Электронный микроскоп: эпизод I. Виды микроскопов: описание, основные характеристики, назначение

ЭЛЕКТРОННЫЙ МИКРОСКОП
прибор, который позволяет получать сильно увеличенное изображение объектов, используя для их освещения электроны. Электронный микроскоп (ЭМ) дает возможность видеть детали, слишком мелкие, чтобы их мог разрешить световой (оптический) микроскоп. ЭМ - один из важнейших приборов для фундаментальных научных исследований строения вещества, особенно в таких областях науки, как биология и физика твердого тела. Существуют три основных вида ЭМ. В 1930-х годах был изобретен обычный просвечивающий электронный микроскоп (ОПЭМ), в 1950-х годах - растровый (сканирующий) электронный микроскоп (РЭМ), а в 1980-х годах - растровый туннельный микроскоп (РТМ). Эти три вида микроскопов дополняют друг друга в исследованиях структур и материалов разных типов.
ОБЫЧНЫЙ ПРОСВЕЧИВАЮЩИЙ ЭЛЕКТРОННЫЙ МИКРОСКОП
ОПЭМ во многом подобен световому микроскопу см. МИКРОСКОП , но только для освещения образцов в нем используется не свет, а пучок электронов. В нем имеются электронный прожектор (см. ниже), ряд конденсорных линз, объективная линза и проекционная система, которая соответствует окуляру, но проецирует действительное изображение на люминесцентный экран или фотографическую пластинку. Источником электронов обычно служит нагреваемый катод из вольфрама или гексаборида лантана. Катод электрически изолирован от остальной части прибора, и электроны ускоряются сильным электрическим полем. Для создания такого поля катод поддерживают под потенциалом порядка -100 000 В относительно других электродов, фокусирующих электроны в узкий пучок. Эта часть прибора называется электронным прожектором (см. ЭЛЕКТРОННАЯ ПУШКА). Поскольку электроны сильно рассеиваются веществом, в колонне микроскопа, где движутся электроны, должен быть вакуум. Здесь поддерживается давление, не превышающее одной миллиардной атмосферного.
Электронная оптика. Электронное изображение формируется электрическими и магнитными полями примерно так же, как световое - оптическими линзами. Принцип действия магнитной линзы поясняется схемой (рис. 1). Магнитное поле, создаваемое витками катушки, по которой проходит ток, действует как собирающая линза, фокусное расстояние которой можно изменять, изменяя ток. Поскольку оптическая сила такой линзы, т.е. способность фокусировать электроны, зависит от напряженности магнитного поля вблизи оси, для ее увеличения желательно сконцентрировать магнитное поле в минимально возможном объеме. Практически это достигается тем, что катушку почти полностью закрывают магнитной "броней" из специального никель-кобальтового сплава, оставляя лишь узкий зазор в ее внутренней части. Создаваемое таким образом магнитное поле может быть в 10-100 тыс. раз более сильным, чем магнитное поле Земли на земной поверхности.

Схема ОПЭМ представлена на рис. 2. Ряд конденсорных линз (показана лишь последняя) фокусирует электронный пучок на образце. Обычно первая из них создает неувеличенное изображение источника электронов, а последняя контролирует размер освещаемого участка на образце. Диафрагмой последней конденсорной линзы определяется ширина пучка в плоскости объекта. Образец помещается в магнитном поле объективной линзы с большой оптической силой - самой важной линзы ОПЭМ, которой определяется предельное возможное разрешение прибора. Аберрации объективной линзы ограничиваются ее диафрагмой так же, как это происходит в фотоаппарате или световом микроскопе. Объективная линза дает увеличенное изображение объекта (обычно с увеличением порядка 100); дополнительное увеличение, вносимое промежуточными и проекционной линзами, лежит в пределах величин от несколько меньшей 10 до несколько большей 1000. Таким образом, увеличение, которое можно получить в современных ОПЭМ, составляет от менее 1000 до ЭЛЕКТРОННЫЙ МИКРОСКОП1 000 000. (При увеличении в миллион раз грейпфрут вырастает до размеров Земли.) Исследуемый объект обычно помещают на очень мелкую сетку, вкладываемую в специальный держатель. Держатель можно механическим или электрическим способом плавно перемещать вверх-вниз и вправо-влево.



Изображение. Контраст в ОПЭМ обусловлен рассеянием электронов при прохождении электронного пучка через образец. Если образец достаточно тонок, то доля рассеянных электронов невелика. При прохождении электронов через образец одни из них рассеиваются из-за столкновений с ядрами атомов образца, другие - из-за столкновений с электронами атомов, а третьи проходят, не претерпевая рассеяния. Степень рассеяния в какой-либо области образца зависит от толщины образца в этой области, его плотности и средней атомной массы (числа протонов) в данной точке. Электроны, выходящие из диафрагмы с угловым отклонением, превышающим некоторый предел, уже не могут вернуться в пучок, несущий изображение, а поэтому сильно рассеивающие участки повышенной плотности, увеличенной толщины, места расположения тяжелых атомов выглядят на изображении как темные зоны на светлом фоне. Такое изображение называется светлопольным, поскольку на нем окружающее поле светлее объекта. Но можно сделать так, чтобы электрическая отклоняющая система пропускала в диафрагму объектива только те или иные из рассеянных электронов. Тогда образец выглядит светлым на темном поле. Слабо рассеивающий объект часто бывает удобнее рассматривать в режиме темного поля. Окончательное увеличенное электронное изображение преобразуется в видимое посредством люминесцентного экрана, который светится под действием электронной бомбардировки. Это изображение, обычно слабоконтрастное, как правило, рассматривают через бинокулярный световой микроскоп. При той же яркости такой микроскоп с увеличением 10 может создавать на сетчатке глаза изображение, в 10 раз более крупное, чем при наблюдении невооруженным глазом. Иногда для повышения яркости слабого изображения применяется люминофорный экран с электронно-оптическим преобразователем. В этом случае окончательное изображение может быть выведено на обычный телевизионный экран, что позволяет записать его на видеоленту. Видеозапись применяется для регистрации изображений, меняющихся во времени, например, в связи с протеканием химической реакции. Чаще всего окончательное изображение регистрируется на фотопленке или фотопластинке. Фотопластинка обычно позволяет получить более четкое изображение, чем наблюдаемое простым глазом или записанное на видеоленте, так как фотоматериалы, вообще говоря, более эффективно регистрируют электроны. Кроме того, на единице площади фотопленки может быть зарегистрировано в 100 раз больше сигналов, чем на единице площади видеоленты. Благодаря этому изображение, зарегистрированное на фотопленке, можно дополнительно увеличить примерно в 10 раз без потери четкости.
Разрешение. Электронные пучки имеют свойства, аналогичные свойствам световых пучков. В частности, каждый электрон характеризуется определенной длиной волны. Разрешающая способность ЭМ определяется эффективной длиной волны электронов. Длина волны зависит от скорости электронов, а следовательно, от ускоряющего напряжения; чем больше ускоряющее напряжение, тем больше скорость электронов и тем меньше длина волны, а значит, выше разрешение. Столь значительное преимущество ЭМ в разрешающей способности объясняется тем, что длина волны электронов намного меньше длины волны света. Но поскольку электронные линзы не так хорошо фокусируют, как оптические (числовая апертура хорошей электронной линзы составляет всего лишь 0,09, тогда как для хорошего оптического объектива эта величина достигает 0,95), разрешение ЭМ равно 50-100 длинам волн электронов. Даже со столь слабыми линзами в электронном микроскопе можно получить предел разрешения ок. 0,17 нм, что позволяет различать отдельные атомы в кристаллах. Для достижения разрешения такого порядка необходима очень тщательная настройка прибора; в частности, требуются высокостабильные источники питания, а сам прибор (который может быть высотой ок. 2,5 м и иметь массу в несколько тонн) и его дополнительное оборудование требуют монтажа, исключающего вибрацию.
РАСТРОВЫЙ ЭЛЕКТРОННЫЙ МИКРОСКОП
РЭМ, ставший важнейшим прибором для научных исследований, служит хорошим дополнением ОПЭМ. В РЭМ применяются электронные линзы для фокусировки электронного пучка в пятно очень малых размеров. Можно отрегулировать РЭМ так, чтобы диаметр пятна в нем не превышал 0,2 нм, но, как правило, он составляет единицы или десятки нанометров. Это пятно непрерывно обегает некоторый участок образца аналогично лучу, обегающему экран телевизионной трубки. Электрический сигнал, возникающий при бомбардировке объекта электронами пучка, используется для формирования изображения на экране телевизионного кинескопа или электронно-лучевой трубки (ЭЛТ), развертка которой синхронизирована с системой отклонения электронного пучка (рис. 3). Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. Это увеличение составляет от 10 до 10 млн.



Взаимодействие электронов сфокусированного пучка с атомами образца может приводить не только к их рассеянию, которое используется для получения изображения в ОПЭМ, но и к возбуждению рентгеновского излучения, испусканию видимого света и эмиссии вторичных электронов. Кроме того, поскольку в РЭМ перед образцом имеются только фокусирующие линзы, он позволяет исследовать "толстые" образцы.
Отражательный РЭМ. Отражательный РЭМ предназначен для исследования массивных образцов. Поскольку контраст, возникающий при регистрации отраженных, т.е. обратно-рассеянных, и вторичных электронов, связан в основном с углом падения электронов на образец, на изображении выявляется поверхностная структура. (Интенсивность обратного рассеяния и глубина, на которой оно происходит, зависят от энергии электронов падающего пучка. Эмиссия вторичных электронов определяется, в основном составом поверхности и электропроводностью образца.) Оба эти сигнала несут информацию об общих характеристиках образца. Благодаря малой сходимости электронного пучка можно проводить наблюдения с гораздо большей глубиной резкости, чем при работе со световым микроскопом, и получать прекрасные объемные микрофотографии поверхностей с весьма развитым рельефом. Регистрируя рентгеновское излучение, испускаемое образцом, можно в дополнение к данным о рельефе получать информацию о химическом составе образца в поверхностном слое глубиной ЭЛЕКТРОННЫЙ МИКРОСКОП0,001 мм. О составе материала на поверхности можно судить и по измеренной энергии, с которой эмиттируются те или иные электроны. Все сложности работы с РЭМ обусловлены, в основном, его системами регистрации и электронной визуализации. В приборе с полным комплексом детекторов, наряду со всеми функциями РЭМ, предусматривается рабочий режим электронно-зондового микроанализатора.
Растровый просвечивающий электронный микроскоп. Растровый просвечивающий электронный микроскоп (РПЭМ) - это особый вид РЭМ. Он рассчитан на тонкие образцы, такие же, как и исследуемые в ОПЭМ. Схема РПЭМ отличается от схемы на рис. 3 только тем, что в ней нет детекторов, расположенных выше образца. Поскольку изображение формируется бегущим пучком (а не пучком, освещающим весь исследуемый участок образца), требуется высокоинтенсивный источник электронов, чтобы изображение можно было зарегистрировать за приемлемое время. В РПЭМ высокого разрешения используются автоэлектронные эмиттеры высокой яркости. В таком источнике электронов создается очень сильное электрическое поле (ок. В/см) вблизи поверхности заостренной травлением вольфрамовой проволочки очень малого диаметра. Это поле буквально вытягивает миллиарды электронов из проволочки без всякого нагрева. Яркость такого источника почти в 10 000 раз больше, чем источника с нагреваемой вольфрамовой проволокой (см. выше), а испускаемые им электроны могут быть сфокусированы в пучок диаметром менее 1 нм. Были даже получены пучки, диаметр которых близок к 0,2 нм. Автоэлектронные источники могут работать только в условиях сверхвысокого вакуума (при давлениях ниже Па), в которых полностью отсутствуют такие загрязнения, как пары углеводородов и воды, и становится возможным получение изображений с высоким разрешением. Благодаря таким сверхчистым условиям можно исследовать процессы и явления, недоступные ЭМ с обычными вакуумными системами. Исследования в РПЭМ проводятся на сверхтонких образцах. Электроны проходят сквозь такие образцы почти без рассеяния. Электроны, рассеянные на углы более нескольких градусов без замедления, регистрируются, попадая на кольцевой электрод, расположенный под образцом (рис. 3). Сигнал, снимаемый с этого электрода, сильно зависит от атомного номера атомов в той области, через которую проходят электроны, - более тяжелые атомы рассеивают больше электронов в направлении детектора, чем легкие. Если электронный пучок сфокусирован в точку диаметром менее 0,5 нм, то можно получить изображение отдельных атомов. Реально удается различать на изображении, полученном в РПЭМ, отдельные атомы с атомной массой железа (т.е. 26 и более). Электроны, не претерпевшие рассеяния в образце, а также электроны, замедлившиеся в результате взаимодействия с образцом, проходят в отверстие кольцевого детектора. Энергетический анализатор, расположенный под этим детектором, позволяет отделить первые от вторых. Измеряя энергию, потерянную электронами при рассеянии, можно получить важную информацию об образце. Потери энергии, связанные с возбуждением рентгеновского излучения или выбиванием вторичных электронов из образца, позволяют судить о химических свойствах вещества в области, через которую проходит электронный пучок.
РАСТРОВЫЙ ТУННЕЛЬНЫЙ МИКРОСКОП
В ЭМ, рассмотренных выше, для фокусировки электронов применяются магнитные линзы. Данный раздел посвящен ЭМ без линз. Но, прежде чем переходить к растровому туннельному микроскопу (РТМ), будет полезно кратко остановиться на двух старых видах безлинзового микроскопа, в которых формируется проецированное теневое изображение.
Автоэлектронный и автоионный проекторы. Автоэлектронный источник, применяемый в РПЭМ, с начала 1950-х годов применялся в теневых проекторах. В автоэлектронном проекторе электроны, испускаемые за счет автоэлектронной эмиссии острием очень малого диаметра, ускоряются в направлении люминесцентного экрана, расположенного на расстоянии нескольких сантиметров от острия. В результате на экране возникает проецированное изображение поверхности острия и находящихся на этой поверхности частиц с увеличением, равным отношению радиуса экрана к радиусу острия (порядка). Более высокое разрешение достигается в автоионном проекторе, в котором проецирование изображения осуществляется ионами гелия (или некоторых других элементов), эффективная длина волны которых меньше, чем у электронов. Это позволяет получать изображения, показывающие истинное расположение атомов в кристаллической решетке материала острия. Поэтому автоионные проекторы используются, в частности, для исследования кристаллической структуры и ее дефектов в материалах, из которых могут быть изготовлены такие острия.
Растровый туннельный микроскоп (РТМ). В этом микроскопе тоже используется металлическое острие малого диаметра, являющееся источником электронов. В зазоре между острием и поверхностью образца создается электрическое поле. Число электронов, вытягиваемых полем из острия в единицу времени (ток туннелирования), зависит от расстояния между острием и поверхностью образца (на практике это расстояние меньше 1 нм). При перемещении острия вдоль поверхности ток модулируется. Это позволяет получить изображение, связанное с рельефом поверхности образца. Если острие заканчивается одиночным атомом, то можно сформировать изображение поверхности, проходя атом за атомом. РТМ может работать только при условии, что расстояние от острия до поверхности постоянно, а острие можно перемещать с точностью до атомных размеров. Вибрации подавляются благодаря жесткой конструкции и малым размерам микроскопа (не более кулака), а также применению многослойных резиновых амортизаторов. Высокую точность обеспечивают пьезоэлектрические материалы, которые удлиняются и сокращаются под действием внешнего электрического поля. Подавая напряжение порядка 10-5 В, можно изменять размеры таких материалов на 0,1 нм и менее. Это дает возможность, закрепив острие на элементе из пьезоэлектрического материала, перемещать его в трех взаимно перпендикулярных направлениях с точностью порядка атомных размеров.
ТЕХНИКА ЭЛЕКТРОННОЙ МИКРОСКОПИИ
Вряд ли остался какой-либо сектор исследований в области биологии и материаловедения, где бы не применялась просвечивающая электронная микроскопия (ПЭМ); это обеспечено успехами техники приготовления образцов. Все применяемые в электронной микроскопии методики нацелены на получение предельно тонкого образца и обеспечение максимального контраста между ним и подложкой, которая необходима ему в качестве опоры. Основная методика рассчитана на образцы толщиной 2-200 нм, поддерживаемые тонкими пластмассовыми или углеродными пленками, которые кладутся на сетку с размером ячейки ок. 0,05 мм. (Подходящий образец, каким бы способом он ни был получен, обрабатывается так, чтобы увеличить интенсивность рассеяния электронов на исследуемом объекте.) Если контраст достаточно велик, то глаз наблюдателя может без напряжения различить детали, находящиеся на расстоянии 0,1-0,2 мм друг от друга. Следовательно, для того, чтобы на изображении, создаваемом электронным микроскопом, были различимы детали, разделенные на образце расстоянием в 1 нм, необходимо полное увеличение порядка 100-200 тыс. Лучшие из микроскопов могут создать на фотопластинке изображение образца с таким увеличением, но при этом изображается слишком малый участок. Обычно делают микроснимок с меньшим увеличением, а затем увеличивают его фотографически. Фотопластинка разрешает на длине 10 см ок. 10 000 линий. Если каждая линия соответствует на образце некой структуре протяженностью 0,5 нм, то для регистрации такой структуры необходимо увеличение не менее 20 000, тогда как при помощи РЭМ и РПЭМ, в которых изображение регистрируется электронной системой и развертывается на телевизионном экране, может быть разрешено только ок. 1000 линий. Таким образом, при использовании телевизионного монитора минимально необходимое увеличение примерно в 10 раз больше, чем при фоторегистрации.
Биологические препараты. Электронная микроскопия широко применяется в биологических и медицинских исследованиях. Разработаны методики фиксации, заливки и получения тонких срезов тканей для исследования в ОПЭМ и РПЭМ и методики фиксации для исследования объемных образцов в РЭМ. Эти методики дают возможность исследовать организацию клеток на макромолекулярном уровне. Электронная микроскопия выявила компоненты клетки и детали строения мембран, митохондрий, эндоплазматической сети, рибосом и множества других органелл, входящих в состав клетки. Образец сначала фиксируют глутаральдегидом или другими фиксирующими веществами, а затем обезвоживают и заливают пластмассой. Методы криофиксации (фиксации при очень низких - криогенных - температурах) позволяют сохранить структуру и состав без использования химических фиксирующих веществ. Кроме того, криогенные методы позволяют получать изображения замороженных биологических образцов без их обезвоживания. При помощи ультрамикротомов с лезвиями из полированного алмаза или сколотого стекла можно делать срезы тканей толщиной 30-40 нм. Смонтированные гистологические препараты могут быть окрашены соединениями тяжелых металлов (свинца, осмия, золота, вольфрама, урана) для усиления контраста отдельных компонентов или структур.



Биологические исследования были распространены на микроорганизмы, особенно на вирусы, которые не разрешаются световыми микроскопами. ПЭМ позволила выявить, например, структуры бактериофагов и расположение субъединиц в белковых оболочках вирусов. Кроме того, методами позитивного и негативного окрашивания удалось выявить структуру с субъединицами в ряде других важных биологических микроструктур. Методы усиления контраста нуклеиновых кислот позволили наблюдать одно- и двунитные ДНК. Эти длинные линейные молекулы распластывают в слой основного белка и накладывают на тонкую пленку. Затем на образец вакуумным напылением наносят очень тонкий слой тяжелого металла. Этот слой тяжелого металла "оттеняет" образец, благодаря чему последний при наблюдении в ОПЭМ или РПЭМ выглядит как бы освещенным с той стороны, с которой напылялся металл. Если же вращать образец во время напыления, то металл накапливается вокруг частиц со всех сторон равномерно (как снежный ком).
Небиологические материалы. ПЭМ применяется в исследованиях материалов для изучения тонких кристаллов и границ между разными материалами. Чтобы получить изображение границы раздела с большим разрешением, образец заливают пластмассой, делают срез образца, перпендикулярный границе, а затем утоньшают его так, чтобы граница была видна на заостренной кромке. Кристаллическая решетка сильно рассеивает электроны в определенных направлениях, давая дифракционную картину. Изображение кристаллического образца в значительной мере определяется этой картиной; контраст сильно зависит от ориентации, толщины и совершенства кристаллической решетки. Изменения контраста на изображении позволяют изучать кристаллическую решетку и ее несовершенства в масштабе атомных размеров. Получаемая при этом информация дополняет ту, которую дает рентгенографический анализ объемных образцов, так как ЭМ дает возможность непосредственно видеть во всех деталях дислокации, дефекты упаковки и границы зерен. Кроме того, в ЭМ можно снимать электронограммы и наблюдать картины дифракции от выделенных участков образца. Если диафрагму объектива настроить так, чтобы через нее проходили только один дифрагированный и нерассеянный центральный пучки, то можно получать изображение определенной системы кристаллических плоскостей, которая дает этот дифрагированный пучок. Современные приборы позволяют разрешать периоды решетки величиной 0,1 нм. Исследовать кристаллы можно также методом темнопольного изображения, при котором перекрывают центральный пучок, так что изображение формируется одним или несколькими дифрагированными пучками. Все эти методы дали важную информацию о структуре очень многих материалов и существенно прояснили физику кристаллов и их свойства. Например, анализ ПЭМ-изображений кристаллической решетки тонких малоразмерных квазикристаллов в сочетании с анализом их электронограмм позволил в 1985 открыть материалы с симметрией пятого порядка.
Высоковольтная микроскопия. В настоящее время промышленность выпускает высоковольтные варианты ОПЭМ и РПЭМ с ускоряющим напряжением от 300 до 400 кВ. Такие микроскопы имеют более высокую проникающую способность, чем у низковольтных приборов, причем почти не уступают в этом отношении микроскопам с напряжением 1 млн. вольт, которые строились в прошлом. Современные высоковольтные микроскопы достаточно компактны и могут быть установлены в обычном лабораторном помещении. Их повышенная проникающая способность оказывается очень ценным свойством при исследовании дефектов в более толстых кристаллах, особенно таких, из которых невозможно сделать тонкие образцы. В биологии их высокая проникающая способность дает возможность исследовать целые клетки, не разрезая их. Кроме того, с помощью таких микроскопов можно получать объемные изображения толстых объектов.
Низковольтная микроскопия. Выпускаются также РЭМ с ускоряющим напряжением, составляющим всего несколько сот вольт. Даже при столь низких напряжениях длина волны электронов меньше 0,1 нм, так что пространственное разрешение и здесь ограничивается аберрациями магнитных линз. Однако, поскольку электроны с такой низкой энергией проникают неглубоко под поверхность образца, почти все электроны, участвующие в формировании изображения, приходят из области, расположенной очень близко к поверхности, благодаря чему повышается разрешение поверхностного рельефа. С помощью низковольтных РЭМ были получены изображения на твердых поверхностях объектов размером менее 1 нм.
Радиационное повреждение. Поскольку электроны представляют собой ионизирующее излучение, образец в ЭМ постоянно подвергается его воздействию. (В результате этого воздействия возникают вторичные электроны, используемые в РЭМ.) Следовательно, образцы всегда подвергаются радиационному повреждению. Типичная доза излучения, поглощаемая тонким образцом за время регистрации микрофотографии в ОПЭМ, примерно соответствует энергии, которой было бы достаточно для полного испарения холодной воды из пруда глубиной 4 м с площадью поверхности 1 га. Чтобы уменьшить радиационное повреждение образца, необходимо использовать различные методы его подготовки: окрашивание, заливку, замораживание. Кроме того, можно регистрировать изображение при дозах электронов, в 100-1000 раз меньших, нежели по стандартной методике, а затем улучшать его методами компьютерной обработки изображений.
ИСТОРИЧЕСКАЯ СПРАВКА
История создания электронного микроскопа - замечательный пример того, как самостоятельно развивающиеся области науки и техники могут, обмениваясь полученной информацией и объединяя усилия, создавать новый мощный инструмент научных исследований. Вершиной классической физики была теория электромагнитного поля, которая объяснила распространение света, возникновение электрических и магнитных полей, движение заряженных частиц в этих полях как распространение электромагнитных волн. Волновая оптика сделала понятными явление дифракции, механизм формирования изображения и игру факторов, определяющих разрешение, в световом микроскопе. Успехам в области теоретической и экспериментальной физики мы обязаны открытием электрона с его специфическими свойствами. Эти отдельные и, казалось бы, независимые пути развития привели к созданию основ электронной оптики, одним из важнейших приложений которой являлось изобретение ЭМ в 1930-х годах. Прямым намеком на такую возможность можно считать гипотезу о волновой природы электрона, выдвинутую в 1924 Луи де Бройлем и экспериментально подтвержденную в 1927 К.Дэвиссоном и Л.Джермером в США и Дж.Томсоном в Англии. Тем самым была подсказана аналогия, позволившая построить ЭМ по законам волновой оптики. Х.Буш обнаружил, что с помощью электрических и магнитных полей можно формировать электронные изображения. В первые два десятилетия 20 в. были созданы и необходимые технические предпосылки. Промышленные лаборатории, работавшие над электронно-лучевым осциллографом, дали вакуумную технику, стабильные источники высокого напряжения и тока, хорошие электронные эмиттеры. В 1931 Р. Руденберг подал патентную заявку на просвечивающий электронный микроскоп, а в 1932 М.Кнолль и Э.Руска построили первый такой микроскоп, применив магнитные линзы для фокусировки электронов. Этот прибор был предшественником современного ОПЭМ. (Руска был вознагражден за свои труды тем, что стал лауреатом Нобелевской премии по физике за 1986.) В 1938 Руска и Б.фон Боррис построили прототип промышленного ОПЭМ для фирмы "Сименс-Хальске" в Германии; этот прибор в конце концов позволил достичь разрешения 100 нм. Несколькими годами позднее А.Пребус и Дж.Хиллер построили первый ОПЭМ высокого разрешения в Торонтском университете (Канада). Широкие возможности ОПЭМ почти сразу же стали очевидны. Его промышленное производство было начато одновременно фирмой "Сименс-Хальске" в Германии и корпорацией RCA в США. В конце 1940-х годов такие приборы стали выпускать и другие компании. РЭМ в его нынешней форме был изобретен в 1952 Чарльзом Отли. Правда, предварительные варианты такого устройства были построены Кноллем в Германии в 1930-х годах и Зворыкиным с сотрудниками в корпорации RCA в 1940-х годах, но лишь прибор Отли смог послужить основой для ряда технических усовершенствований, завершившихся внедрением в производство промышленного варианта РЭМ в середине 1960-х годов. Круг потребителей такого довольно простого в обращении прибора с объемным изображением и электронным выходным сигналом расширился с быстротой взрыва. В настоящее время насчитывается добрый десяток промышленных изготовителей РЭМ"ов на трех континентах и десятки тысяч таких приборов, используемых в лабораториях всего мира. В 1960-х годах разрабатывались сверхвысоковольтные микроскопы для исследования более толстых образцов. Лидером этого направления разработок был Г.Дюпуи во Франции, где в 1970 был введен в действие прибор с ускоряющим напряжением, равным 3,5 млн. вольт. РТМ был изобретен Г.Биннигом и Г.Рорером в 1979 в Цюрихе. Этот весьма простой по устройству прибор обеспечивает атомное разрешение поверхностей. За свою работу по созданию РТМ Бинниг и Рорер (одновременно с Руской) получили Нобелевскую премию по физике.
См. также

Мы начинаем публиковать блог предпринимателя, специалиста в области информационных технологий и по совместительству конструктора-любителя Алексея Брагина, в котором рассказывается о необычном опыте - вот уже год как автор блога занят восстановлением сложного научного оборудования - сканирующего электронного микроскопа - практически в домашних условиях. Читайте о том, с какими инженерно-техническими и научными задачами пришлось столкнуться Алексею и как он с ними справился.

Позвонил мне как-то друг и говорит: нашел интересную штуку, надо привезти к тебе, правда, весит полтонны. Так у меня в гараже появилась колонна от сканирующего электронного микроскопа JEOL JSM-50A. Ее давно списали из какого-то НИИ и вывезли в металлолом. Электронику потеряли, а вот электронно-оптическую колонну вместе с вакуумной частью удалось спасти.

Раз основная часть оборудования сохранилась, возник вопрос: нельзя ли спасти микроскоп целиком, то есть восстановить и привести его в рабочее состояние? Причем прямо в гараже, собственными руками, с помощью лишь базовых инженерно-технических знаний и подручных средств? Правда, прежде я никогда не имел дела с подобным научным оборудованием, не говоря уже о том, чтобы уметь им пользоваться, и не представлял, как оно работает. Но интересно ведь не просто запустить старую железяку в рабочее состояние - интересно во всем самостоятельно разобраться и проверить, возможно ли, используя научный метод, освоить совершенно новые области. Так я стал восстанавливать электронный микроскоп в гараже.

В этом блоге я буду рассказывать вам о том, что мне уже удалось сделать и что еще предстоит. Попутно я познакомлю вас с принципами функционирования электронных микроскопов и их основных узлов, а также расскажу о множестве технических препятствий, которые пришлось преодолеть по ходу работы. Итак, приступим.

Чтобы восстановить оказавшийся у меня микроскоп хотя бы до состояния «рисуем электронным лучом на люминесцентном экране», необходимо было следующее:

  • понять основы работы электронных микроскопов;
  • разобраться в том, что такое вакуум и какой он бывает;
  • как измеряют вакуум и как его получают;
  • как работают высоковакуумные насосы;
  • минимально разобраться в прикладной химии (какие растворители использовать для очистки вакуумной камеры, какое масло    использовать для смазки вакуумных деталей);
  • освоить металлообработку (токарные и фрезерные работы) для изготовления всевозможных переходников и инструментов;
  • разобраться с микроконтроллерами и схемотехникой их подключения.

  • Начнем по порядку. Сегодня я расскажу о принципах работы электронных микроскопов. Они бывают двух типов:

  • просвечивающий - TEM, или ПЭМ;
  • сканирующий - SEM, или РЭМ (от «растровый»).
  • Просвечивающий электронный микроскоп

    ПЭМ очень похож на обычный оптический микроскоп, только исследуемый образец облучается не светом (фотонами), а электронами. Длина волны электронного луча намного меньше, чем фотонного, поэтому можно получить существенно большее разрешение.

    Фокусировка электронного луча и управление им осуществляются с помощью электромагнитных или электростатических линз. Им даже присущи те же искажения (хроматические аберрации), что и оптическим линзам, хотя природа физического взаимодействия тут совершенно иная. Она, кстати, добавляет еще и новых искажений (вызванных закручиванием электронов в линзе вдоль оси электронного пучка, чего не происходит с фотонами в оптическом микроскопе).

    У ПЭМ есть недостатки: исследуемые образцы должны быть очень тонкие, тоньше 1 микрона, что не всегда удобно, особенно при работе в домашних условиях. Например, чтобы посмотреть свой волос на просвет, его необходимо разрезать вдоль хотя бы на 50 слоев. Это связано с тем, что проникающая способность электронного луча гораздо хуже фотонного. К тому же ПЭМ, за редким исключением, достаточно громоздки. Вот этот аппарат, изображенный ниже, вроде бы и не такой большой (хотя он выше человеческого роста и имеет цельную чугунную станину), но к нему еще прилагается блок питания размером с большой шкаф - итого необходима почти целая комната.


    Зато разрешение у ПЭМ - наивысшее. С его помощью (если сильно постараться) можно увидеть отдельные атомы вещества.


    University of Calgary


    Такое разрешение бывает особенно полезно для идентификации возбудителя вирусного заболевания. Вся вирусная аналитика ХХ века была построена на базе ПЭМ, и только с появлением более дешевых методов диагностики популярных вирусов (например, полимеразной цепной реакции, или ПЦР) рутинное использование ПЭМов для этой цели прекратилось.

    Например, вот как выглядит грипп H1N1 «на просвет»:


    University of Calgary


    Сканирующий электронный микроскоп


    SEM применяется в основном для исследования поверхности образцов с очень высоким разрешением (увеличение в миллион крат, против 2 тысяч у оптических микроскопов). А это уже гораздо полезнее в домашнем хозяйстве:)

    К примеру, так выглядит отдельная щетинка новой зубной щетки:

    То же самое должно происходить и в электронно-оптической колонне микроскопа, только тут облучается образец, а не люминофор экрана, и изображение формируется на основе информации с датчиков, фиксирующих вторичные электроны, упруго-отраженные электроны и прочее. Об электронном микроскопе именно этого типа и пойдет речь в этом блоге.

    И кинескоп телевизора, и электронно-оптическая колонна микроскопа работают только под вакуумом. Но об этом я расскажу подробно в следующем выпуске.

    (Продолжение следует)

    Как же устроен электронный микроскоп? В чём его отличие от оптического микроскопа, существует ли между ними какая-нибудь аналогия?

    В основе работы электронного микроскопа лежит свойство неоднородных электрических и магнитных полей, обладающих вращательной симметрией, оказывать на электронные пучки фокусирующее действие. Таким образом, роль линз в электронном микроскопе играет совокупность соответствующим образом рассчитанных электрических и магнитных полей; соответствующие устройства, создающие эти поля, называют «электронными линзами».

    В зависимости от вида электронных линз электронные микроскопы делятся на магнитные, электростатические и комбинированные.

    Какого же типа объекты могут быть исследованы с помощью электронного микроскопа?

    Так же как и в случае оптического микроскопа объекты, во-первых, могут быть «самосветящимися», т. е. служить источником электронов. Это, например, накаленный катод или освещаемый фотоэлектронный катод. Во-вторых, могут быть использованы объекты, «прозрачные» для электронов, обладающих определённой скоростью. Иными словами, при работе на просвет объекты должны быть достаточно тонкими, а электроны достаточно быстрыми, чтобы они проходили сквозь объекты и поступали в систему электронных линз. Кроме того, путём использования отражённых электронных лучей могут быть изучены поверхности массивных объектов (в основном металлов и металлизированных образцов). Такой способ наблюдения аналогичен методам отражательной оптической микроскопии.

    По характеру исследования объектов электронные микроскопы разделяют на просвечивающие, отражательные, эмиссионные, растровые, теневые и зеркальные.

    Наиболее распространёнными в настоящее время являются электромагнитные микроскопы просвечивающего типа, в которых изображение создаётся электронами, проходящими сквозь объект наблюдения. Он состоит из следующих основных узлов: осветительной системы, камеры объекта, фокусирующей системы и блока регистрации конечного изображения, состоящего из фотокамеры и флуоресцирующего экрана. Все эти узлы соединены друг с другом, образуя так называемую колонну микроскопа, внутри которой поддерживается давление. Осветительная система обычно состоит из трёхэлектродной электронной пушки (катод, фокусирующий электрод, анод) и конденсорной линзы (речь идёт об электронных линзах). Она формирует пучок быстрых электронов нужного сечения и интенсивности и направляет его на исследуемый объект, находящийся в камере объектов. Пучок электронов, прошедший сквозь объект, поступает в фокусирующую (проекционную) систему, состоящую из объективной линзы и одной или нескольких проекционных линз.

    Электр о нный микроск о п (англ. - electron microscope)этоприбор для наблюдения и фотографирования многократно (до 1·10 6 раз) увеличенного изображения объектов, в котором вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30 - 100 кэВ и более) в условиях глубокого вакуума.

    Просвечивающий электронный микроскоп (ПЭМ) обладают самой высокой разрешающей способностью, превосходя по этому параметру световые микроскопы в несколько тысяч раз. Так называемый предел разрешения, характеризующий способность прибора отобразить раздельно мелкие максимально близко расположенные детали объекта, у ПЭМ составляет 2 - 3 A°. При благоприятных условиях можно сфотографировать отдельные тяжёлые атомы. При фотографировании периодических структур, таких как атомные плоскости решёток кристаллов, удаётся реализовать разрешение менее 1 A°.

    Для определения структуры твердых тел необходимо использование излучения с длиной волны λ, меньшей, чем межатомные расстояния. В электронном микроскопе с этой целью используют электронные волны.

    Длина волны де Бройля λ B для электрона, движущегося со скоростью V

    где p – его импульс, h - постоянная Планка, m 0 - масса покоя электрона, V – его скорость.

    После простых преобразований получаем, что длина волны де Бройля для электрона, движущегося в ускоряющем однородном электрическом поле с разностью потенциалов U , равна

    . (1)

    В выражениях для λ Б не учитывается релятивистская поправка, существенная лишь при больших скоростях электронов V >1·10 5 В.

    Величина λ Б очень мала что позволяет обеспечивать высокую разрешающую способность электронного микроскопа.

    Для электронов же с энергиями от 1 эВ до 10 000 эВ длина волны де Бройля лежит в пределах от ~1 нм до 10 −2 нм, то есть в интервале длин волн рентгеновского излучения . Поэтому волновые свойства электронов должны проявляться, например, при их рассеянии на тех же кристаллах, на которых наблюдается дифракция рентгеновских лучей. [

    Современные микроскопы имеют разрешающую способность в (0.1 – 1) нм при энергии электронов (1·10 4 – 1·10 5) эВ, что делает возможным наблюдение групп атомов и даже отдельных атомов, точечных дефектов, рельефа поверхности и т.д.

    Просвечивающая электронная микроскопия

    В электронно-оптическую систему просвечивающего электронного микроскопа (ПЭМ) входят: электронная пушка И и конденсор 1, предназначенные для обеспечения осветительной системы микроскопа; объективная 2, промежуточная 3 и проекционная 4 линзы, осуществляющие отображение; камера наблюдения и фотографирования Э (рис.1).

    Рис.1. Ход лучей в ПЭМ в режиме наблюдения изображения

    сточником электронов в электронной пушке служит вольфрамовый термоэмиссионный катод. Конденсорная линза позволяет получить на объекте пятно диаметром в несколько мкм. С помощью отображающей системы на экране ПЭМ формируется электронно-микроскопическое изображение объекта.

    В плоскости, сопряженной с объектом, объективная линза формирует первое промежуточное изображение объекта. Все электроны, исходящие из одной точки объекта, попадают в одну точку сопряженной плоскости. Затем с помощью промежуточной и проекционной линз получают изображение на флуоресцирующем экране микроскопа или фотопластине. Это изображение передает структурные и морфологические особенности образца.

    В ПЭМ используют магнитные линзы. Линза состоит из обмотки, ярма и полюсного наконечника, концентрирующего магнитное поле в малом объеме и повышающего тем самым оптическую силу линзы.

    ПЭМ обладают самой высокой разрешающей способностью (PC), превосходя по этому параметру световые микроскопы в несколько тысяч раз. Так называемый предел разрешения, характеризующий способность прибора отобразить раздельно мелкие максимально близко расположенные детали объекта, у ПЭМ составляет 2 – 3 A°. При благоприятных условиях можно сфотографировать отдельные тяжёлые атомы.При фотографировании периодических структур, таких как атомные плоскости решёток кристаллов, удаётся реализовать разрешение менее 1 A°. Столь высокие разрешения достигаются благодаря чрезвычайно малой длине волны де Бройля электронов. Оптимальным диафрагмированием удаётся снизить сферическую аберрацию объектива, влияющую на PC ПЭМ, при достаточно малой дифракционной ошибке. Эффективных методов коррекции аберраций в не найдено. Поэтому в ПЭМ магнитныеэлектронные линзы(ЭЛ), обладающие меньшими аберрациями, полностью вытеснили электростатические ЭЛ. Выпускаются ПЭМ различного назначения. Их можно разделить на 3 группы:

      упрощённые ПЭМ,

      ПЭМ высокого разрешения,

      ПЭМ с повышенным ускоряющим напряжением.

    1. Упрощённые ПЭМ предназначены для исследований, в которых не требуется высокая PC. Они более просты по конструкции (включающей 1 конденсор и 2 – 3 линзы для увеличения изображения объекта), их отличают меньшее (обычно 60 – 80 кВ) ускоряющее напряжение и более низкая его стабильность. PC этих приборов – от 6 до 15. Другие применения - предварительный просмотр объектов, рутинные исследования, учебные цели. Толщина объекта, которую можно «просветить» электронным пучком, зависит от ускоряющего напряжения. В ПЭМ с ускоряющим напряжением 100 кВ изучают объекты толщиной от 10 до нескольких тыс. A°.

    2. ПЭМ с высокой разрешающей способностью (2 – 3 Å) – как правило, универсальные приборы многоцелевого назначения (рис.2, а). С помощью дополнительных устройств и приставок в них можно наклонять объект в разных плоскостях на большие углы к оптической оси, нагревать, охлаждать, деформировать его, осуществлять рентгеновский структурный анализ, исследования методами электронографии и пр. Ускоряющее электроны напряжение достигает 100 – 125 кВ, регулируется ступенчато и отличается высокой стабильностью: за 1 – 3 мин оно изменяется не более чем на 1 – 2 миллионные доли от исходного значения. В его оптической системе (колонне) создаётся глубокий вакуум (давление до 1·10 -6 мм рт. ст.). Схема оптической системы ПЭМ – на рис.2, б. Пучок электронов, источником которых служит термокатод, формируется в электронной пушке и затем дважды фокусируется первым и вторым конденсорами, создающими на объекте электронное «пятно», диаметр которого пятна можно изменять от 1 до 20 мкм. После прохождения сквозь объект часть электронов рассеивается и задерживается апертурной диафрагмой. Не рассеянные электроны проходят через отверстие диафрагмы и фокусируются объективом в предметной плоскости промежуточной линзы. Здесь формируется первое увеличенное изображение. Последующие линзы создают второе, третье и т. д. изображения. Последняя линза формирует изображение на флуоресцирующем экране, который светится под воздействием электронов

    Рис. 2 а. ПЭМ: 1 – электронная пушка; 2 – конденсорные линзы; 3 – объектив; 4 – проекционные линзы; 5 – световой микроскоп, дополнительно увеличивающий изображение, наблюдаемое на экране: 6 – тубус со смотровыми окнами, через которые можно наблюдать изображение; 7 – вы-соковольтный кабель; 8 – ваку-умная система; 9 – пульт управ-ления; 10 – стенд; 11 – высоко-вольтный источник питания; 12 – источник питания линз.

    Рис. 2 б. Оптическая схема ПЭМ. 1 – катод V-образной формы из вольф-рамовой проволоки (разогревается проходящим по нему током до 2800 К); 2 – фокусирующий цилиндр; 3 – анод; 4 – первый (короткофокусный) конденсор, создающий уменьшенное изображение источника электронов; 5 – второй (длиннофокусный) кон-денсор, который переносит умень-шенное изображение источника элек-тронов на объект; 6 – объект; 7 – апертурная диафрагма; 8 – объектив; 9, 10, 11 – система проекционных линз; 12 – катодолюминесцентный экран, на котором формируется конечное изображение.

    Увеличение ПЭМ равно произведению увеличений всех линз. Степень и характер рассеяния электронов неодинаковы в различных точках объекта, так как толщина, плотность и химический состав объекта меняются от точки к точке. Соответственно изменяется число электронов, задержанных апертурной диафрагмой после прохождения различных точек объекта, а следовательно, и плотность тока на изображении, которая преобразуется в световой контраст на экране. Под экраном располагается магазин с фотопластинками. При фотографировании экран убирается, и электроны воздействуют на фотоэмульсионный слой. Изображение фокусируется изменением тока, возбуждающего магнитное поле объектива. Токи других линз регулируют для изменения увеличения ПЭМ.

    3. ПЭМ с повышенным ускоряющим напряжением (до 200 кВ) предназначены для исследования более толстых объектов (в 2 – 3 раза толще), чем обычные ПЭМ. Их разрешающая способность достигает 3 – 5 Å. Эти приборы отличаются конструкцией электронной пушки: в ней для обеспечения электрической прочности и стабильности имеются два анода, на один из которых подаётся промежуточный потенциал, составляющий половину ускоряющего напряжения. Магнитодвижущая сила линз больше, чем в ПЭМ с ускоряющим напряжением 100 кВ, а сами линзы имеют увеличенные габариты и вес.

    4. Сверхвысоковольтные электронные микроскопы (СВЭМ) – крупногабаритные приборы (рис.3) высотой от 5 до 15 м, с ускоряющим напряжением 0,50 – 0,65; 1 – 1,5 и 3.5 МВ.

    Для них строят специальные помещения. СВЭМ предназначены для исследования объектов толщиной от 1·до·10 мкм. Электроны ускоряются в электростатическом ускорителе (так называемом ускорителе прямого действия), расположенном в баке, заполненном электроизоляционным газом под давлением. В том же или в дополнительном баке находится высоковольтный стабилизированный источник питания. В перспективе – созданию ПЭМ с линейным ускорителем, в котором электроны ускоряются до энергий 5 – 10 МэВ. При изучении тонких объектов PC СВЭМ ниже, чем у ПЭМ. В случае толстых объектов PC СВЭМ в 10 – 20 раз превосходит PC ПЭМ с ускоряющим напряжением 100 кВ. Если же образец аморфный, то контраст электронного изображения определяется толщиной и коэффициентом поглощения материала образца, что наблюдается, например, при изучении морфологии поверхности с помощью пластиковых или углеродных реплик. В кристаллах, кроме того, имеет место дифракция электронов, что позволяет определять структуру кристалла.

    В

    Рис.4. Положение диафрагмы Д при светлопольном (а ) и темнопольном (б ) изображениях: П - прошедший луч; D - дифрагированный луч; Обр - образец; И - электронная пушка

    ПЭМ можно реализовать следующие режимы работы:

      изображение формируется прошедшим пучком П, дифрагированный пучок D отсекается апертурной диафрагмой Д (рис.4, а ), это - светлопольное изображение;

      апертурная диафрагма Д пропускает дифрагированный D пучок, отсекая прошедший П, это - темнопольное изображение (рис.4, б );

      для получения дифракционной картины задняя фокальная плоскость объективной линзы фокусируется на экране микроскопа (рис.4). Тогда на экране наблюдается дифракционная картина от просвечиваемого участка образца.

    Для наблюдения изображения в задней фокальной плоскости объектива устанавливается апертурная диафрагма, в результате уменьшается апертура лучей, формирующих изображение, и повышается разрешение. Эта же диафрагма используется для выбора режима наблюдения (см. рис.2 и 5).

    Рис.5. Ход лучей в ПЭМ в режиме микродифракции Д - диафрагма; И - источник электронов; Обр - образец; Э – экран; 1 - конденсорная, 2 - объективная, 3 - промежуточная, 4 -проекционная линзы

    лина волны при напряжениях, используемых в ПЭМ, составляет около порядка 1∙10 –3 нм, то есть много меньше постоянной решетки кристаллов а , поэтому дифрагированный луч может распространяться лишь под малыми углами θ к проходящему лучу (
    ). Дифракционная картина от кристалла представляет собой набор отдельных точек (рефлексов). В ПЭМ в отличие от электронографа можно получить дифракционную картину с малого участка объекта, используя диафрагму в плоскости, сопряженной с объектом. Размер области может составлять около (1×1) мкм 2 . От режима наблюдения изображения к режиму дифракции можно переходить, изменяя оптическую силу промежуточной линзы.

    прибор для наблюдения и фотографирования многократно (до 10 6 раз) увеличенного изображения объектов, в котором вместо световых лучей используются пучки , ускоренных до больших энергий (30-100 кэв и более) в условиях глубокого вакуума. Физические основы корпускулярно-лучевых оптических приборов были заложены в 1834 (почти за сто лет до появления Электронный микроскоп) У. Р. , установившим аналогии между световых лучей в оптически неоднородных средах и траекториями частиц в силовых полях. Целесообразность создания Электронный микроскоп стала очевидной после выдвижения в 1924 о , а технические предпосылки были созданы немецким физиком X. Бушем, который исследовал фокусирующие осесимметричных полей и разработал магнитную электронную линзу (1926). В 1928 немецкие учёные М. Кнолль и Э. Руска приступили к созданию первого магнитного просвечивающего Электронный микроскоп (ПЭМ) и спустя три года получили изображение объекта, сформированное пучками . В последующие годы (М. фон Арденне, 1938; В. К. , 1942) были построены первые растровые Электронный микроскоп (РЭМ), работающие по принципу сканирования (развёртывания), т. е. последовательного от точки к точке перемещения тонкого электронного пучка (зонда) по объекту. К середине 1960-х гг. РЭМ достигли высокого технического совершенства, и с этого времени началось их применение в научных исследованиях. ПЭМ обладают самой высокой (PC), превосходя по этому параметру световые микроскопы в несколько тыс. раз. Т. н. предел разрешения, характеризующий прибора отобразить раздельно мелкие максимально близко расположенные детали объекта, у ПЭМ составляет 2-3 . При благоприятных условиях можно сфотографировать отдельные тяжёлые атомы. При фотографировании периодических структур, таких как атомные решёток кристаллов, удаётся реализовать разрешение менее 1 . Столь высокие разрешения достигаются благодаря чрезвычайно малой длине (см. ). Оптимальным диафрагмированием [см. в электронной (и ионной) оптике] удаётся снизить (влияющую на PC Электронный микроскоп) при достаточно малой дифракционной ошибке. Эффективных методов коррекции в Электронный микроскоп (см. ) не найдено. Поэтому в ПЭМ магнитные (ЭЛ), обладающие меньшими , полностью вытеснили электростатические ЭЛ. Выпускаются ПЭМ различного назначения. Их молено разделить на 3 группы: Электронный микроскоп высокого разрешения, упрощённые ПЭМ и Электронный микроскоп с повышенным ускоряющим .

    ПЭМ с высокой разрешающей способностью (2-3 Å ) - как , приборы многоцелевого назначения. С помощью дополнительных устройств и приставок в них можно наклонять объект в разных на большие углы к оптической оси, нагревать, охлаждать, деформировать его, осуществлять , исследования методами и пр. Ускоряющее электроны достигает 100-125 кв, регулируется ступенеобразно и отличается высокой стабильностью: за 1-3 мин оно изменяется не более чем на 1-2 миллионные доли от исходного . Изображение типичного ПЭМ описываемого типа приведено на рис. 1 . В его оптической системе (колонне) с помощью специальной вакуумной системы создаётся вакуум ( до 10 -6 мм рт. ст.). Схема оптической системы ПЭМ изображена на рис. 2 . Пучок , которых служит накалённый катод, (формируется в и затем дважды фокусируется первым и вторым конденсорами, создающими на объекте электронное «пятно» малых размеров (при регулировке пятна может меняться от 1 до 20 мкм). После сквозь объект часть рассеивается и задерживается диафрагмой. Нерассеянные электроны проходят через отверстие диафрагмы и фокусируются в предметной промежуточной линзы. Здесь формируется первое увеличенное изображение. Последующие линзы создают второе, третье и т. д. изображения. Последняя проекционная линза формирует изображение на флуоресцирующем экране, который светится под воздействием электронов. Увеличение Электронный микроскоп равно увеличений всех линз. Степень и характер рассеяния электронов неодинаковы в различных точках объекта, т. к. толщина, и химический состав объекта меняются от точки к точке. Соответственно изменяется число электронов, задержанных апертурной диафрагмой после прохождения различных точек объекта, а следовательно, и плотность тока на изображении, которая преобразуется в на экране. Под экраном располагается магазин с фотопластинками. При фотографировании экран убирается, и электроны воздействуют на фотоэмульсионный слой. Изображение фокусируется плавным изменением тока, возбуждающего объектива. Токи др. линз регулируют для изменения увеличения Электронный микроскоп

    Рис. 3. Сверхвысоковольтный электронный микроскоп (СВЭМ): 1 - бак, в который накачивается электроизоляционный газ (элегаз) до давления 3-5 атм; 2 - электронная пушка; 3 - ускорительная трубка; 4 - конденсаторы высоковольтного источника; 5 - блок конденсорных линз; 6 - объектив; 7, 8, 9- проекционные линзы; 10 - световой микроскоп; 11 - пульт управления.

    Растровые Электронный микроскоп (РЭМ) с накаливаемым катодом предназначены для исследования массивных объектов с разрешением от 70 до 200 Å . Ускоряющее в РЭМ можно регулировать в пределах от 1 до 30-50 кв.

    Устройство растрового Электронный микроскоп показано на рис. 4 . При помощи 2 или 3 ЭЛ на образца фокусируется узкий электронный зонд. Магнитные отклоняющие развёртывают зонд по заданной площади на объекте. При взаимодействии зонда с объектом возникает несколько видов (рис. 5 ) - вторичные и отражённые электроны; электроны, прошедшие сквозь объект (если он тонкий); рентгеновское и характеристическое ; излучение и т. д.

    Рис. 5. Схема регистрации информации об объекте, получаемой в РЭМ. 1 - первичный пучок электронов; 2 - детектор вторичных электронов; 3 - детектор рентгеновского излучения; 4 - детектор отражённых электронов; 5 - детектор светового излучения; 6 - детектор прошедших электронов; 7 - прибор для измерения наведённого на объекте электрического потенциала; 8 - прибор для измерения тока прошедших через объект электронов; 9 - прибор для измерения тока поглощенных в объекте электронов.

    Любое из этих излучений может регистрироваться соответствующим коллектором, содержащим датчик, преобразующий в электрические , которые после усиления подаются на (ЭЛТ) и модулируют её пучок. Развёртка пучка ЭЛТ производится с развёрткой электронного зонда в РЭМ, и на экране ЭЛТ наблюдается увеличенное изображение объекта. Увеличение равно отношению высоты кадра на экране ЭЛТ к ширине сканируемой объекта. Фотографируют изображение непосредственно с экрана ЭЛТ. Основным достоинством РЭМ является высокая информативность прибора, обусловленная возможностью наблюдать изображение, используя различных датчиков. С помощью РЭМ можно исследовать , химического состава по объекту, р-n-переходы, производить и многое другое. Образец обычно исследуется без предварительной подготовки. РЭМ находит применение и в технологических процессах ( дефектов микросхем и пр.). Высокая для РЭМ PC реализуется при формировании изображения с использованием вторичных . Она определяется диаметром зоны, из которой эти электроны эмиттируются. Размер зоны в свою очередь зависит от диаметра зонда, свойств объекта, электронов первичного пучка и т. д. При большой глубине проникновения первичных электронов вторичные процессы, развивающиеся во всех направлениях, увеличивают диаметр зоны и PC падает. Детектор вторичных электронов состоит из (ФЭУ) и электронно-фотонного преобразователя, основным элементом которого является с двумя - вытягивающим в виде сетки, находящейся под положительным потенциалом (до нескольких сотен в), и ускоряющим; последний сообщает захваченным вторичным электронам энергию, необходимую для . К ускоряющему электроду приложено около 10 кв; обычно он представляет собой алюминиевое покрытие на сцинтиллятора. Число вспышек сцинтиллятора пропорционально числу вторичных , выбитых в данной точке объекта. После усиления в ФЭУ и в сигнал модулирует пучок ЭЛТ. Величина сигнала зависит от образца, наличия локальных электрических и магнитных микрополей, величины , который в свою очередь зависит от химического состава образца в данной точке. Отражённые электроны регистрируются полупроводниковым (кремниевым) . Контраст изображения обусловлен зависимостью от угла падения первичного пучка и атомного номера . Разрешение изображения, получаемого «в отражённых электронах», ниже, чем получаемого с помощью вторичных (иногда на порядок ). Из-за прямолинейности полёта электронов к коллектору информация об отдельных участках, от которых нет прямого пути к коллектору, теряется (возникают тени). Характеристическое выделяется или рентгеновским кристаллическим или энергодисперсным датчиком - полупроводниковым детектором (обычно из чистого кремния, легированного литием). В первом случае рентгеновские кванты после отражения кристаллом спектрометра регистрируются газовым , а во втором - сигнал, снимаемый с полупроводникового , усиливается малошумящим (который для снижения шума охлаждается жидким азотом) и последующей системой усиления. Сигнал от кристаллического модулирует пучок ЭЛТ, и на экране возникает картина того или иного химического элемента по объекта. На РЭМ производят также локальный рентгеновский . Энергодисперсный детектор регистрирует все элементы от Na до U при высокой чувствительности. Кристаллический спектрометр с помощью набора кристаллов с различными межплоскостными (см. ) перекрывает от Be до U. Существенный недостаток РЭМ - большая длительность процесса «снятия» информации при исследовании объектов. Сравнительно высокую PC можно получить, используя электронный зонд достаточно малого диаметра. Но при этом уменьшается зонда, вследствие чего резко возрастает влияние , снижающего отношение полезного сигнала к шуму. Чтобы отношение «сигнал/шум» не падало ниже заданного уровня, необходимо замедлить сканирования для накопления в каждой точке объекта достаточно большого числа первичных (и соответствующего вторичных). В результате PC реализуется лишь при малых скоростях развёртки. Иногда один кадр формируется в течение 10-15 мин.

    Рис. 6. Принципиальная схема просвечивающего растрового электронного микроскопа (ПРЭМ): 1 - автоэмиссионный катод; 2 -промежуточный анод; 3 - анод; 4 - отклоняющая система для юстировки пучка; 5 - диафрагма «осветителя»; 6, 8 - отклоняющие системы для развертки электронного зонда; 7 - магнитная длиннофокусная линза; 9 - апертурная диафрагма; 10 - магнитный объектив; 11 - объект; 12, 14 - отклоняющие системы; 13 - кольцевой коллектор рассеянных электронов; 15 - коллектор нерассеянных электронов (убирается при работе со спектрометром); 16 - магнитный спектрометр, в котором электронные пучки поворачиваются магнитным полем на 90° ; 17 - отклоняющая система для отбора электронов с различными потерями энергии; 18 - щель спектрометра; 19 - коллектор; ВЭ - поток вторичных электронов hn - рентгеновское излучение.

    РЭМ с автоэмиссионной пушкой обладают высокой для РЭМ PC (до 30 Å ). В автоэмиссионной пушке (как и в ) используется катод в форме острия, у вершины которого возникает сильное , вырывающее электроны из катода (см. ). Электронная яркость пушки с автоэмиссионным катодом в 10 3 -10 4 раз выше, чем пушки с накалённым катодом. Соответственно увеличивается ток электронного зонда. Поэтому в РЭМ с автоэмиссионной пушкой осуществляют быстрые развёртки, а зонда уменьшают для повышения PC. Однако автоэмиссионный катод работает устойчиво лишь при сверхвысоком вакууме (10 -9 -10 -11 мм рт. ст.), и это усложняет конструкцию таких РЭМ и работу на них.

    Просвечивающие растровые Электронный микроскоп (ПРЭМ) обладают столь же высокой PC, как и ПЭМ. В этих приборах применяются автоэмиссионные пушки, обеспечивающие достаточно в зонде диаметром до 2-3 Å . На рис. 6 приведено схематическое изображение ПРЭМ. Две уменьшают диаметр зонда. Ниже объекта расположены - центральный и кольцевой. На первый попадают нерассеянные электроны, и после и усиления соответствующих сигналов на экране ЭЛТ появляется т. н. светлопольное изображение. На кольцевом детекторе собираются рассеянные электроны, создающие т. н. темнопольное изображение. В ПРЭМ можно исследовать более толстые объекты, чем в ПЭМ, т. к. возрастание числа неупруго рассеянных с толщиной не влияет на разрешение (после объекта оптика в ПРЭМ отсутствует). С помощью энергии электроны, прошедшие сквозь объект, разделяются на упруго и неупруго рассеянные пучки. Каждый пучок попадает на свой детектор, и на ЭЛТ наблюдается соответствующее изображение, содержащее дополнительную информацию о рассеивающих объекта. Высокое разрешение в ПРЭМ достигается при медленных развёртках, т. к. в зонде диаметром всего 2-3 Å ток получается слишком малым.

    Электронный микроскоп смешанного типа. Сочетание в одном приборепринципов формирования изображения с неподвижным пучком (как в ПЭМ) и сканирования тонкого зонда по объекту позволило реализовать в таком Электронный микроскоп преимущества ПЭМ, РЭМ и ПРЭМ. В настоящее время во всех ПЭМ предусмотрена возможность наблюдения объектов в растровом режиме (с помощью конденсорных линз и , создающих уменьшенное изображение , которое сканируется по объекту отклоняющими системами). Кроме изображения, сформированного неподвижным пучком, получают растровые изображения на экранах ЭЛТ с использованием прошедших и вторичных электронов, характеристические и т. д. Оптическая система такого ПЭМ, расположенная после объекта, даёт возможность работать в режимах, неосуществимых в других приборах. Например, можно одновременно наблюдать на экране ЭЛТ и изображение того же объекта на экране прибора.

    Эмиссионные Э. м. создают изображение объекта в электронах, которые эмиттирует сам объект при нагревании, первичным пучком , и при наложении сильного электрического поля, вырывающего электроны из объекта. Эти приборы обычно имеют узкое целевое назначение.

    Зеркальные Электронный микроскоп служат главным образом для визуализации электростатического «потенциального рельефа» и магнитных микрополей на объекта. Основным оптическим элементом прибора является , причём одним из служит сам объект, который находится под небольшим отрицательным потенциалом относительно катода пушки. Электронный пучок направляется в зеркало и отражается полем в непосредственной близости от объекта. Зеркало формирует на экране изображение «в отражённых пучках». Микрополя возле поверхности объекта перераспределяют электроны отражённых пучков, создавая на изображении, визуализирующий эти микрополя.

    Перспективы развития Электронный микроскоп Повышение PC в изображениях непериодических объектов до 1 Å и более позволит регистрировать не только тяжёлые, но и лёгкие атомы и визуализировать на атомарном уровне. Для создания Электронный микроскоп с подобным разрешением повышают ускоряющее . Сер. физическая», т. 34, 1970; Хокс П., и , пер. с англ., М., 1974; Деркач В. П., Кияшко Г. Ф., Кухарчук М. С., Электронозондовые устройства, К., 1974; Стоянова И. Г., Анаскин И. Ф., Физические основы методов просвечивающей электронной микроскопии, М., 1972; Oatley С. W., The scanning electron microscope, Camb., 1972; Grivet P., Electron optics, 2 ed., Oxf., 1972.