меди на ИК лазере (например, оксидирование) и постобработки (удаление нагара).

Таким образом, универсальный станок LaserFlex является оптимальным средством для решения таких задач, как:

  • Удаление полимерных покрывных пленок
  • Сверление и резка фольгированных медью полимерных ламинатов
  • Обработка гибких и гибко-жестких ПП
  • Сверление и резка внутренних слоев и препрегов, например, FR4
  • Отделение или «высвобождение» проводников и структурирование полостей
  • Сверление микроотверстий в т.ч. глухих

Скорость, точность и качество обработки обеспечивают следующие узлы:

  • Стабильное гранитное основание, предназначенное для компенсации механических моментов при движении осей и для температурной стабилизации параметров движения
  • Высокодинамичные линейные двигатели (оси X, Y)
  • Встроенный индикатор мощности излучения лазера, позволяющий быстро и точно корректировать параметры источника излучения, опираясь на фактическое значение выходной мощности лазера. Позволяет максимально точно подобрать режим обработки и поддерживать его в любых условиях: при нормальной эксплуатации, в случае загрязнения оптической системы, между регламентными работами и даже в случае потери мощности источником излучения вследствие износа в ходе длительной эксплуатации.

Удобство в использовании и безопасность:

Управляемый при помощи сенсорного дисплея с дружелюбным интерфейсом специализированного программного обеспечения станок LaserFlex будет совмещать в себе простоту и удобство в использовании с

поистине впечатляющей производительностью. Простая и интуитивно-понятная управляющая оболочка избавляет от необходимости проводить длительное обучение операторов.

Станок оснащен всеми необходимыми средствами защиты, удовлетворяющими мировым стандартам. Это обеспечивает, при соблюдении техники безопасности, безопасную и безаварийную работу на станке.

Фиксация и базирование заготовки:

Для фиксации заготовки станок оснащен вакуумным столом, что позволяет избежать замятия, и волнистости при фиксации гибких и гибко-жестких заготовок.

Положения заготовки на столе определяется по меткам с использованием CCD-камеры.

Форматы данных:

В качестве входных используются данные в форматах: DXF, Gerber, Bitmap.

В качестве дополнительного оборудования могут быть приобретены:

  • Компрессор с системой фильтров для обеспечения сжатым воздухом требуемого качества
  • Источник бесперебойного питания

Станки серии Pico

Технические характеристики

Управляющий интрефейс

Длина волны лазера, нм

Мощность Лазера, Вт

Длительность импульса, пс

Система крепления заготовок

Вакуумный стол

Зона обработки, мм

Количество обрабатывающих станций

Повторяемость, мкм

Точность позиционирования, мкм

Габариты и вес:

Общий вес, кг

Габаритные размеры (ДШВ), мм

2100х1920х1720

Назначение и принцип действия

Лазерный обрабатывающий центр Picodrill – это высокопроизводительная и высокоточная установка для сверления, нарезки и структурирования различных материалов. Применение лазера пикосекундных импульсов высокой энергии делает возможным холодное прецизионное снятие материала. В качестве опции предлагается полностью автоматический режим обработки.

Возможные области применения при производстве ПП

  • Сверление микроотверстий в заготовках печатных плат, до 4000 в секунду
  • Микроструктурирование, прецизионная обработка деталей из стекла и керамики
  • Нарезка и сверление электронных компонентов, полупроводниковых подложек
  • Сверление микроотверстий

Качество обработки

Благодаря пикосекундному лазеру возможно холодное

удаление практически любого материала. Средняя мощность лазера 25 Вт и пиковая мощность импульса макс. до 70 МВт в импульсе, обеспечивают возможность удаления мельчайших объемов материала без каких-либо остаточных продуктов горения.

Автоматическое управление процессом

  • Установка оснащена сенсорами для компенсации толщины компонентов.
  • Автоматическая корректировка фокуса осуществляется за счет автоматической подстройки оси Z.
  • Устройства измерения энергии лазера обеспечивают обратную связь и автоматическую подстройку энергии лазера. Точность может быть значительно улучшена при
  • использовании системы сканирования по 3 осям.

Контроль при помощи CCD-камеры

Обе рабочие станции располагают CCD-камерами высокого разрешения с кольцевой светодиодной подсветкой. Это делает возможной автоматическую корректировку смещения, поворота, сжатия или растяжения заготовки.

Опции

  • Две или четыре сканирующие головки
  • Пикосекундный лазер различной мощности и длины волны (1064, 532, 355 нм)
  • Тенденции развития современной электроники ставят перед производством печатных плат (ПП) задачи нового уровня. Прогресс мобильных технологий и растущий спрос на такие как устройства смартфоны и ультрабуки на сегодняшний день требуют от ПП максимальной миниатюризации, увеличения плотности соединений и при этом высочайшего качества.

    Стремительное развитие лазерной техники и технологии открывает для производства печатных плат дверь в завтрашний день, не оставляя без внимания сегодняшний. Лазерное оборудование применяется не только там, где заканчиваются возможности механической обработки (сверление микроотверстий от 50 мкм, обработка материалов тяжело поддающихся механической обработке, и т.п.), но и для выполнения доступных механике операций, с большей точностью и производительностью (сверление микроотверстий со скоростью до 1000 отв./сек, сверх точное сверление и фрезерование на заданную глубину). При этом возможность регулировать режим обработки, как за счет мощности излучения, так и за счет его временных и частотных характеристик позволяет добиться высочайшего качества обработки.