Экономическая эффективность повышения надежности. Повышение надёжности и эффективности

Дудникова, Вера Викторовна

Ученая cтепень:

Кандидат технических наук

Место защиты диссертации:

Ростов-на-Дону

Код cпециальности ВАК:

Специальность:

Материаловедение (по отраслям)

Количество cтраниц:

1. СОСТОЯНИЕ ВОПРОСА, ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЯ.

1.1. Амализ методов обеспечения заданного усталостного ресурса деталей машин.

1.2. Анализ методов определения минимальной усталостной прочности деталей машин.

1.3. Анализ методов определения максимальной нагруженности деталей машин.

1.4. Выводы, цели и задачи исследований.

2. МОДЕЛЬ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ФУНКЦИОНИРОВАНИЯ КУЛЬТИВАТОРА ЗА СЧЕТ УВЕЛИЧЕНИЯ ЕГО НАДЕЖНОСТИ.

2.1. Модель обеспечения заданного усталостного гамма-процп ithoeo ресурса стойки культиватора .

2.2. Модель надежности культиваторного узла (группы стоек).

2.3. al 1али гическое определение параметров вероят1ioctiюго paci 1рнделения совокуш юсти конечного объема прочности и ресурса по их выборочным данным.

2.4. алгоритм и расчет эффективности работы культиватора за счет увеличения его надежности

2.5. Выводы.

3. РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ МИНИМАЛЬНОЙ УСТАЛОСТНОЙ ПРОЧНОСТИ, НАГРУЖЕННОСТИ И РЕСУРСА ДЕТАЛИ НА СТАДИИ ПРОЕКТИРОВАНИЯ.

3.1. расчетно-эксперименталыюе определение минимальной усталостной прочнос ти образцов (деталей) для совокупности конечного объема по выборочным данным.

3.2. расчетно-экспериментальное определение максимальной нагруженности деталей.

3.3. расчетно-экспериментальное определение гамма-процентного ресурса де тали.

3.4. Выводы.

4. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ.

4.1. методика повышения эффективности функционирования культиватора за счет увеличения его надежности.

4.2. Обеспечение гамма-процентного ресурса стойки культиватора.

4.3. Методика и результаты подтверждения расчетного гамма-процентного ресурса с тойки культиватора акв-4 после внедрения рекомендаций.

4.4. Расчет экономического эффекта от увеличения гамма-процентного ресурса стойки культиватора.

Введение диссертации (часть автореферата) На тему "Повышение надежности и эффективности функционирования культиватора за счет увеличения ресурса стоек"

Рост производительности труда в сельском хозяйстве связан с повышением эффективности функционирования сельскохозяйственных машин за счет увеличения их надежности. Большое значение имеет повышение эффективности работы машин начального этапа сельскохозяйственного производства; к ним относятся, в том числе культиваторы. При ограничении сроков подготовки почвы культиваторам предъявляются высокие требования по надежности. Отказы культиваторов приводят к простоям в ремонте и к ущербу от простоя техники, вызванному смещением сроков выполнения технологического процесса выращивания сельхозкультур.

В группу деталей, отказывающих и лимитирующих надежность культиваторов, входят S-образные пружинные стойки. Повышение надежности стоек культиватора, а также оптимизация их ресурса обеспечит снижение величины потока отказов, затрат на ремонт, сократит сроки и экономический ущерб вследствие уменьшения продолжительности технологического цикла.

Исследования эффективности и надежности сельскохозяйственных машин проводили Андросов A.A., Беленький Д.М., Грошев Л.М., Далальянц А.Г., Ермольев Ю.И., Жаров В.П. Полушкин O.A., Спиченков В.В., Хозяев И.А., однако выполненный анализ исследований в области эффективности и надежности сельхозмашин показал, что имеются резервы дальнейшего улучшения методов повышения их надежности.

Целью данного исследования является разработка метода повышения надежности и эффективности функционирования культиватора за счет увеличения ресурса его стоек.

Для достижения поставленной цели требуется решить, следующие задачи: разработать метод повышения надежности и эффективности работы культиватора за счет увеличения ресурса его стоек, учитывая аналитический переход от выборочных распределений прочности, нагруженности и ресурса к распределениям совокупности; разработать модель надежности культиваторного узла (группы стоек); разработать алгоритм расчета оптимальной вероятности безотказной работы Б-образной стойки культиватора; определить расчетно-экспериментальным методом параметры прочности, нагруженности и ресурса стойки культиватора на стадии проектирования; оптимизировать гамма-процентный ресурс стойки культиватора и подтвердить его стендовыми испытаниями; рассчитать экономический эффект от увеличения гамма-процентного ресурса группы стоек культиватора.

В первой главе выполнен анализ методов повышения надежности, эффективности и обеспечения заданного усталостного ресурса деталей машин. Освещены различные подходы к определению минимальной усталостной прочности и максимальной нагруженности деталей машин.

Во второй главе диссертации приводится описание модели, разработанной для повышения надежности и эффективности работы культиватора и обеспечения заданного усталостного ресурса его деталей.

В третьей главе приводится расчетно-экспериментальное определение параметров прочности, нагруженности и ресурса деталей на стадии проектирования. Определяется расчетно-экспериментальным методом минимальная усталостная прочность 8-образной стойки культиватора для совокупности конечного объема по выборочным данным. Рассмотрен метод расчетно-экспериментального определения максимальной нагруженности деталей. Приведено расчетно-экспериментальное определение гамма-процентного Б-образной стойки культиватора.

В четвертой главе изложена методика повышения эффективности функционирования культиватора за счет увеличения ресурса стоек. Дана характеристика обеспечения гамма-процентного ресурса стойки культиватора, АКВ-4, выпущенной ЗАО «Красный Аксай ». Приведен расчет экономического эффекта от увеличения гамма-процентного ресурса группы стоек культиватора.

В заключении сделаны выводы о проделанной работе.

Научная новизна выполненной работы состоит в следующем:

Разработана модель, позволяющая установить закономерности повышения надежности и эффективности работы культиватора за счет увеличения ресурса его стоек, позволяющая оптимизировать гамма-процентное значение ресурса стоек по критерию - удельные суммарные затраты на изготовление и эксплуатацию стоек культиватора. Получены аналитические решения для определения параметров трехпараметрического распределения Вейбулла прочности и ресурса для совокупности конечного объема по выборочным данным.

Практическая значимость: выполненных аналитических и экспериментальных исследований заключается в следующем:

Разработан алгоритм расчета эффективности работы культиватора за счет увеличения ресурса его стоек;

Определена расчетно-экспериментальным методом минимальная усталостная прочность 8-образной стойки для совокупности конечного объема но выборочным данным;

Представлен разработанный алгоритм расчетно-экспериментального определения гамма-процентного ресурса детали; достигнуто увеличение вероятности безотказной работы стойки культиватора с 0,90 до 0,99 (оптимальное значение) при этом расчетный гамма-процентный ресурс составит около 229 ч (Р=0,99), что превышает заданный техническими условиями ресурс 200 ч.

Основные положения и результаты работы докладывались и обсуждались на научно-технических конференциях в Ростовском государственном строительном университете в 2001 - 2006 гг.

Заключение диссертации по теме "Материаловедение (по отраслям)", Дудникова, Вера Викторовна

ОБЩИЕ ВЫВОДЫ

1. Разработан метод повышения надежности и эффективности работы культиватора за счет увеличения ресурса его стоек, позволяющий оптимизировать гамма-процентное значение ресурса по критерию -удельные суммарные затраты на изготовление и эксплуатацию стоек культиватора; получен аналитический переход от выборочных распределений прочности, нагруженности и ресурса к распределениям совокупности.

2. Предложена для стадии проектирования модель надежности культиваторного узла (группы стоек), в которой в качестве критерия оптимизации используются удельные затраты на создание и эксплуатацию стоек, а оптимальное значение у для ресурса определяется в интервале 0,9 - 0,94 при априорно установленном размахе ресурса 11=40-60; определен суммарный поток отказов для группы стоек. Разработан алгоритм определения параметров трехпараметрического распределения Вейбулла, описывающего распределения ресурса стоек и расчета этих параметров для потока отказов группы стоек.

3. Разработан алгоритм расчета оптимального гамма-процентного ресурса стойки культиватора. Проведенный расчет показал, что в результате применения мероприятий по увеличению прочности и снижению нагруженности стойки культиватора вероятность безотказной работы увеличивается с 0,9 до оптимального значения 0,99.

4. Для расчетно-экспериментального определения минимальной усталостной прочности для совокупности конечного объема по выборочным данным произведены испытания образцов из 13-ти углеродистых и легированных марок сталей, применяемых для изготовления деталей сельскохозяйственных машин. Получены для этих сталей значения относительной величины расхождения параметров сдвига для совокупности конечного объема и выборки: при Ь>2 расхождение S = 3-14%, при b

5. Для аппроксимации действующих напряжений в виде средневзвешенного напряжения использовано вероятностное распределение Фишера-Типпета, определяемого по аналогии с прочностью для выборки деталей. Выполнен вероятностный расчет с помощью метода статистических испытаний ресурса стойки для различных условий (размахи прочности =1,1-1,5, нагруженности Rctcb=1,16-1,5, значений у=80-99,99%, объем совокупности Nc=103-105).

6. Для увеличения вероятности безотказной работы S- образной стойки из стали 55С2 с 0,9 необходимо повысить качество ее наружной поверхности в области опасного сечения путем шлифования, что даст повышение коэффициента, учитывающего шероховатость поверхности, с 0,65 до 0,85, а предела выносливости в 1,3 раза, а также увеличить момент сопротивления с j

533 до 602 мм и сечение детали на 13% - это приведет к возрастанию вероятности безотказной работы до оптимального значения 0,99.

7. В результате внедрения предложенных рекомендаций достигается повышение эффективности работы культиватора: сокращение количества отказов стоек, снижение затрат на ремонт, сокращение простоев и сроков подготовки почвы для посевов. Ускоренные стендовые испытания S-образных стоек культиватора АКВ-4 производства ЗАО «Красный Аксай » подтвердили достоверность прогноза гамма-процентного ресурса.

8. Экономический расчет показал, что при прогнозируемом увеличении вероятности безотказной работы стойки культиватора с Р=0,9 до Р=0,99 эффект от внедрения результатов исследований составит 21060 рублей при годовой программе выпуска культиваторов 500 шт.

Список литературы диссертационного исследования кандидат технических наук Дудникова, Вера Викторовна, 2007 год

1. Абдуллаев A.A., Курбанов Ш.М., Саттаров A.C. О надежности хлопковых культиваторов // Тракторы и сельскохозяйственные машины. 1992. - №2. - С. 32-33.

2. Агамиров J1.B. О закономерностях рассеяния долговечности в связи с формой кривой усталости // Вестник машиностроения. 1997. - №5.- С. 37.

3. Агафонов Н.И. Эффективное использование сельскохозяйственной техники. М.: Знание 1997, № 4. - 63 с.

4. Александров A.B., Лащеников Б.Я., Шапошников H.H. Строительная механика. Тонкостенные пространственные системы. М.: Стройиздат, 1983.-488 с.

5. Андрющенко Ю.Е., Марисов А.Ф., КушнаревВ.И. Оценка требуемого уровня надежности элементов привода // Эксплуатационная нагруженность и прочность сельскохозяйственных машин/ ДГТУ . Ростов-на-Дону, 1993. №5. - С. 16-21.

6. Анилович В.Я. и др. Прогнозирование надежности тракторов. М.: Машиностроение, 1986. - 224 с.

7. Аржанов М.И. Интерпретация значения нижней доверительной границы для вероятности безотказной работы // Надежность и контроль качества. 1993.-№5.-С. 6-11.

8. Беленький Д.М., Бескопыльный А.Н. Обеспечение высокой надежностидеталей строительно-дорожных машин // Строительные и дорожные машины, 1995. №4. - С. 24-27.

9. Беленький Д.М., Касьянов В.Е. Повышение надежности серийных машин путем увеличения ресурсов лимитирующих деталей // Вестник машиностроения, 1980. №1. - С. 12-14.

10. Беленький Д.М., Касьянов В.Е., Кубарев А.Е., Вернези H.JI. Определение установленных показателей надежности машины и ее составных частей (на примере одноковшового экскаватора) // Надежность и контроль качества. 1986.-№5.-С. 17-22.

11. Беленький Д.М., Ряднов В.Г. О законе распределения предельных напряжений. //Проблемы прочности. 1974. - №2. - С. 73-76.

12. Биргер И.А. Принципы построения норм прочности и надежности в машиностроении //Вестник машиностроения, 1988. № 7. - С. 3-5.

13. Бойцов Б.В. Надежность шасси самолета. М.: Машиностроение, 1976. -216.

14. Бойцов Б.В., Орлова Т.М., Сигалев В.Ф. Определение" закона распределения ресурса деталей машин и механизмов методов статистических испытаний // Вестник машиностроения. 1983. № 2. - С. 20-22.

15. Болотин В.В. Значение механики материалов и конструкций для обеспечения надежности и безопасности технических систем // Проблемы машиностроения и надежности машин. 1990. №5. - С. 3-8.

16. Болотин В.В. Ресурс машин и конструкций. М.: Машиностроение. 1990. -446 с.

17. Бондарович Б.А., Даугелло В.А. Метод статистического моделирования Монте-Карло при расчетах металлических конструкций землеройных машин на прочность //Строительные и дорожные машниы. 1990. № 12. -С. 20-21.

18. Василенко П.М., Бабий П.Г. Культиваторы, конструкции, теория и расчет. Киев, 1961.

19. Величкин И.Н. К вопросу обеспечения требуемой надежности машин // Тракторы и сельхозмашины. 1980. № 4. - С. 6-7.

20. Величкин И.Н. Улучшить нормирование показателей надежности машин // Тракторы и сельскохозяйственные машины. 1990. - №4. - С. 24-27.

21. Величкин И.Н., Коварский E.K. Пути повышения надежности парка тракторов // Тракторы и сельхозмашины, 1987. № 6. - С 32-36.

22. Вентцель Е.С. Теория вероятностей. М.: Наука, 1969. - 576 с.

23. Веремеенко A.A., Дудникова В.В. Определение напряженно-деформированного состояния стойки культиватора АКВ-4. //Деп. в ВИНИТИ №1586-в 2005.

24. Гнеденко Б.В., Беляев Ю.К., Соловьев А.Д. Математические методы в теории надежности. М.: Наука, 1965. - 524 с.

25. Гнеденко Б.В., Ушаков И.А. О некоторых современных проблемах теории и практики надежности // Вестник машиностроения. 1988. - №12. - С. 3-9.

26. Гоберман В.А. Вопросы качества и надежности зерноуборочных комбайнов «Дон-1500» // Стандарты и качество, 1988. № 8. - С. 30-34.

27. ГОСТ 11.007-75. Прикладная статистика. Правила определения оценок и доверительных границ для параметров распределения Вейбулла. М.: Изд-во стандартов, 1975

28. ГОСТ 25.502-83. Надежность в технике. Прогнозирование надежности изделий при проектировании.

29. ГОСТ 25.504-82. Расчеты и испытания на прочность. Методы расчета характеристик сопротивления усталости.

30. Грошев JI.M. Оценка рассеивания характеристик нагруженности сельскохозяйственных машин // Динамика, прочность и надежность сельскохозяйственных машин / РИСХМ. Ростов -на- Дону, 1991. С.44-48.

31. Грошев JI.M., Дмитриченко С.С., Рыбак Т.И. Надежность сельскохозяйственной техники. Киев: Урожай, 1990. 188 с.

32. Гумбель Э. Статистика экстремальных значений. М.: Мир, 1965. - 464 с.

33. Гусев A.C. Сопротивление усталости и живучесть конструкций при случайных нагрузках. М.Машиностроение, 1989. - 248 с.

34. Гусев A.C. Структурный анализ случайных процессов с учетом реализационного рассеивания. // Проблемы машиностроения и надежности машин. 1995. - №2. - С. 42-47.

35. Даниев Ю.Ф., Кущ И.А., Переверзев Е.С. Нижняя и верхняя оценки надежности технических устройств// Надежность и контроль качества, 1993. -№ 11.-С. 11-16.

36. Диллон Б., Сингх Г. Инженерные методы обеспечения надежности систем. -М.: Мир, 1984.-318 с.

37. Димитров В.П. Об организации технического обслуживания машин с использованием экспертных систем // Вестник ДГТУ, 2003. - № 1 С. 5-10.

38. Дмитриченко С.С., Артемов В.А. Опыт расчета на усталость металлоконструкций тракторов и других машин //Вестник машиностроения, 1989. № 10. - С. 14-16.

39. Дмитриченко С.С., Егоров Д.К. Расчет долговечности корпусов мостов трактора //Вестник машиностроения, 1989. № 5. - С. 43-44.

40. Дмитриченко С.С., Завьялов Ю.А., Артемов В.А. Параметры случайных процессов нагружения металлоконструкций колесного трактора //Тракторы и сельскохозяйственные машины. 1987. № 1. - С. 21-26.

41. Дудникова В.В. Исследование причин отказа и рекомендации по увеличению гамма-процентного ресурса стойки культиватора АКВ 4.// Деп. в ВИНИТИ, № 1471 - в 2005.

42. Ермаков С.М. Метод Монте-Карло и смежные вопросы. М.: Наука, 1975. - 472 с.

43. Зорин В.А. Основы долговечности строительных и дорожных машин. М.: Машиностроение, 1986. - 248 с.

44. Игнатенко И.В. Исследование динамических характеристик крепления опор ротационных узлов на панели зерноуборочных комбайнов. Диссертация на соискание ученой степени канд. техн. наук. Ростов-на-Дону, РИСХМ, 1970.

45. Капур К., Ламберсон Л. Надежность и проектирование систем. М.: Мир, 1980. - 640 с.

46. Карасев Г.Н. Технико-экономическая оценка конструкций строительных экскаваторов // Строительные и дорожные машины. 1997. - №4.- С. 1115.

47. Карпенко А.Н. и др. Сельскохозяйственные машины. Изд. 3-е, перераб. и доп. М., «Колос », 1975.

48. Касьянов В.Е, Анабердиев А.Х. М., Роговенко Т.Н. Оценка ресурса деталей с усталостными отказами методом статистических испытаний //Эксплуатационная нагруженность и прочность сельскохозяйственных машин/ДГТУ. - Ростов-на-Дону. 1993. С. 67-71.

49. Касьянов В.Е, Андросов A.A., Роговенко Т.Н. Обеспечение минимального ресурса рамы энергосредства «Дон-800». // Вестник машиностроения, 2003, № 3.

50. Касьянов В.Е, Дудникова В.В., Ямоков С.Г. Модель и определение надежности культиваторного узла (группы стоек). // Деп. в ВИНИТИ, № -2006.

52. Касьянов В.Е. Анализ применения трехпараметрического распределения Вейбулла в расчетах надежности машин // Надежность и контроль качества. 1989. - №4. - С. 23-28.

53. Касьянов В.Е. и др. МР-92-83. Определение экономической эффективности повышения надежности выпускаемых машин. М.: ВНИИНМАШ, 1983. -24 с.

54. Касьянов В.Е. и др. МС-248-88. Надежность в технике. Методы расчета показателей надежности для моделей «прочность-нагрузка». М.: Издательство стандартов, 1988. - 20 с.

55. Касьянов В.Е. и др. Р 50-109-89. Надежность в технике. Обеспечение надежности изделий. Общие требования. М.: Издательство стандартов, 1989.- 15 с.

56. Касьянов В.Е. и др. РД 50-576-85. Методические указания. Надежность в технике. Установление норм показателей надежности изделий. Основные положения. М.: Издательство стандартов, 1985. - 22 с.

57. Касьянов В.Е. Интегральная оценка, повышение и оптимизация надежности машин (на примере одноковшового экскаватора) // Вестник машиностроения. 1990. - №4. - С. 7-8.

58. Касьянов В.Е. Принципы создания практически безотказных" машин. //Стандарты и качество. 1988. - №7. - С. 39-42.

59. Касьянов В.Е. Системное обеспечение надежности машин, применяемых в мелиоративном строительстве: Автореф. дис. . д-ра техн. наук. Ростов-на-Дону.-1991.-48 с.

60. Касьянов В.Е., Аннабердиев А. Х.-М. Определение статистического распределения действующих напряжений при нестационарном нагружении деталей одноковшовых экскаваторов. Деп. в ЦНИИТЭСТРОЙМАШ №51сд-85Деп., 20.04.85.

61. Касьянов В.Е., Кузьменко A.B. Определение плотности распределения отказов для машин. Деп в ВИНИТИ 8.04.04, №585.

62. Касьянов В.Е., Кузьменко A.B., Ямоков С.Г. Аналитический метод определения параметров распределения Вейбулла для совокупностиконечного объема действующих напряжений в деталях машин. Деп в ВИНИТИ № в 2006.

63. Касьянов В.Е., Прянишникова Л.И., Дудникова В.В., Кузьменко A.B. Определение параметров распределения Вейбулла для совокупности конечного объема по выборке прочностных характеристик сталей Деп в ВИНИТИ № 389 в 2004.

64. Касьянов В.Е., Прянишникова Л.И., Роговенко Т.Н., Дудникова В.В. Определение гамма процентного значения гипотетическогораспределения выборочных сдвигов для прочностных характеристик сталей // Деп. в ВИНИТИ №1411, 17.07.03.

65. Касьянов В.Е., Роговенко Т.Н. Вероятностно-статистическая оценка гамма-процентного ресурса рамы машины // Вестник машиностроения. 1999. -№6. -С. 10-12.

66. Касьянов В.Е., Роговенко Т.Н. Выбор показателя степени кривой усталости в сверхмногоцикловой области/ Рост. гос. акад. стр-ва. Ростов н/Д, 1993. -8 с. - Деп. в ВИНИТИ №1594 - В95 от 31.05.95.

67. Касьянов В.Е., Роговенко Т.Н. Статистическая оценка прочности сталей с помощью полинома. //Надежность и контроль качества. 1996. - №8. - С. 28-36

68. Касьянов В.Е., Роговенко Т.Н., Дудникова В.В. Анализ методов расчета усталостного ресурса деталей машин. / Деп. в ВИНИТИ № 827, 28.04.03.

69. Касьянов В.Е., Роговенко Т.Н., Дудникова В.В, Кузьменко A.B. Определение средневзвешенных напряжений в деталях машин при переменных напряжениях. Деп. в ВИНИТИ 12.05.03, № 910.

70. Касьянов В.Е., Роговенко Т.Н., Кинсфатор A.A. Статистическая оценка механических характеристик сталей с помощью полинома рациональных степеней. Деп. ВИНИТИ №835 В00 в 2000.

71. Касьянов В.Е., Роговенко Т.Н., Топилин И.В. Анализ методов расчета минимального ресурса деталей машин // Деп. в ВИНИТИ №3002-В99, 8.07.99.

72. Касьянов В.Е., Роговенко Т.Н., Топилин И.В. Определение корреляционной связи параметров функции распределения генеральной совокупности конечного объема деталей и выборочных распределений // Деп. в ВИНИТИ №3038-В99, 11.10.99.

73. Касьянов В.Е., Роговенко Т.Н., Топилин И.В. Определение минимальных значений прочности деталей машин. // Методы менеджмента качества, 2001, № 12, с. 38-41.

74. Касьянов В.Е., Роговенко Т.Н., Топилин И.В. Определение связи между минимальными значениями ресурса деталей для генеральной совокупности конечного объема и выборки. Деп. в ВИНИТИ №611-В99, 26.02.99.

75. Касьянов В.Е., Роговенко Т.Н., Щулькин Л.П. Основы теории и практики создания надежных машин. // Вестник машиностроения, 2003, № 10, с. 3-6.

76. Касьянов В.Е., Топилин И.В. Определение функции распределения средневзвешенных напряжений по амплитудным значениям напряжений для расчета усталостного ресурса деталей методом Монте-Карло. Деп в ВИИТИ №364-В99,13.02.99.

77. Касьянов В.Е., Щулькин Л.П. Теоретические основы системного обеспечения надежности строительных машин // Известия высших учебных заведений «Строительство », 2001. №7. - 90-96.

78. Когаев В.П. Определение надежности механических систем по условию прочности. М.: Знание, 1976. - 48 с.

79. Когаев В.П. Расчеты на прочность при нагружениях переменных во времени. М.: Машиностроение, 1977. - 233 с.

80. Когаев В.П., Бойцов Б.В.Рассеивание пределов выносливости деталей машин в связи с конструктивными и технологическими факторами. // Надежность и контроль качества, 1969. № 10. - С. 53-66.

81. Когаев В.П., Махутов H.A., Гусенков А.П. Расчеты деталей машин и конструкций на прочность и долговечность. М.: Машиностроение. 1985. - 224 с.

82. Когаев В.П., Петрова И.М. Расчет функции распределения ресурса деталей машин методом статистических испытаний //Вестник машиностроения. 1981. -№ 1.-С. 9-11.

83. Колокольцев В.А., Волжнов Е.Д. О расчете ресурса и сопротивлении усталости деталей машин при нерегулярных стационарных режимах нагружения // Вестник машиностроения. 1995. - №11. - С. 23-27.

84. Коновалов JI.B. Нагруженность , усталость, надежность ■ деталей металлургических машин. М.: Машиностроение. 1981. - 256 с.

85. Косов В.П., Сиделев В.И., Каменев M.JI., Морозов В.М. Методика определения надежности картофелеуборочных комбайнов // Тракторы и сельскохозяйственные машины. 1986. - №3. - С. 33-34.

86. Крамер Г. Математические методы статистики. М.: Мир, 1975. - 648 с.

87. Кугель Р.В. Надежность машин массового производства. М.: Машиностроение, 1981. 244 с.

88. Левицкий C.B. Исследование виброэффекта упругой подвески рабочих органов скоростного лапового культиватора с целью снижения тягового сопротивления. Диссертация на соискание ученой степени канд. техн. наук. Ростов-на-Дону, РИСХМ, 1980.

89. Лукинский B.C., Зайцев E.H. Прогнозирование надежности автомобилей. -Л.: Политехника, 1991. 224 с.

90. Марковец М.П. определение механических свойств металлов по твердости. -М.: Машиностроение, 1979. 191 с.

91. Методика испытаний пружинных стоек. Порядок проведения H 043.14.514. Ростов-на-Дону,ЗАО «Красный Аксай » (В.И. Гасилин , В.Г. Торгало), 2005 г. с.5.

92. Методы оценки конструктивной прочности машин (Грошев Л.М., Спиченко В.В., Андросов A.A. и др.) Учебное пособие. Ростов-на-Дону.: Издательский центр ДГТУ. 1997. 163 с.

93. Миркитанов В.И., Журавель А.И., Почтенный Е.К., Щурик К.В. Расчетно-экспериментальная оценка долговечности несущих систем// тракторы и сельскохозяйственные машины. 1988. № 7. - С. 44-45.

94. Михлин В.М. Управление надежностью сельскохозяйственной техники. -М.: Колос, 1984.-335 с.

95. Надежность и эффективность в технике: Справочник: Ют. / Ред. Совет: B.C. Авдуевский (пред) и др. М.: Машиностроение, 1988. - Т. 5.: Проектный анализ надежности / Под ред. В.И. Патрушева и А.И. Рембезы. -316с.

96. Надежность и эффективность в технике: Справочник: Ют. / Ред. Совет:

97. B.C. Авдуевский (пред) и др. М.: Машиностроение, 1988. - Т. 6: Экспериментальная отработка и испытания / Под. Общ. Ред. P.C. Судакова , О.И. Тескина. - 376 с.

98. Нахатакян Р.Х., Клятис JI.M., Карпов Л.И. Прогнозирование надежности новых машин по результатам приемочных испытаний // Тракторы и сельскохозяйственные машины. 1991. - №11. - С. 30-32.

99. Оболенский Е.П., Сахаров Б.И., Стрекозов Н.П. Прочность агрегатов оборудования и элементов систем жизнеобеспечения летательных аппаратов. М.: Машиностроение, 1989. - 248 с.

100. Оськин C.B. Технико-экономическая оценка эффективности эксплуатации оборудования //Механизация и электрификация социалистического сельского хозяйства, 2006. № 1. - С. 2-3.

101. Почтенный Е.К., Капуста П.П. Вероятностные диаграммы многоцикловой усталости деталей машин. //Вестник машиностроения, 1993. № 12.1. C. 5-7.

102. Прянишникова Л.И., Прянишников A.B., Дудникова В.В. Аналитическое определение у процентного минимального значения для совокупности конечного объема по выборочным данным (случай средней гарантии) //Деп. в ВИНИТИ, № 1852 - в 2003.

103. Решетов Д.Н., Иванов A.C., Фадеев В.З. Надежность машин. М.: Высшая школа. - 1988.-238 с.

104. Роговенко Т.Н. Вероятностно-статистическая оценка гамма-процентного ресурса ответственных деталей машин: Автореф. дис. канд. техн. наук. -Ростов-на-Дону, -1995. 24 с.

105. Роговенко Т.Н. Методы определения минимального значения прочности сталей для некоторых выборок // Рост. гос. акад. стр.-ва. Ростов-на-Дону, 1993. - 8 с. - Деп. В ВИНИТИ № 1593 - В95 от 31.05.95.

106. Ротенберг Р.В. Основы надежности системы водитель-автомобиль-дорога-среда. М.: Машиностроение, 1986. - 216 с.

107. Ряхин В.А. Нагруженность металлоконструкций строительных и дорожных машин циклического действия при оценке живучести // Строительные и дорожные машины. 1995. - №11. - С. 23-25.

108. Самойлов Д.Н., Ахтариев М.Р. Прогнозирование технического состояния автомобилей // Механизация и электрификация социалистического сельского хозяйства, 2006. № 7. - С. 30-31.

109. Седов Л.И. Механика сплошной среды. М.: Наука, 1976. Т. 1. - 536 е., Т. 2.-576 с.

110. Секулович М. Метод конечных элементов.-М.:Стройиздат,1993. 664 с.

111. ПЗ.Серенсен C.B., Когаев В.П., Шнейдерович P.M. Несущая способность ирасчет деталей машин на прочность. М.: Машиностроение, 1975. ~ 488 с.

112. Смирнов Н.В., Дунин-Барковский И.В. Курс теории вероятностей и математической статистики для технических приложений. М.: Наука, 1969.- 512 с.

113. Соболь И.М. Численные методы Монте-Карло. М.: Наука, 1973. - 280 с.

114. Соколов С.А. Вероятностные основы расчета ресурса металлических конструкций по методу предельных состояний // Проблемы машиностроения и надежности машин. 1997. - №4. - С. 105-111.

115. Соколовский В.В. Теория пластичности. М.: Высшая школа, 1969.-608 с.

116. Сопротивление материалов. Под ред. Писаренко Г.С. , Киев: Выща школа, 1979.-693 с.

117. Справочник проектировщика промышленных, жилых и общественных зданий и сооружений. М.: Гиле, 1969. 200 с.

118. Тензометрия в машиностроении. Справочное пособие. Под. Ред. канд. техн. наук P.A. Макарова. М.: Машиностроение, 1975. 288 с.

119. Ткаченко В.А., Львов Б.В., Стопалов С.Г. О показателях безотказности и долговечности высоконадежных изделий // Тракторы и сельскохозяйственные машины. 1991. - №1. - С. 43-45.

120. Топилин И.В. Определение связи между значениями ресурса для генеральной совокупности конечного объема и выборки / Известия РГСУ : Сб. ст. Ростов-на-Дону: РГСУ. - 1999. - №4. - с. 237 - 238.

121. Уилкс С. Математическая статистика. Перевод с англ. Наука, 1967. -632 с.

122. Федосов В.В., Шабанов Б.М. Оценка надежности несущих конструкций грейферных погрузчиков //ДГТУ. Ростов- на-Дону, 1993. С. 54-59.

123. Форрест П. Усталость металлов. Перевод с англ. Под ред. Академика АН УССР С.В. Серенсена. М. «Машиностроение ». 1968.

124. Хазов Б.Ф. Эффективность повышения показателей долговечности машин и комплексов // Строительные и дорожные машины. 1990. - №7. - С. 2224.

125. Хазов Б.Ф. Эффективность функционирования и надежность машин ремонтируемого класса // Вестник машиностроения. 1988.- №12.-С. 1821.

126. Халфин М.А. Управление надежностью машин в эксплуатации// Механизация и электрификация социалистического сельского хозяйства, 1982.-№ 1.-С. 46-52.

127. Хейвуд Р.Б. Проектирование с учетом усталости. М.: Машиностроение, 1969.-504 с.

128. Хозяев И.А. Исследование надежности машин для животноводства и кормопроизводства и оптимизация их показателей // Машины и оборудование для животноводства и кормопроизводства: Сб. тр. -ВНИИКОМЖ. М. 1985. - С. 24-30.

129. Хозяев И.А. Основы обеспечения надежности при проектировании производственных линий животноводческих ферм и комплексов: Учебное пособие /РИСХМ. Ростов-на-Дону, 1984. - 94 с.

130. Храмцов Л.Д, Сорваниди Ю.Г., Карпенко В.Д. Оценка надежности комбайнов «Дон-1500» в эксплуатационных условиях // Тракторы и сельскохозяйственные машины. 1991. - №12. - С. 44-46.

131. Червяков И.В. Математические методы теории надежности и контроль качества // Методы менеджмента качества. 2005. - № 5. С. 37-42.

132. Шевцов В.Г. Основные аспекты повышения конкурентоспособности отечественных сельскохозяйственных тракторов // Тракторы и сельскохозяйственные машины. 1992. - №7. - С.9-16.

133. Шор Я.Б. Статистические методы анализа и контроля качества и надежности. М.: Советское радио, 1962. - 552 с.

134. Dubey S.D. Hyper efficient of the location parameter of the Weibull laws // Naval Research Logistics Quarterly. 1966. - N13. - P.253.

135. Epstein B. Application о the theory extreme values in fracture problems, J. Amer. Statist. Assoc. 1948, v.43, p. 403-412.

136. Fisher R.A., Tippet L.H.C. Limiting forms of the frequency distribution of longest of smallest member of a sample. OCPS, 24 (1928). 180 p.

137. Gumbel E.J. Les valeurs extremes des distributions statistiques, Annales de Г Institute Henri Poincare, 1935. v. 4, Fasc, 2 p 115.

138. Isermann R., Balle P. Trends in the application of model based Fault detection and diagnosis of technical processes. 13th World congress of IFAC. Preprints, Vol. 4, 1996.-P. 1-12.

139. Newton D.W. Reliability Mathematics. In: Reliability Engineering (Ed.: O"Connor PDT), Hemisphere Publishing Corporation, Washington, 1998.

140. Oakland J.S. Total quality management: The route to improving performance. -2nd edition. Butterworth Heinemann Professional Publishing Ltd., Oxford, 1994.

141. Sholtes P. Total quality or performance appraisal: choose one // Nation Prod Rev, 1993. 12. - №3. - P. 349 - 363.

142. Weibull W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951. p. 293-297.

143. Weibull W. A statistical theory of the strength of materials, Ing. Vetenskaps Akad. Handl, N151.1939.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания.
В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

«МЕТОДЫ ПОВЫШЕНИЯ НАДЁЖНОСТИ И ЭФФЕКТИВНОСТИ ТЕХНОЛОГИЧЕСКОГО И ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ В ПРОЦЕССАХ ДОБЫЧИ И ТРАНСПОРТА НЕФТИ И ГАЗА...»

На правах рукописи

СМОРОДОВ ЕВГЕНИЙ АНАТОЛЬЕВИЧ

МЕТОДЫ ПОВЫШЕНИЯ НАДЁЖНОСТИ

И ЭФФЕКТИВНОСТИ ТЕХНОЛОГИЧЕСКОГО

И ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ В ПРОЦЕССАХ

ДОБЫЧИ И ТРАНСПОРТА НЕФТИ И ГАЗА

Специальности: 05.02.13 – «Машины, агрегаты и процессы»

(нефтегазовая отрасль)

05.26.03 – «Пожарная и промышленная безопасность» (нефтегазовая отрасль)

Диссертации на соискание ученой степени доктора технических наук

Работа выполнена в Уфимском государственном нефтяном техническом университете.

Научный консультант доктор технических наук, профессор Байков Игорь Равильевич.

Официальные оппоненты : доктор технических наук, доцент Новоселов Владимир Викторович;

доктор технических наук, доцент Ямалиев Виль Узбекович;

доктор технических наук, профессор Гумеров Риф Сайфуллович.

Ведущая организация «Центр энергосберегающих технологий Республики Татарстан» при Кабинете Министров Республики Татарстан.

Защита состоится «20» февраля 2004 года в 14-00 на заседании диссертационного совета Д 212.289.05 при Уфимском государственном нефтяном техническом университете по адресу: 450062, Республика Башкортостан, г. Уфа, ул. Космонавтов, 1.



С диссертацией можно ознакомиться в библиотеке Уфимского государственного нефтяного технического университета.

Ученый секретарь диссертационного совета Ибрагимов И.Г.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Обеспечение надёжности эксплуатации и производственной безопасности объектов нефтегазовой отрасли в современном обществе является важнейшей задачей. Технологические процессы добычи и транспорта углеводородного сырья являются по своему характеру потенциально опасными, что связано с большими объемами горючего органического сырья, добываемого на промыслах и транспортируемого на дальние расстояния.

Крупные аварии на предприятиях отрасли приводят к экологическим катастрофам, для ликвидации последствий которых необходимы значительные финансовые затраты, а на восстановление природной среды уходят многие годы.

Уровень надежности технических систем нефтегазовой отрасли оказывает непосредственное влияние на эффективность производства. Проблемы повышения эффективности нефтегазовой отрасли тесно связаны с задачей снижения производственных затрат, в частности, на энергетические ресурсы и проведение ремонтно-восстановительных мероприятий. В свою очередь, эти задачи определяются техническим состоянием оборудования отрасли, и, следовательно, их решение возможно путем разработки мероприятий по повышению надежности оборудования и совершенствованию методов технической диагностики.

В настоящее время для решения перечисленных проблем появились объективные условия. В первую очередь они обусловлены широким внедрением в нефтегазовые технологии микропроцессорной техники, которая позволяет получать производственную информацию в качественном и количественном отношениях не сравнимую с доступной 5-10 лет назад. Информационноизмерительные системы (ИИС) позволяют получать, накапливать и сохранять в течение практически неограниченного времени массивы производственных данных, к которым относятся не только текущие рабочие параметры оборудования, но и электронные базы данных диспетчерских служб.

Особое внимание должно быть уделено разработке новых математических методов обработки данных и построения на их основе моделей технических систем, применение которых стало возможным в настоящее время. К ним относятся методы синергетики и динамического хаоса, нечеткой логики, теоретико-игровые методы, нейронные сети и клеточные автоматы и многие другие, разработанные и успешно применяемые в таких областях, как экономика и финансы, метеорология, геофизика, прогнозирование чрезвычайных ситуаций, но не нашедшие широкого применения в промышленных отраслях.

Общая структура задачи повышения надежности и эффективности предприятий нефтегазовой отрасли может быть представлена в виде упрощенной схемы (рис.1). Основой для постановки и решения задачи являются исходные данные ИИС, на основе которых строятся математические модели, описывающие характеристики объектов и процесс их развития во времени. Это могут быть показатели надежности оборудования, параметры, характеризующие текущее техническое состояние объекта, или отдельный параметр, определяющий эффективность того или иного технологического процесса.

Построение адекватной модели технической системы, отдельного объекта, единицы оборудования или его узла, имеет целью получение прогноза изменения технических параметров или параметров надежности во времени. Прогноз, в свою очередь, позволяет принимать обоснованные решения по проведению мероприятий по техническому обслуживанию, планированию ремонтных мероприятий, оснащению ремонтно-технических служб необходимым оборудованием и комплектованию резервного фонда оборудования.

Неотъемлемой составной частью проблемы повышения надежности эксплуатации и энергоэффективности предприятий является разработка методов рационального энергоснабжения. Энергетическая составляющая в себестоимости углеводородного сырья достигает 15%, а непрерывность технологических процессов в нефтегазовой отрасли непосредственно связана с бесперебойностью энергообеспечения.

Повышение эффективности предприятий достигается путем решения всего комплекса перечисленных задач.

–  –  –

Эффективность производства является важным аспектом проблем нефтегазового комплекса. Под эффективностью понимается, в первую очередь, уровень затрат всех возможных ресурсов, в том числе и энергетических, на поддержание функционирования предприятия. Издержки производства, как одна из основных составляющих себестоимости продукции, в настоящее время являются серьезным препятствием для конкурентоспособности российского углеводородного сырья на международном рынке. Поэтому в последнее время настоятельно требуется разработка и внедрение энерго- и ресурсосберегающих технологий.

Разработка методов решения перечисленных задач должна строиться с учетом возросшего уровня качества и объема исходной информации, обеспечиваемого автоматизированными системами контроля и диагностики, широко используемыми на предприятиях отрасли.

Целью диссертационной работы является повышение эффективности и производственной безопасности нефтегазовых предприятий путем разработки методов управления параметрами надежности эксплуатации оборудования и снижения издержек производства на обслуживание и энергоресурсы.

Основные задачи

исследований:

1. Разработка методов диагностирования и прогнозирования параметров надежности эксплуатации оборудования на основе построения моделей технологических систем добычи и транспорта углеводородного сырья.

2. Создание систем диагностических параметров для оценки текущего технического состояния и остаточного ресурса оборудования на основе комплексного использования информации автоматизированных устройств сбора данных.

3. Разработка теоретических основ и практических методов оперативного контроля технического состояния систем транспорта нефти и газа с применением статистических, феноменологических и динамических моделей.

4. Повышение эффективности эксплуатации нефтегазового оборудования на основе оптимального планирования ремонтно-восстановительных мероприятий.

5. Разработка методики расчета затрат на содержание ремонтновосстановительных служб, позволяющей минимизировать ущерб от аварий технологического оборудования.

6. Разработка методов повышения надежности и экономичности работы энергетического оборудования с учетом переменных нагрузок, являющихся следствием изменения условий работы и технического состояния энергопотребителей.

7. Разработка теоретических основ планирования территориального размещения объектов и коммуникаций предприятий нефтегазовой отрасли с целью повышения надежности энергоснабжения и сокращения потерь энергии, времени восстановления оборудования и капитальных затрат при строительстве коммуникационных сооружений.

8. Повышение надежности систем энергоснабжения месторождений на основе создания принципов размещения автономных источников энергии.

Методы решения задач. При решении поставленных задач использовались вероятностно-статистические методы, элементы теории детерминированного хаоса, методы теории игр, теории массового обслуживания, методы решения транспортных оптимизационных задач. Для подтверждения выводов и реализации предложенных в диссертационной работе методов и алгоритмов использовалась промышленная информация, полученная информационноизмерительной системой «Скат-95» на ряде нефтяных месторождений Западной Сибири, базы данных компьютерных измерительно-управляющих систем компрессорных станций ООО «Баштрансгаз», данные вибро- и газодинамической диагностики ЦПТЛ ООО «Баштрансгаз», данные диспетчерских журналов ОАО «Уралтранснефтепродукт» и другая производственная информация.

Научная новизна заключается в следующем:

1. Обоснована необходимость сбора и постоянного хранения всего объема производственной и диагностической информации, и показано, что подобная информация представляет большую ценность с точки зрения разработки перспективных методов диагностики, основанных на математической обработке больших объемов исходных данных, таких как методы математической статистики, динамического хаоса, разработка имитационных моделей и др.

2. Показана необходимость учета временной зависимости потока отказов оборудования, обусловленной изменением характеристик месторождения в процессе его разработки. Предложенная в работе трехпараметрическая модель прогнозирования времени безотказной работы технологического оборудования нефтегазодобычи позволяет увеличить достоверность прогнозов более чем в два раза.

3. Показано, что различные типы отказов оборудования имеют детерминированный характер по месту локализации аварий, и установлены статистически значимые связи между типами отказов и технологическими параметрами эксплуатации скважин.

4. Предложена методика анализа данных вибродиагностики, позволяющая производить учет разрушающего воздействия стохастических процессов в сложных технических системах и обеспечивающая распознавание развивающихся дефектов нефтегазотранспортного оборудования, не доступное традиционным методам.

5. Разработан комплекс методов оптимального планирования сроков проведения ремонтов нефтедобывающего и газотранспортного оборудования, позволяющих минимизировать убытки предприятия и основанных на ретроспективном анализе баз данных автоматизированных измерительных систем о динамике падения дебитов скважин и численных решениях, полученных на основе имитационной модели. Предложенные методы позволяют учитывать не только характеристики надежности оборудования, но и влияние таких факторов, как текущие цены на сырье и негативное воздействие самих мероприятий по техническому обслуживанию.

6. Представлены теоретические положения по определению стратегии выбора типов и мест размещения автономных источников энергии на территории месторождений, позволяющие повысить надежность энергоснабжения нефтяных и газовых промыслов и уменьшить стоимость потребляемой тепловой и электрической энергии.

На защиту выносятся результаты научных разработок в области моделирования технологических процессов и совершенствования диагностических методов с целью повышения надежности эксплуатации технологического оборудования и обеспечения энергетической эффективности и промышленной безопасности объектов нефтегазовой промышленности.

Практическая ценность и реализация работы. Методики и алгоритмы прогнозирования сроков отказов подземного оборудования нефтедобычи, разработанные в диссертационной работе, включены в состав автоматизированной системы контроля параметров нефтедобычи «Скат-95». Данная система эксплуатируется на ряде нефтедобывающих предприятий Западной Сибири.

Использование предложенных методик позволило увеличить достоверность прогнозов выхода из строя насосов ЭЦН в 2-5 раз.

Предложенные в диссертации методы расчета периодичности очистных мероприятий апробированы в ОАО «Уралтранснефтепродукт». Проведенные исследования показали высокую эффективность метода и достаточную для практического использования точность проводимых оценок.

Результаты расчетов использованы при планировании очистных мероприятий нефтепродуктопроводов «Салават-Уфа», «Уфа-Камбарка», «Синеглазово-Свердловск».

Разработанные в диссертационной работе методики определения технического состояния и энергоэффективности газотурбинных агрегатов апробированы службой ЦПТЛ ДП «Баштрансгаз» и используется для контроля технического состояния ГПА.

Предложения и рекомендации по принципам выбора и территориального размещения автономных электростанций рассматриваются в ООО «Уренгойгазпром» ОАО «Газпром», ТПП «Когалымнефтегаз», ТПП «Урайнефтегаз», ТПП «Лангепаснефтегаз», ТПП «Покачинефтегаз».

Апробация работы .

Основные положения работы докладывались на следующих семинарах, научно-технических советах и конференциях:

1. Всероссийской научно-технической конференции «Новоселовские чтения» (Уфа, 1998).

2. 5-й Международной научной конференции «Методы кибернетики химико-технологических процессов» (Уфа, 1999).

3. III Всероссийской конференции «Региональные проблемы энергосбережения и пути их решения» (Н.-Новгород, 1999).

4. Межрегиональной научно-методической конференции «Проблемы нефтегазовой отрасли» (Уфа, 2000).

5. Научно-практической конференции "Энергосбережение в химической технологии - 2000" (Казань, 2000).

6. Всероссийской научной конференции «Энергосбережение в РБ», (Уфа, 2001).

7. Международной конференции, посвященной 50-летию ФТТ УГНТУ (Уфа, 2002).

–  –  –

Диссертационная работа состоит из введения, пяти глав, основных выводов; содержит 315 страниц машинописного текста, 32 таблицы, 84 рисунка, библиографический список из 240 наименований.

Во введении обоснована актуальность темы диссертационной работы.

Первая глава посвящена анализу современных методов моделирования технических систем нефтегазовой отрасли, проводится анализ методов контроля и регулирования параметров надежности оборудования добычи и транспорта нефти и газа и рассматриваются пути снижения затрат на потребляемые энергоресурсы.

Проведенный анализ показал, что существующие модели прогнозирования надежности нефтегазового оборудования статичны и не учитывают динамики изменения характеристик объекта во времени. В то же время, существует большое число хорошо разработанных математических методов, позволяющих моделировать реальные физические процессы в сложных технологических системах. До последнего времени реализация данных методов сдерживалась отсутствием достаточного объема исходной информации, в качестве которой использовались, как правило, данные из диспетчерских журналов. Благодаря внедрению автоматики и компьютерных технологий в нефтегазовой отрасли и накопленным большим массивам эксплуатационных данных появилась возможность создания и использования алгоритмов и компьютерных программ, реализующих современные методы моделирования, которые позволяют существенно увеличить уровень эксплуатационной надежности объектов нефтегазовой отрасли.

Рассмотрены основные методы диагностики технического состояния нефтегазотранспортного энергетического оборудования и показано, что они не обладают требуемой достоверностью. Так, анализ результатов вибрационного диагностирования газоперекачивающих агрегатов показал, что во многих случаях развитие дефектов не распознается с помощью существующих методов обработки вибросигналов. Сделан вывод о необходимости расширения набора диагностических признаков и совершенствования методов обработки диагностических данных, позволяющих адекватно оценивать текущее техническое состояние энергомашин.

–  –  –

Рис.4. Сравнение прогностических возможностей моделей различной сложности.

Причина аварии – засорение рабочих органов насоса песком. Интервал «а» – база для прогноза, интервал «b» – прогноз. 1 – полином 1-й степени; 2 – полином 2-й степени; 3 – полином 3-й степени; Маркеры в форме треугольника – фактические данные непосредственно перед полным отказом Выходы из строя промыслового оборудования являются событиями относительно редкими, а следовательно, объемы выборки по аварийным ремонтам и/или заменам оборудования за период времени, когда условия его эксплуатации можно считать неизменными, невелики. Кроме того, достоверная информация об отказах технологического оборудования, хранящаяся в базах данных современных автоматизированных систем, охватывает временной интервал в 5лет. С учётом средней наработки на отказ и общего числа единиц однотипного оборудования подобный объём информации не превышает 10-20 жизненных циклов работы технологического оборудования нефтяных промыслов. Поэтому встает задача моделирования параметров надежности с учетом малого объема 0,9 0,85

–  –  –

0,75 0,7 0,65 0,6 0,55

–  –  –

Рис.5. Среднее значение показателя Херста для различных видов отказов выборки по аварийным событиям и требованием наивысшей точности прогноза.

Для решения поставленной задачи проведено сравнение точности прогнозов (по ретроспективным данным) для трех методов построения оптимальной модели - метод наименьших квадратов, методы минимизации среднего риска и методы теории нечетких множеств. При этом установлено, что в условиях малых объемов выборок наиболее достоверные прогнозы дает модель, рекомендуемая методами теории нечетких множеств.

Прогноз аварии при мгновенных отказах такими методами невозможен. В этом случае необходимо найти некие «предвестники» аварии, которые реагировали бы на приближение отказа при практически постоянных рабочих параметрах скважины.

Таким предвестником могут быть фрактальные характеристики временного ряда дебитов. Исследования показали, что хаотические изменения дебитов нефтедобывающих скважин имеют детерминированную природу, а фрактальные характеристики временных рядов измерений дебита позволяют обнаруживать развивающиеся дефекты, не доступные традиционным методам (рис.5).

В заключении второй главы рассмотрено влияние на надежность эксплуатации штанговых глубинных насосных установок высокочастотной составляющей нагрузки в колонне штанг, вызванной резонансными явлениями. Для оценки степени опасности данного вида переменных нагрузок разработана математическая модель штанговой глубинной насосной установки (ШГНУ), описывающая динамические нагрузки в колонне штанг, и определены основные зависимости их разрушающего воздействия от технических характеристик оборудования и физических свойств добываемой жидкости. Выявлена связь между вероятностью обрыва штанги и амплитудой динамических нагрузок, даны рекомендации по их снижению.

–  –  –

Рис.10. Спектрограммы акустического сигнала, новению турбулентных потоков возбуждаемого шаровым краном а) – герметичный кран; б) – негерметичный кран;

газа. Турбулентная струя газа при истечении из отверстия или при обтекании помещенного в поток тела, генерирует акустические колебания, частота которых зависит от характерных размеров повреждения и параметров движущейся среды (рис.10).

Генерируемые колебания имеют широкий спектр, что связано с физическими процессами, приводящими к генерации акустических волн, а именно – образованию и срыву газовых вихрей. Каждый элементарный вихрь имеет определенные физические и энергетические характеристики, но поскольку параметры элементарных вихрей являются в значительной степени случайной величиной, то и спектр акустических колебаний в различные интервалы времени различен.

Если ввести понятие «мгновенного» спектра, понимая под этим спектр колебаний за достаточно малый интервал времени t = 1/f0, (4) где f0 – самая низкочастотная из интересующих нас компонент спектра, то можно сказать, что узкополосный «мгновенный» спектр совершает стохастические перемещения в некотором частотном диапазоне, средняя частота fср которого связана с числом Струхаля

–  –  –

Следовательно, изучение спектральных и статистических закономерностей акустических характеристик дает возможность получить информацию о геометрических размерах излучающего объекта и скорости (расходе) газовой среды. Зная среднюю частоту полосы шума в акустическом спектре, из соотношения (5) можно получить оценки характерного размера повреждения D на уплотнении крана и величину утечки Q газа. Для спектра, представленного на рис.10 (fср = 1750 Гц), имеем

–  –  –

что составляет около одного процента перекачиваемого газа агрегатом ГТК-10 и соизмеримо с погрешностью расходомера. Достоинством предлагаемого метода диагностики является возможность проведения измерений без остановки работы крана.

В третьем разделе главы рассмотрена возможность построения диагностической феноменологической модели, позволяющей производить расчеты КПД ГТУ без привлечения дополнительных измерений.

Актуальной задачей контроля технического состояния оборудования являются исследования, направленные на разработку методов расчета параметров эксплуатации оборудования, для которых требуются дополнительные измерения, не обеспечиваемые штатными приборами. К ним относятся, в частности, методы расчетов КПД насосных и компрессорных агрегатов. Каждый из узлов механической системы можно охарактеризовать некоторым результирующим параметром, который является критерием технического состояния данного узла. Например, для ГПА как целого, в качестве оценки технического состояния можно взять величину общего КПД агрегата или остаточный ресурс работы.

Обозначим i-й регистрируемый штатными приборами параметр работы агрегата через xi, тогда техническое состояние Yj j-го узла можно определить как функцию параметров, т.е. Yj = fj(X), где X = {xi}.

Каждый из регистрируемых параметров xi изменяется с течением времени, причем запись производится через равные промежутки времени с интервалом t, т.е. tk=nt, где n - номер измерения в серии. Поэтому регистрируемые временные ряды значений параметров можно представить в виде xi= xi(tk). Рассчитываемый показатель технического состояния Yj также будет являться временным рядом Yj(tk), что дает возможность изучения тренда технического состояния и прогнозирования дефектов нефтегазового оборудования.

Эффективный КПД ГТУ зависит от режима работы ГПА и является известной функцией многих режимных параметров: = F(X), где X = {xi} – комплекс параметров, измеряемых (в том числе нештатными средствами) для проведения расчетов. С течением времени, при изменениях режима работы ГПА, изменяются и параметры, т.е. xi= xi(tj), и КПД j = F(tj).

С другой стороны, можно представить сложную функцию F более простой (например, линейной) функцией параметров xк (измеряемых штатными приборами) с неизвестными постоянными коэффициентами:

N * j = F * (t j) = A0 + Ak xk (t j), (6) k =1

–  –  –

временными рядами параметров xк(tj) и КПД (tj) и задав уровень достоверности корреляционной связи.

Коэффициенты Аk вычисляются из условия минимизации функционала F(X)-F*(X) min. (7) Аналогичным образом ставится задача определения других диагностических показателей - коэффициентов технического состояния по мощности, КПД или топливному газу.

На рис.11 приведено сравнение КПД, рассчитанного по стандартной методике (требующей дополнительных измерений) с расчетами по предложенной модели. Погрешность расчетных значений K составляет 2 % и является систематической, в то время как кривые эквидистантны. Поэтому можно считать, что уравнения регрессии, получаемые с помощью предложенных процедур, достаточно точны, и с их помощью возможно проведение оценок коэффициентов технического состояния ГПА.

Преимуществами предложенного метода является использование только штатных измерений, оперативность расчета и возможность включения разработанного алгоритма в состав функций ИИС компрессорной станции для отображения текущего технического состояния каждого из агрегатов.

Четвертая глава посвящена вопросам рационального технического обслуживания объектов добычи и транспорта углеводородов.

В первом разделе главы рассмотрены возможные схемы организации обслуживания объектов добычи и транспорта нефти и газа, позволяющие минимизировать производственные затраты и снизить ущерб от простоев оборудования.

Анализ показывает, что более половины дефектов оборудования являются развивающимися во времени. Характерными временами полного развития дефекта, например, в нефтедобыче, является интервал времени до 90 суток.

Проведение ремонтных работ непосредственно после обнаружения развивающегося дефекта нецелесообразно, поскольку оборудование еще не полностью выработало ресурс, а замена его на новое требует значительных затрат. С другой стороны, эксплуатация оборудования с развивающимся дефектом приводит к снижению прибыли из-за уменьшения добычи нефти. Кроме того, убыточен и простой скважины в течение восстановительных работ. Таким образом, необходимо решать многокритериальную оптимизационную задачу - определить момент начала ремонтных работ, при котором ущерб предприятия от уменьшения добычи нефти будет минимален. Рассмотрим решение поставленной задачи оптимизации сроков проведения ремонтных работ в предположении, что функция, описывающая снижение дебита Q(t) скважины, уже определена и параметризирована.

Примем за начало отсчета времени t=0 момент начала снижения дебита.

Прибыль предприятия, получаемая при эксплуатации скважины в этот период, определяется доходом от продажи продукта раб

–  –  –

B C. (11) раб + раб + раб + C рем + c эл P раб = 0 cQ0 Уравнение (11) представляет алгебраическое уравнение третьей степени относительно искомого решения раб, которое может быть вычислено по формулам Кардано.

Расчеты, приведенные с учетом наработки насосного оборудования на отказ, показали, что при условии выполнения данных рекомендаций удельная прибыль нефтедобывающего предприятия возрастает на 5-7%.

Аналогичная задача возникает при планировании ремонтных работ на газотранспортном оборудовании. В работе предложена имитационная модель, позволяющая на основе статистических данных по отказам элементов газотранспортного оборудования рассчитать оптимальный межремонтный период эксплуатации газоперекачивающих агрегатов. Разработанная модель может быть применена для планирования календарных сроков проведения плановопредупредительных и капитальных ремонтов ГПА любого типа.

Принятая для расчетов модель имеет следующую структуру.

Предположим, что ГПА состоит из N элементов, для каждого из которых можно определить интегральную функцию распределения времени наработки на отказ Fi(t), 1iN. Аварийный отказ агрегата считается произошедшим при выходе из строя хотя бы одного элемента. После аварийного отказа производится ремонт, который полностью или частично восстанавливает ресурс отказавшего элемента ГПА. Существует также возможность осуществления планово-предупредительных ремонтов одного или нескольких элементов, а также тех из капитальных ремонтов, при которых ресурс ГПА восстанавливается полностью.

Для проведения расчетов необходимо знать вид и параметры законов распределения Fi(t), которые могут быть получены из анализа статистических данных по аварийным отказам ГПА. Известно, что начальный участок эксплуатации, отсчитываемый от момента пуска ГПА после капитального ремонта, является наиболее опасным в смысле неожиданных отказов, что характерно для большинства технических устройств. Отказы на начальном участке эксплуатации связаны с развитием скрытых дефектов после некачественного ремонта, их интенсивность с течением времени достаточно быстро убывает (период приработки). После окончания периода приработки отказы, в основном, происходят в результате физического износа элементов ГПА, и функция распределения отказов в этом случае соответствует нормальному закону.

Для определения 0,08

–  –  –

где N – мощность привода, кВт;

Q – номинальная производительность, м3/сут.

График зависимости Z=Z(Q), рассчитанный по приведенной формуле на основании характеристик насосов и построенный для высоты подъема жидкости в пределах 600-1000 м, приведен на рис.16. Из графика следует, что КПД насосно-силового агрегата зависит от его производительности и меняется от ~0,35 при Q = 30-50 м3/сут до ~0,70 при Q 100 м3/сут.

По данным о структуре насосного парка и дебитах скважин вычислим удельные затраты в целом по месторождению (для реальной структуры парка

ЭЦН):

–  –  –

вующего парка ЭЦН.

Оценка реальных затрат Рис.16. Расчет удельных затрат по паспортным данпроводилась по данным изменым ЭЦН.

рения суммарного дебита скважин, оборудованных ЭЦН, и суммарной мощности, потребляемой насосным оборудованием. Принятая в эксплуатацию на изучаемом месторождении ИИС «Скат-95» позволяет провести подобные оценки. Так, на момент измерений суммарный суточный дебит скважин нефтепромысла по жидкости составил 35031 м3/сут, при этом фактическая суммарная мощность приводных двигателей составляла 9622 кВт. Расчет по соотношению (26) в этом случае дает Z=6,6 кВтч/м3. Таким образом, фактические удельные затраты энергии почти в два раза превышают нижний предел для данного месторождения.

Анализ, проведенный с целью выяснения причин расхождения фактических и теоретически возможных для условий данного месторождения удельных энергозатрат, выявил следующие основные причины:

Значительные тепловые потери в силовом кабеле из-за малого сечения токопроводящих жил;

Несоответствие величины питающего напряжения на трансформаторной подстанции номинальному или перекос фаз;

Потери в трансформаторах;

Неудовлетворительное техническое состояние насоса, двигателя или насосно-компрессорных труб.

Одним из методов снижения нерациональных потерь электрической энергии является обеспечение рациональной нагрузки трансформаторных подстанций. Эта задача решается в диссертационной работе путем разработки алгоритма расчета нагрузок, позволяющего оптимизировать распределение нагрузки трансформаторных подстанций нефтегазовых промыслов с учетом возможных изменений фактической мощности потребителей энергии.

Нерациональная загрузка технологического оборудования приводит к сокращению ресурса его работы и одновременно увеличивает удельные энергозатраты на добычу углеводородного сырья. Это в полной мере относится и к кустовым трансформаторным подстанциям (КТП), установка которых была произведена в большинстве случаев на начальных стадиях разработки нефтяных и газовых месторождений.

Работавшие ранее в номинальном режиме КТП вследствие падения добычи нефти оказались в большинстве случаев либо недогруженными, либо перегруженными. Статистический анализ баз данных ИИС "Скат-95" показал, что общим правилом в настоящее время является недогрузка КТП на 40-60%. Более того, распределение нагрузки между КТП (при наличии более чем одного КТП на кусте скважин) в реальном случае может быть совершенно случайным.

Необходимо также заметить, что нагрузка КТП не остается постоянной во времени. Например, выход из строя одного из насосов приводит к снижению нагрузки. С учетом времени ожидания ремонта (10-30 суток) и самого ремонта (3-5 суток) возникающее нерациональное распределение нагрузок приводит к существенному перерасходу электроэнергии.

Для повышения надежности эксплуатации кустовых трансформаторных подстанций и снижения нерациональных потерь электроэнергии необходимо решить задачу распределения нагрузок между КТП с учетом фактической производительности насосного оборудования и временного характера изменения присоединенных нагрузок, вызванного аварийным отключением насосов.

Формализуем постановку задачи следующим образом. Имеется n КТП, обслуживающих m скважин. Все КТП работают с недогрузкой (на левой ветви кривой КПД). Необходимо перераспределить нагрузку потребителей между КТП таким образом, чтобы суммарные потери электроэнергии были наименьшими.

Проведенный сравнительный анализ характеристик КПД трансформаторов показал, что наиболее достоверно в классе элементарных функций левая ветвь кривой КПД описывается функцией вида = a (1 exp(N)), (28) где – КПД трансформатора;

a, – эмпирические коэффициенты;

N – потребляемая мощность.

Рассмотрим функцию Y, характеризующую работу группы КТП:

n n = i = ai (1 exp(i N i)). (29) i =1 i =1 В физическом смысле максимизация функционала соответствует минимуму тепловых потерь в магнитопроводе и обмотках группы трансформаторов.

Очевидно, что левая часть уравнения (29) будет достигать максимального значения, когда величина n

–  –  –

Зависимость (31) позволяет рассчитывать оптимальную нагрузку каждого трансформатора в группе, если известна общая потребляемая мощность кустового оборудования.

Сравнение численного значения суммарного коэффициента полезного действия группы трансформаторов, полученного в результате оптимизации распределения нагрузок, со случаем существующего распределения нагрузок показало, что потери электроэнергии на КТП, обслуживающих куст скважин, уменьшаются не менее чем на 2%. С учетом того, что число трансформаторов в НГДУ может достигать нескольких тысяч, экономия электроэнергии будет весьма существенной. Предлагаемый алгоритм позволяет повысить долговечность работы трансформаторных подстанции и силового оборудования за счет приближения степени их загрузки к номинальной.

В заключении главы рассмотрены вопросы рационального энергоснабжения нефтегазовых предприятий.

Для повышения энергетической безопасности эксплуатации нефтегазодобывающих предприятий, увеличения надежности энергоснабжения и снижения потерь при передаче и преобразовании, а также с целью снижения стоимости электрической и тепловой энергии, в настоящее время в нефтегазовой отрасли все чаще используются автономные энергетические источники. При этом возникает задача выбора типа, мощности и места расположения автономных энергоблоков, с учетом их надежности, рабочего ресурса, стоимости и минимальных потерь энергии при передаче ее потребителям.

В работе проведен анализ эксплуатационных характеристик промышленных мини-электростанций отечественного и зарубежного производства. Показано, что по критериям «долговечность - себестоимость электроэнергии - надежность» приоритетными для нефтегазодобывающих предприятий являются секционированные газопоршневые мини-электростанции мощностью 1…5 МВт, работающие на попутном газе.

В настоящее время сложился достаточно обширный рынок автономных энергетических источников, и задача реконструкции сводится к выбору оптимального типа и мощностей энергоустановок и их территориального размещения, как с точки зрения надежного энергоснабжения промыслов, так и с точки зрения уменьшения удельных энергозатрат на добычу нефти и газа.

Задача выбора оптимальной системы энергоснабжения нефтегазовых промыслов должна решаться с учетом территориального размещения и мощности как потребителей, так и источников электрической энергии. Поэтому постановка оптимизационной задачи должна проводиться индивидуально для каждого месторождения.

Исходной информацией для проведения расчетов служит масштабная карта месторождения, на которую нанесены все энергопотребляющие объекты (кусты скважин, водонагнетательные насосы и пр.) с указанием их установленной мощности.

Анализ показывает, что потребление электроэнергии в пределах месторождения имеет ярко выраженный неравномерный характер. Поверхность энергопотребления имеет целый ряд локальных экстремумов, расположение которых соответствует областям максимального и минимального энергопотребления.

Задача размещения объектов для данного случая формализуется следующим образом.

На территории месторождения необходимо разместить n автономных источников электроэнергии с известной суммарной мощностью N0 кВт таким образом, чтобы нагрузка электроприемников соответствовала их номинальным показателям, а суммарные тепловые потери в силовых линиях были минимальны.

Пусть m существующих объектов (кустов скважин, насосных станции и других потребителей) размещены в различных точках P1,…,Pm плоскости, а новые объекты (автономные энергоисточники) – в точках X1…Xn. Расстояние между точками расположения j-го нового и i–го существующего объектов обозначим как d(Xj,Pi). Обозначим годовые удельные потери энергии в кабеле между j-м новым и i–м существующим объектом через wij=F1(Ni). Тогда общие годовые потери энергии определятся как m f (X) = wij d (X j, Pi), (32) i =1

–  –  –

где E i = (x a i) + (y b i) +.

(h) (h) 2 (h) 2 Расчет оптимального расположения автономных энергоблоков, проведенный по данным итерационным формулам, позволяет определить расположение произвольного числа источников (рис.17).

Предлагаемый алгоритм позволяет не только повысить надежность энергоснабжения объектов нефтегазовых месторождений, но и уменьшить в 2…5 раз потери электроэнергии в линиях электропередач.

ОБЩИЕ ВЫВОДЫ

1. Разработана математическая модель прогнозирования времени наработки на отказ технологического оборудования, учитывающая как условия эксплуатации, так и его конструктивные и качественные показатели. Установлены количественные критерии влияния условий эксплуатации этого оборудования на его рабочий ресурс. Показано, что достоверность разработанных моделей не менее чем в два раза превосходит точность прогноза моделей, использующих стационарный поток отказов.

2. Разработана методика распознавания аномальных зон разработки нефтяных и газовых месторождений, предрасположенных к повышенной аварийности оборудования. Установлено, что различные типы отказов оборудования имеют детерминированный характер по месту локализации аварий. Установлены статистически значимые связи между типами отказов и технологическими характеристиками эксплуатации кустов скважин.

3. Предложены методы диагностирования технического состояния газотурбинных машин, основанные на положениях теории динамического хаоса. На основе исследований природы стохастических процессов в сложных механических системах разработана методика анализа спектральных данных вибродиагностики, позволяющая производить учет разрушающего воздействия стохастических процессов в сложных технических системах и обеспечивающая распознавание развивающихся дефектов нефтегазотранспортного оборудования, не доступных традиционным методам.

4. Разработан комплекс методов прогнозирования сроков наступления отказов в работе нефтегазового оборудования с развивающимися дефектами различного вида. Апробация методики показала, что ее применение позволяет увеличить точность прогноза не менее чем на 10…30 % по сравнению с традиционными способами прогноза.

5. Предложены методы оптимального планирования сроков проведения ремонтов нефтедобывающего и газотранспортного оборудования, позволяющие минимизировать убытки предприятия. Предложенные методы основаны на ретроспективном анализе базы данных ИИС о динамике падения дебитов скважин и численных решениях, полученных на основе имитационной модели отказов газоперекачивающего оборудования. Установлено, что подобное долгосрочное планирование позволяет уменьшить аварийность, сократить время простоя оборудования и увеличить прибыль предприятия на 5…7%.

6. Предложен метод повышения надежности и экономичности работы энергетического оборудования в условиях, когда присоединенная нагрузка изменяется в результате отказов энергопотребляющих установок. Установлено, что применение предложенной методики позволяет сократить потери электроэнергии на кустовых трансформаторных подстанциях не менее чем на 2%.

7. Разработана стратегия выбора типов и мест размещения автономных источников энергии на основе использования автономных газотурбинных и газопоршневых энергетических модулей, позволяющая повысить надежность энергоснабжения нефтяных и газовых промыслов и уменьшить стоимость потребляемой тепловой и электрической энергии. Показано, что в этих целях наиболее эффективно использование газопоршневых установок единичной мощности 1-2 МВт, работающих на попутном газе. Предложены алгоритмы размещения подобных энергетических установок на территории нефтяных месторождений, позволяющие уменьшить в 2-5 раз потери в линиях электропередач.

1. Байков И.Р., Смородов Е.А. Принципы создания и использования базы данных по критическим режимам ГПА КС.// Новоселовские чтения: Тез.докл.

Всерос. науч.-техн. конф.-Уфа, 1998, С.8.

2. Байков И.Р., Смородов Е.А., Смородова О.В. Применение ранговых критериев для вибродиагностики ГПА.// Новоселовские чтения: Тез.докл. Всерос.

науч.-техн. конф.-Уфа, 1998, C.9.

3. Байков И.Р., Смородов Е.А., Смородова О.В. Диагностирование технического состояния газоперекачивающего оборудования методами теории распознавания образов.// Новоселовские чтения: Тез.докл. Всерос. науч.-техн.

конф.-Уфа, 1998, C.7.

4. Байков И.Р., Смородов Е.А., Смородова О.В. Выбор оптимальной периодичности виброобследования газоперекачивающих агрегатов компрессорных станций.// Новоселовские чтения: Тез.докл. Всерос. науч.-техн. конф.-Уфа, 1998, C.6.

5. Смородов Е.А., Смородова О.В. Определение неплотностей запорного оборудования магистральных газопроводов./ Энергосбережение: Тез.докл. Всерос. науч.-техн. конф.-Уфа, УГАТУ, 1998, С.18.

6. Байков И.Р., Смородов Е.А., Смородова О.В. Генерация сверхнизких частот при работе газоперекачивающих агрегатов и их влияние на спектры вибрации //Изв. ВУЗов. Нефть и газ.- 1999.- №4.- С.62-67.

7. Смородов Е.А., Смородова О.В., Мусин Д.Ш. Разработка договорной стратегии нефтеперекачивающих предприятий с энергосистемами //Региональные проблемы энергосбережения и пути их решения: Тез. докл.

8. Байков И.Р., Смородов Е.А., Ахмадуллин К.Р Оптимизация периодичности очистки нефтепродуктопроводов //Транспорт и хранение нефтепродуктов. – 1999.-№8.- С.8.

9. Байков И.Р., Смородов Е.А., Смородова О.В. Оптимизация размещения энергетических объектов по критерию минимальных потерь энергии. //Изв.

ВУЗов. Проблемы энергетики.- 1999.- №3-4.- С.27.

10. Смородов Е.А., Китаев С.В. Изучение динамики зависимостей между рабочими параметрами газоперекачивающих агрегатов. // Методы кибернетики химико-технологических процессов: Тез. докл. 5-ой Междунар. науч. конф.

–Уфа: УГНТУ, 1999.- Т.2.-Кн. 2.-С.167.

11. Смородов Е.А., Смородова О.В., Шахов М.Ю. Низкочастотные колебания подшипниковых узлов газоперекачивающих агрегатов. // Методы кибернетики химико-технологических процессов: Тез. докл. 5-ой Междунар. науч.

конф. –Уфа: УГНТУ, 1999.- Т.2.-Кн. 2.-С.161.

12. Байков И.Р., Смородов Е.А., Смородова О.В. Имитационное моделирование отказов газоперекачивающих аппаратов. // Методы кибернетики химикотехнологических процессов: Тез. докл. 5-ой Междунар. науч. конф. –Уфа:

УГНТУ, 1999.- Т.2.-Кн. 2.-С.139.

13. Байков И.Р., Смородов Е.А., Смородова О.В. Ранговые критерии в вибродиагностике ГПА // Материалы Новоселовских чтений: Сб. науч. тр. Всерос.

науч.-техн. конф.- Уфа: УГНТУ, 1999.- С.130.

14. Байков И.Р., Смородов Е.А., Смородова О.В. Выбор частоты вибрационных обследований технологического оборудования системы магистрального транспорта газа. // Материалы Новоселовских чтений: Сб. науч. тр. Всерос.

науч.-техн. конф.- Уфа: УГНТУ, 1999.- С.134.

15. Байков И.Р., Смородов Е.А., Смородова О.В. Принятие решений о ремонте оборудования компрессорных станций с применением методов теории игр. // Материалы Новоселовских чтений: Сб. науч. тр. Всерос. науч.-техн. конф.Уфа: УГНТУ, 1999.- С.138.

16. Смородов Е.А., Смородова О.В. Некоторые эмпирические зависимости по отказам газоперекачивающих агрегатов компрессорных станций. // Материалы Новоселовских чтений: Сб. науч. тр. Всерос. науч.-техн. конф.- Уфа:

УГНТУ, 1999.- С.142.

17. Байков И.Р., Смородов Е.А. Диагностика технического состояния механизмов на основе статистического анализа вибросигналов //Изв. ВУЗов. Проблемы энергетики. -1999.-№11-12.- С.24-29.

18. Байков И.Р., Смородов Е.А., Смородова О.В. Применение методов теории самоорганизации в диагностике технического состояния механизмов. //Изв.

ВУЗов. Проблемы энергетики.- 2000.- №1-2.- С.96-100.

19. Байков И.Р., Смородов Е,А, Смородова О.В. Моделирование отказов газоперекачивающих агрегатов методом Монте-Карло //Газовая промышленность.С.20-22.

20. Курочкин А.К., Смородов Е.А., Закиев А.А.Определение некоторых эмпирических зависимостей энергетических параметров роторных гидроакустических излучателей. // Энергосбережение в химической технологии - 2000:

Материалы Всерос. науч.-практ. конф. – Казань: КГТУ, 2000, С.119-120.

21. Курочкин А.К. Смородов Е.А., Распределение мощности в высокоскоростных роторных гидроакустических излучателях // Энергосбережение в химической технологии - 2000: Материалы Всерос. науч.-практ.

конф. – Казань: КГТУ, 2000, С.69-73.

22. Курочкин А.К., Смородов Е.А., Алексеев С.З. Исследование расходнонапорных характеристик высокоскоростных гидроакустических излучателей. // Энергосбережение в химической технологии - 2000: Материалы Всерос. науч.-практ. конф. – Казань: КГТУ, 2000, С.121-122.

23. Курочкин А.К., Смородов Е.А., Закиев А.А. Исследование спектрального состава акустических колебаний высокоскоростных гидроакустических излучателей. // Энергосбережение в химической технологии - 2000: Материалы науч.-практ. конф. – Казань: КГТУ, 2000, С.117-118.

24. Курочкин А.К., Смородов Е.А. Экспериментальные исследования зависимости кавитационного шума высокоскоростного гидроакустического излучателя от частоты вращения ротора и статического давления. // Энергосбережение в химической технологии - 2000: Материалы Всерос. науч.-практ. конф.

– Казань: КГТУ, 2000, С.123-124.

25. Smorodov E., Deev V. Aplication of Serial Statistics for Diagnostics of the Oil and Gas Equipment // Journal of fushun petroleum institute.- №4.-2000.- Р.52-57.

26. Байков И.Р., Смородов Е.А., Смородова О.В. Применение ранговых критериев для вибродиагностики газоперекачивающих агрегатов //Газовая промышленность. Специальный выпуск.-2000.- С.42-44.

27. Смородов Е.А., Китаев С.В. Методы расчета коэффициентов технического состояния ГПА// Газовая промышленность.-2000.-№5.-С.29-31.

28. Байков И.Р., Смородов Е.А., Китаев С.В. Изучение влияния очистных мероприятий проточных частей осевых компрессоров на надежность работы газотурбинных установок //Изв. ВУЗов. Проблемы энергетики.- 2000.- №5-6.С.77-82.

29. Байков И.Р., Смородов Е.А., Смородова О.В и др. Уточнение прогнозов аварийных отказов технологического оборудования методами теории нечетких множеств //Изв. ВУЗов. Проблемы энергетики.- №7-8.- 2000.- с.17-22.

30. Смородов Е.А., Деев В.Г. Стратегия взаимоотношений между поставщиками и потребителями электроэнергии //Изв. ВУЗов. Проблемы энергетики.С.36-43.

31. Байков И.Р., Смородов Е.А., Деев В.Г. Математическое моделирование отказов насосно-силового оборудования нефтедобывающих промыслов //Горный вестник.- 2000.-№3.- С.51-54.

32. Смородов Е.А., ДеевВ.Г. Оценка качества фонда нефтедобывающих скважин //Проблемы нефтегазовой отрасли: Материалы межрегион. науч.-метод.

конф.-Уфа.- 2000.- C.93-95.

33. Смородов Е.А., Деев В.Г. Контроль уравновешенности станка-качалки на основе обработки синхронных динамограмм и токограмм// Проблемы нефтегазовой отрасли: Материалы мнжрегиональной научно-методической конференции. –Уфа, 2000.- C.95-97.

34. Смородов Е.А, Деев В.Г., Исмаков Р.А. Методы экспресс-оценки качества фонда нефтедобывающих скважин. //Изв. ВУЗов. Нефть и газ. -2001.- №1.С.40-44.

35. Байков И.Р., Смородов Е.А., Шакиров Б.М. Принципы реконструкции системы энергоснабжения населенных пунктов //Изв. ВУЗов. Проблемы энергетики.- 2001.- №9-10.- С.77-81.

36. Смородов Е.А., Исмаков Р.А., Деев В.Г. Оптимизация сроков проведения ремонтных мероприятий подземного оборудования //Нефтяное хозяйство 2001.-№2.- С.60-63.

37. Байков И.Р, Гольянов А.И., Смородов Е.А. и др. Уточнение методики определения технического состояния проточной части газоперекачивающих агрегатов //Изв. ВУЗов. Проблемы энергетики.- 2001.- №3-4.- С.3-6.

38. Смородов Е.А., Деев В.Г. Оперативный контроль сбалансированности станка-качалки ШГН на основе динамометрирования // Нефтяное хозяйство.С.57-58.

39. Байков И.Р., Смородов Е.А., Костарева С.Н. Оценка технического состояния ГКУ с помощью вибрации //Газовая промышленность.- 2001.- №4.- С.39-41.

40. Байков И.Р., Смородов Е.А., Соловьев В.Я. Оптимизация нагрузок кустовых трансформаторных подстанций нефтедобывающего предприятия // Изв. ВУЗов. Проблемы энергетики. - 2002.- №11-12. С.32-36.

41. Байков И.Р., Смородов Е.А., Шакиров Б.М. Оценка эффективности использования мини электростанции //Изв. ВУЗов. Проблемы энергетики.- 2002.С.115-120.

42. Байков И.Р., Смородов Е.А., Деев В.Г. Анализ временных рядов как метод прогнозирования и диагностики в нефтедобыче //Нефтяное хозяйство.С.71-74.

43. Байков И.Р., Смородов Е.А., Соловьев В.Я. Динамические нагрузки в штангах глубинных насосов и их влияние на безопасность эксплуатации//Изв.

СОДЕРЖАНИЕ 1. ПРОГРАММА "ТЕХНИЧЕСКОЕ ОБСЛУЖИВ...»ГАЛИМУЛЛИН МИНИВАРИС ЛУТФУЛЛИНОВИЧ РАЗРАБОТКА ТЕХНИЧЕСКИХ СРЕДСТВ ПОВЫШЕНИЯ РАБОТОСПОСОБНОСТИ СКВАЖИННЫХ ПЛУНЖЕРНЫХ НАСОСОВ Специальность 05.02.13 –"Машины, агрегаты и странах, идет поиск механизмов эффективного взаимодействия государства и частного б...» государственный университет им. адм. Г.И. Невельского" В. В. Тарасов, С. Б. Малышко, С. А. Горчакова МАТЕРИАЛОВЕДЕНИЕ Учебное пособие Рекомендова...»

«Установка ультразвуковой предстерилизационной очистки малогабаритных инструментов УЗУМИ-05 (Регистрационное удостоверение № ФСР 2007/01155 от 20.11.2007 г.) Руководство по эксплуатации 9451-006-26857421-2007 РЭ Саратов СОДЕРЖАНИЕ Стр.1. Введение.. 3 2. Назначение.. 3 3. Основные технически...»

« бюджетного образовательного учреждения высшего профессионального образования "Санкт-Петербургский государственный лесотехнический университет имени С. М. Кирова" Кафедра дорожного, промышленног...»

«Секция 1 ПАЛЕОНТОЛОГИЯ, СТРАТИГРАФИЯ И РЕГИОНАЛЬНАЯ ГЕОЛОГИЯ КОСМИЧЕСКИЕ МЕТОДЫ ГЕОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ, ПРОГНОЗА И ПОИСКА МЕСТОРОЖДЕНИЙ А.А. Поцелуев1, доцент, Ю.С. Ананьев1, доцент, В.Г...»

Повышение надёжности и эффективности системы бюджетирования в компании ТОО «SIKA KAZAKHSTAN»

Предприятия, занимающиеся производством строительных смесей и бетонных добавок, играют важную роль в экономике страны, поскольку выполняют функцию производства и обеспечения государства и промышленных организаций ресурсами для всего строительства, необходимыми для их нормального функционирования. Если в Казахстане в последние 5 лет наблюдается снижение индекса строительства на 2-3%, то Алматинская область демонстрирует устойчивые темпы роста производства, сухих и жидких смесей бетонных добавок: индекс в 2014 г. по отношению к 2013 г. составил 103%. Вероятно, рост обусловлен, главным образом, увеличением цены на производимые и импортируемые товары. В сущности, изношенность основных фондов, недостаточность ресурсов и использование устаревших технологий производства позволяют говорить о кризисном состоянии мощностей, занимающихся производством сухих и жидких смесей Алматинской области.

С конца 2012 года, а именно с момента образования ТОО “Sika Kazakhstan» ситуация стала меняться в лучшую сторону, но о полном решении всех проблем говорить рано.

Существуют и специфические особенности в функционировании этих предприятий: сезонный характер доходов при реализации некоторых видов продукции (сторительства) при условно-постоянном характере затрат; необходимость учета величины пиковой нагрузки оборудования; наличие определенных категорий компании, имеющих льготы по оплате за задолженности, компенсации по которым происходят с отставанием во времени.

Естественно, что эта специфика присуща и ТОО «Sika Kazakhstan».

В настоящее время следует признать, что высший менеджмент признаёт необходимость повышения надёжности и эффективности существующей системы бюджетирования в ТОО «Sika Kazakhstan». Таким образом, первый шаг в совершенствовании данной системы был сделан.

Решение вопроса, каким путём реформировать систему, назрело по ходу деятельности: стало ясно - дальнейшее функционирование системы бюджетирования на основе системы таблиц MS Excel недопустимо из-за существенных недостатков данного подхода. Было принято решение провести автоматизацию данного процесса.

Автоматизация потребует много времени и ресурсов, но ожидается, что эффект от внедрения программных продуктов перекроет все затраты.

Автоматизация системы бюджетирования позволит четко и формализованно определить основные факторы, характеризующие результаты деятельности, их детализацию для каждого уровня управления и конкретные задачи для руководителей структурных подразделений, обеспечивающих их выполнение.

Автоматизация бюджетирования, сможет обеспечить лучшую координацию хозяйственной деятельности, повысить управляемость и адаптивность предприятий, занимающихся производством и перепродажи, к изменениям во внутренней и внешней среде. Она способна снизить возможность злоупотреблений и ошибок в системе планирования, обеспечить взаимосвязь различных аспектов хозяйственной деятельности, сформировать единое видение планов предприятия и возникающих в процессе их осуществления проблем, обеспечить более ответственный подход специалистов к принятию решений и лучшую мотивацию их деятельности.

Для постановки системы бюджетирования необходимым элементом является наличие на предприятии основных внутренних регламентирующих организационно-распорядительных документов и формализованных процессов управления (правил, описание процедур и т.д.). Необходимость регламентации вызвана тем, что формирование информации о производстве как бы повторяет ход самого производственного процесса и предопределено движением материальных ресурсов по стадиям технологического процесса и нарастанием трудовых затрат по мере обработки исходных материалов. Организационная структура предприятия фактически обеспечивает согласованность отдельных видов хозяйственной деятельности предприятия по выполнению основных задач и целей. Поэтому организационная и производственная структура предприятия, его внутрихозяйственный механизм являются базисом при реформировании планирования и внедрении автоматизированного бюджетирования .

Это было принято во внимание менеджментом ТОО «Sika Kazakhstan» и в настоящее время уже осуществляются процедуры по разработке и согласованию регламента для автоматизированной системы бюджетирования, который придёт на смену существующему.

Преимущества автоматизации системы бюджетирования заключаются в следующем :

  • 1. Значительно повышается качество работы по реализации стратегии, так как стратегические цели формализованы и доведены до каждого отдела.
  • 2. Появляется возможность более объективной оценки вклада каждого ЦФО за счет обоснованности планов и стимулирования их четкого выполнения.
  • 3. Автоматизированная система бюджетирования обеспечивает произведение оценки эффективности разработанных мероприятий на протяжении всего управленческого цикла бюджетирования.

Таким образом, руководство компании стоит на верном пути, отдавая предпочтение стратегии реагирования на вызовы времени. Принимаемые меры позволят в будущем компании достигать стратегические цели и развивать бизнес. Но весьма важно не «сбиться» с намеченного пути, а это в процессе решения такой задачи как повышение надёжности и эффективности системы бюджетирования компании, очень вероятно.

Для недопущения просчётов менеджменту компании следует расширить своё сотрудничество с более широким кругом фирм, предлагающих услуги по автоматизации систем бюджетирования, чтобы иметь возможность выбора наиболее оптимального варианта платформы.

Кроме этого, было бы целесообразным привлечение независимых специалистов в качестве консультантов при выборе системы, учитывающей специфику деятельности ТОО «Sika Kazakhstan».

В целом, принимаемые в компании меры позволят реализовать намеченные цели. Но при игнорировании вышеуказанных аспектов вектор процесса может сместиться, что всё же не позволит получить полную отдачу от внедрённой системы.

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Смородов Евгений Анатольевич. Методы повышения над#жности и эффективности технологического и энергетического оборудования добычи и транспорта нефти и газа: Дис. ... д-ра техн. наук: 05.02.13, 05.26.03 Уфа, 2004 317 с. РГБ ОД, 71:05-5/160

Введение

1 Методы контроля и управления параметрами на дежности технических систем нефтегазовой отрасли 18

1.1 Методы получения и обработки информации в нефтегазовой отрасли 21

1.2 Методы моделирования технических систем и перспективы их применения для повышения уровня надежности нефтегазового оборудования 24

1.3 Диагностические методы контроля эксплутационной надёжности нефтегазовых объектов 36

1.4 Методы повышения надежности энергоснабжения и энергоэффективности предприятий нефтегазовой отрасли 50

Выводы по главе 1 57

2 Разработка методов контроля и диагностирования параметров надежности эксплуатации оборудования нефтегазодобычи 58

2.1 Воздействие условий эксплуатации на параметры надежности нефтегазового орудования 58

2.2 Разработка методов контроля и диагностики технического состояния объектов нефтегазодобычи по данным эксплуатации 89

2.3 Моделирование отказов технологического оборудования нефтегазодобычи 106

Выводы по главе 2 125

3 Разработка теоретических основ и практических методов контроля и диагностики нефтегзотранс-портных систем 126

3.1 Разработка методов анализа данных вибродиагностики роторных машин 127

3.2 Диагностика запорной арматуры компрессорных станций магистральных газопроводов акустическими методами 151

3.3 Применение феноменологических моделей в диагностировании технического состояния газотранспортного оборудования 157

3.4 Моделирование динамики изменения технического состояния газотранспортного оборудования в процессе выработки эксплуатационного ресурса 171

3.5 Определение технического состояния газоперекачивающих агрегатов на основе уточненного расчета термодинамических параметров

газотурбинной установки 177

Выводы по главе 3 182

4 Повышение эффективности эксплуатации нефте газового оборудования на основе оптимального планирования 183

4.1 Обобщенные характеристики фонда добывающих скважин месторождения и оценка эффективности ГТМ 184

4.2 Разработка методов оптимального планирования мероприятий по обслуживанию нефтегазового оборудования 193

4.3 Методы снижения затрат на аварийно-восстановительные мероприятия объектов нефтегазовой трасли 213

4.4 Разработка теоретических основ планирования и размещения объектов добычи и транспорта нефти и газа 234

Выводы по главе 4 245

5 Повышение энергетической эффективности объектов нефтегазового комплекса 247

5.1 Методы определения и использования показателей энергоэффективности предприятий нефтегазовой отрасли 248

5.2 Разработка методов снижения потерь электрической энергии на трансформаторных подстанциях нефтяных и газовых промыслов... 264

5.3 Снижение затрат нефтегазодобывающих предприятий на энергоресурсы на основе использования автономных источников энергии... 273

5.4 Методы оптимизации размещения энергообъектов по критерию минимальных потерь энергии 279

Выводы по главе 5 291

7 Список использованных источников

Введение к работе

Обеспечение надёжности эксплуатации и производственной безопасности объектов нефтегазовой отрасли в современном обществе является важнейшей задачей. Технологические процессы добычи и транспорта углеводородного сырья являются по своему характеру потенциально опасными, что связано с большими объемами горючего органического сырья, добываемого на промыслах и транспортируемого на дальние расстояния. Крупные аварии на предприятиях отрасли приводят к экологическим катастрофам, для ликвидации последствий которых необходимы огромные финансовые затраты, а на восстановление природной среды уходят многие годы.

Уровень надежности эксплуатации технических систем нефтегазовой отрасли оказывает непосредственное влияние на эффективность производства. Проблемы повышения эффективности нефтегазовой отрасли тесно связаны с задачей снижения производственных затрат, в частности, на энергетические ресурсы и проведение ремонтно-восстановительных мероприятий. В свою очередь, эти задачи определяются техническим состоянием оборудования отрасли, и, следовательно, их решение возможно путем разработки мероприятий по повышению надежности оборудования и совершенствованию методов технической диагностики.

В этих условиях резко возрастает необходимость в научных разработках, направленных на решение неотложных задач, связанных с совершенствованием методов и технических средств, используемых в нефтегазовой отрасли. Несомненна роль научных достижений в повышении надежности и безопасности функционирования производственных объектов, что приобретает особую актуальность с учетом экологических последствий аварий в нефтегазовом комплексе.

Работы по надежности нефтегазового оборудования имеют ряд специфических особенностей. Огромные пространственные масштабы, воздействие суровых климатических условий, особенности работы оборудования в постоянно

изменяющихся условиях продуктивного пласта - все эти факторы делают практически невозможной постановку натурных экспериментов, что является обычной практикой для классических исследований параметров надежности оборудования. Поэтому большая роль в изучении и прогнозировании параметров надежности отводится методам моделирования отказов.

Принципиальные ограничения, накладываемые на модель в рамках детерминированного подхода, привели к все более широкому использованию стохастических моделей, поведение которых может быть значительно более сложным, что во многих случаях позволяет более адекватно описать реальную техническую систему. Для целей моделирования и прогнозирования поведения сложных технических систем все шире применяется подход, основанный на понятиях самоорганизации, или синергетики.

С изучением надежности тесно связана проблема диагностики оборудования. Современные системы диагностирования весьма совершенны с технической точки зрения. Однако интерпретация результатов диагностирования по-прежнему остается серьезной проблемой.

Не менее важным аспектом проблем нефтегазового комплекса является эффективность производства. Под эффективностью понимается, в первую очередь, уровень затрат всех возможных ресурсов, в том числе и энергетических, на поддержание функционирования предприятия. Издержки производства, как одна из основных составляющих себестоимости продукции, в настоящее время являются серьезным препятствием для конкурентоспособности российского углеводородного сырья на международном рынке. Поэтому в последнее время настоятельно требуется разработка и внедрение энерго- и ресурсосберегающих технологий.

Непосредственная связь производственных затрат с частотой проводимых ремонтных работ оборудования, а следовательно с уровнем его надежности, требует разработки методов диагностики технического состояния технологического оборудования и методов снижения затрат на его обслуживание. И, наконец, для снижения затрат на ресурсы, в первую очередь энергетические, необ-

7 ходима разработка мероприятий по ресурсосбережению и снижению стоимости потребляемых ресурсов.

Разработка методов решения перечисленных задач должна строиться с учетом возросшего уровня качества и объема исходной информации, обеспечиваемого автоматизированными системами контроля и диагностики, широко используемых на предприятиях отрасли.

Целью диссертационной работы является повышение эффективности и безопасности нефтегазовых предприятий путем разработки методов управления параметрами надежности эксплуатации оборудования и снижения издержек производства на обслуживание и энергоресурсы. Основные задачи исследований:

    Разработка методов диагностирования и прогнозирования параметров надежности эксплуатации оборудования на основе построения моделей технологических систем добычи и транспорта углеводородного сырья.

    Создание систем диагностических параметров для оценки текущего технического состояния и остаточного ресурса оборудования на основе комплексного использования информации автоматизированных устройств сбора данных.

    Разработка теоретических основ и практических методов оперативного контроля технического состояния систем транспорта нефти и газа с применением статистических, феноменологических и динамических моделей.

    Повышение эффективности эксплуатации нефтегазового оборудования на основе оптимального планирования ремонтно-восстановительных мероприятий.

    Разработка методики расчета затрат на содержание ремонтно-восстановительных служб, позволяющая минимизировать ущерб от аварий технологического оборудования.

    Разработка методов повышения надежности и экономичности работы энергетического оборудования с учетом переменных нагрузок, являющихся

8 следствием изменения условий работы и технического состояния энергопотребителей;

    Разработка теоретических основ планирования территориального размещения объектов и коммуникаций предприятий нефтегазовой отрасли с целью повышения надежности энергоснабжения и сокращения потерь энергии, времени восстановления оборудования и капитальных затрат при строительстве коммуникационных сооружений.

    Повышение надежности систем энергоснабжения месторождений на основе создания принципов размещения автономных источников энергии.

Методы решения задач. При решении поставленных задач использовались вероятностно-статистические методы, элементы теории детерминированного хаоса, методы теории игр, теории массового обслуживания, методы решения транспортных оптимизационных задач. Для подтверждения выводов и реализации предложенных в диссертационной работе методов и алгоритмов использовалась промышленная информация, полученная информационно-измерительной системой «Скат-95» на ряде нефтяных месторождениях Западной Сибири, базы данных компьютерных измерительно-управляющих систем компрессорных станций ООО «Баштрансгаз», данные вибро- и газодинамической диагностики ЦПТЛ ООО «Баштрансгаз», данные диспетчерских журналов ОАО «Уралтранснефтепродукт» и другая производственная информация.

Научная новизна заключается в следующем:

    Обоснована необходимость сбора и постоянного хранения всего объема производственной и диагностической информации, и показано, что подобная информация представляет большую ценность с точки зрения разработки перспективных методов диагностики, основанных на математической обработке больших объемов исходных данных, таких как методы математической статистики, динамического хаоса, разработка имитационных моделей и др.

    Показана необходимость учета временной зависимости потока отказов оборудования, обусловленной изменением характеристик месторождения в процессе его разработки. Предложенная в работе трехпараметрическая модель

9 прогнозирования времени безотказной работы технологического оборудования нефтегазодобычи позволяет увеличить достоверность прогнозов более чем в два раза.

3. Установлено, что различные типы отказов оборудования имеют детерми
нированный характер по месту локализации аварий и установлены статистиче
ски значимые связи между типами отказов и технологическими параметрами
эксплуатации скважин.

    Предложена методика анализа данных вибродиагностики, позволяющая производить учет разрушающего воздействия стохастических процессов в сложных технических системах и обеспечивающая распознавание развивающихся дефектов нефтегазотранспортного оборудования, недоступные традиционным методам.

    Разработан комплекс методов оптимального планирования сроков проведения ремонтов нефтедобывающего и газотранспортного оборудования, позволяющих минимизировать убытки предприятия и основанные на ретроспективном анализе баз данных автоматизированных измерительных систем о динамике падения дебитов скважин и численных решениях, полученных на основе имитационной модели. Предложенные методы позволяют учитывать не только характеристики надежности оборудования, но и влияние таких факторов, как текущие цены на сырье и негативное воздействие самих мероприятий по техническому обслуживанию.

    Представлены теоретические положения по определению стратегии выбора типов и мест размещения автономных источников энергии на территории месторождений, позволяющая повысить надежность энергоснабжения нефтяных и газовых промыслов и уменьшить стоимость потребляемой тепловой и электрической энергии.

На защиту выносятся результаты научных разработок в области моделирования технологических процессов и совершенствования диагностических методов с целью повышения надежности эксплуатации технологического обо-

10 рудования и обеспечения энергетической эффективности и промышленной безопасности объектов нефтегазовой промышленности.

Практическая ценность и реализация работы.

Методики и алгоритмы прогнозирования сроков отказов подземного оборудования нефтедобычи, разработанные в диссертационной работе включены в состав разработанной автоматизированной системы контроля параметров нефтедобычи «Скат-95». Данная система предназначена для использования на ряде предприятий Западной Сибири. Использование предложенных методик позволило увеличить достоверность прогнозов выхода из строя насосов ЭЦН в 2-5 раз.

Предложенные в диссертации методы расчета периодичности очистных мероприятий апробированы в ОАО «Уралтранснефтепродукт». Проведенные исследования показали высокую эффективность метода и достаточную для практического использования точность проводимых оценок.

Результаты расчетов использованы при планировании очистных мероприятий нефтепродуктопроводов «Салават-Уфа», «Уфа-Камбарка», «Синегла-зово-Свердловск».

Разработанные в диссертационной работе методики определения технического состояния и энергоэффективности газотурбинных агрегатов апробирована службой ЦПТЛ ДП «Баштрансгаз» и используется для контроля технического состояния ГПА.

Первая глава посвящена анализу современных методов моделирования технических систем нефтегазовой отрасли, проводится анализ методов контроля и регулирования параметров надежности оборудования добычи и транспорта

нефти и газа и рассматриваются пути снижения затрат на потребляемые энергоресурсы.

Проведенный анализ показал, что существующие модели прогнозирования надежности нефтегазового оборудования не учитывают динамики изменения характеристик объекта во времени. В то же время, существует большое число хорошо разработанных математических методов, позволяющих моделировать реальные физические процессы в сложных технологических системах. До последнего времени реализация данных методов сдерживалась отсутствием достаточного объема исходной информации, в качестве которой использовались, как правило, данные из диспетчерских журналов. Благодаря внедрению автоматики и компьютерных технологий в нефтегазовой отрасли и накопленным большим массивам эксплутационных данных, появилась возможность создания и использования алгоритмов и компьютерных программ, реализующих современные методы моделирования, которые позволяют существенно увеличить уровень эксплуатационной надежности объектов нефтегазовой отрасли.

Рассмотрены основные методы диагностики технического состояния неф-тегазотранспортного энергетического оборудования и показано, что они не обладают требуемой достоверностью. Так, анализ результатов вибрационного диагностирования газоперекачивающих агрегатов показал, что во многих случаях развитие дефектов не распознается с помощью существующих методов обработки вибросигналов. Сделан вывод о необходимости расширения набора диагностических признаков и совершенствования методов обработки диагностических данных, позволяющих адекватно оценивать текущее техническое состояние энергомашин.

Рассмотрены вопросы повышения энергетической эффективности нефтегазовой отрасли. Для повышения энергетической безопасности эксплуатации и снижения стоимости энергоресурсов многие предприятия нефтегазовой отрасли стремятся использовать собственные автономные источники электроэнергии. Проведен обзор характеристик и стоимости промышленных автономных энергетических установок различного типа. Показана необходимость проведения

12 технико-экономического обоснования выбора типа подобных установок по критериям: «стоимость - капитальные затраты - срок окупаемости -долговечность».

Вторая глава посвящена исследованиям характера отказов и моделированию функций надежности нефтегазодобывающего оборудования. На основе использования промышленных данных, полученных с помощью системы автоматизированного сбора данных, произведена классификация типов отказов оборудования, установлены законы распределения отказов по каждому из типов и определены параметры этих законов.

На основе проведенных исследований установлено, что интенсивность различных типов отказов оборудования зависит от места его расположения на территории месторождения. Предложен метод кластеризации кустов скважин по признаку предрасположенности их к дефектам определенных типов. Разработан метод определения пространственных зон аномально высокой аварийности оборудования в пределах разрабатываемого месторождения.

Применение автоматизированного сбора производственных данных по нефтепромыслу позволяет получать выборки в сотни и тысячи экспериментальных точек. Подобные объемы выборок дают возможность обоснованно применять как традиционные методы математической статистики, так и методы теории нелинейных систем, распознавания образов, теории игр и т.п. В частности, в работе установлено, что хаотические изменения дебитов нефтедобывающих скважин имеют детерминированную природу, и показано, что фрактальные характеристики временных рядов измерений дебита позволяют обнаруживать развивающиеся дефекты, недоступные традиционным методам.

Выходы из строя промыслового оборудования являются событиями относительно редкими. Поэтому встает задача моделирования параметров надежности с учетом малого объема выборки по аварийным событиям и требованием наивысшей точности прогноза. Проведенный анализ показал, что в условиях малых объемов выборок наиболее достоверные прогнозы дает модель, рекомендуемая методами теории нечетких множеств.

13 Третья глава посвящена исследованиям динамики развития дефектов оборудования и совершенствованию методов диагностики систем транспорта нефти и газа.

Проведен анализ причин низкой достоверности вибродиагностики роторных энергетических машин и установлено, что одной из причин является явление модулирования информативного диагностического сигнала стохастическим низкочастотным сигналом. Рассмотрены возможные физические механизмы этого явления.

На основе исследований природы стохастических процессов в сложных механических системах разработана методика анализа спектральных данных вибродиагностики, позволяющая производить учет разрушающего воздействия стохастических процессов в сложных технических системах и обеспечивающая распознавание развивающихся дефектов нефтегазотранспортного оборудования, недоступные традиционным методам.

Ответственной составляющей системы транспорта являются элементы запорной арматуры. Определение текущего технического состояния данного вида оборудования без отключения участка трубопровода возможна при использовании акустических методов диагностики. Разработанный в работе метод акустической диагностики дефектов запорной арматуры систем газотранспорта позволяет определять наличие нарушений герметичности и количественно оценить степень развития дефектов.

Важной задачей контроля технического состояния оборудования являются исследования, направленные на разработку методов расчета параметров эксплуатации оборудования, для которых требуются дополнительные измерения, не обеспечиваемые штатными приборами. К ним относятся, в частности, методы расчетов КПД насосных и компрессорных агрегатов. В работе предложено использование феноменологических моделей газоперекачивающего оборудования, предназначенных для проведения оценок технического состояния ГПА на основе данных измерений штатных измерительных устройств.

14 Одной из проблем технического обслуживания оборудования является планирование сроков ремонтов, учитывающих текущее техническое состояние. Для подобных расчетов требуются статистические данные по показателям надежности на протяжении всего рабочего ресурса агрегата. В работе предложена методика оценки динамики усредненных эксплутационных характеристик ГПА на протяжении всего рабочего ресурса. Показано, что в среднем происходит монотонное снижение эксплуатационных характеристик агрегатов в процессе его старения.

Существенные сложности возникают при расчетах эффективности энергетических агрегатов из-за высокой погрешности измерений. Особенно этот фактор важен при расчетном методе определения необходимых параметров. Например, отсутствие штатной термопары для измерения температуры перед турбиной высокого давления ГПА, приводит к необходимости ее расчета по температуре на выходе из турбины, что увеличивает общую погрешность. В работе предложена итерационная методика расчета коэффициентов технического состояния ГПА, позволяющая увеличить точность определения коэффициента технического состояния агрегата не менее, чем на 6%. На основании проведенных исследований высказано предположение о возможности увеличения максимальной мощности изношенных ГТУ, без нарушения норм по надежности, путем повышения предельно допустимой температуры после ТНД, что позволит увеличить КПД установки по сравнению с существующим на 11%.

Четвертая глава посвящена вопросам рационального технического обслуживания объектов добычи и транспорта углеводородов.

Предельно выработанный ресурс нефтегазового оборудования вызывает необходимость его своевременного и качественного ремонта и профилактики. В четвертой главе работы рассмотрены возможные схемы организации обслуживания объектов добычи и транспорта нефти и газа, позволяющие минимизировать производственные затраты и снизить ущерб от простоев оборудования.

Разработан метод, позволяющей оперативно определять сроки проведения ремонтных работ, в зависимости от темпов падения дебита скважин, вы-

15 званного развивающейся неисправностью насосно-силового оборудования. Расчеты, приведенные с учетом наработки насосного оборудования на отказ, показали, что при условии выполнения данных рекомендаций удельная прибыль нефтедобывающего предприятия возрастает на 5-7%.

Аналогичная задача возникает при планировании ремонтных работ на газотранспортном оборудовании. В работе предложена имитационная модель, позволяющая на основе статистических данных по отказам газотранспортного оборудования рассчитать оптимальный межремонтный период эксплуатации газоперекачивающих агрегатов. Разработанная модель может быть применена для планирования календарных сроков проведения планово-предупредительных и капитальных ремонтов ГПА любого типа.

Эффективное управление ремонтно-восстановительными службами предприятия позволяет значительно повысить оперативность обслуживания оборудования и тем самым снизить потери от недополученной прибыли. В работе предложена методика расчета затрат на содержание ремонтно-восстановительных бригад нефтедобывающих предприятий, позволяющая минимизировать ущерб от аварий технологического оборудования нефтедобычи. Показано, что предлагаемая методика позволяет оперативно управлять аварийно-ремонтными службами в зависимости от степени изношенности основных фондов и динамики цен на добываемое сырье.

Известно, что проведение профилактических работ, особенно связанных с остановкой обслуживаемого оборудования, приводит к опасности «прирабо-точных» отказов. Поэтому возникает задача рационального снижения числа подобных вмешательств в работу механизмов при соблюдении условий безопасной эксплуатации. В работе предлагается решение подобной задачи на примере оптимизации периода между очистными мероприятиями, проводимыми на газотурбинных двигателях газоперекачивающих агрегатов. При этом критерием оптимизации является минимизация удельных затрат на эксплуатацию установки, включая стоимость самих ремонтов и дополнительную выгоду от повышения эксплутационных характеристик агрегата.

В заключении четвертой главы разработаны теоретические основы планирования территориального размещения объектов и коммуникации предприятий нефтегазовой отрасли, позволяющие значительно сократить потери энергии, времени ожидания ремонта оборудования и капитальные затраты при строительстве коммуникационных линий.

Пятая глава диссертационной работы посвящена вопросам обеспечения надежности энергоснабжения и энергетической безопасности предприятий нефтегазовой отрасли. Значительная удаленность энергопотребителей от источников энергии создает ряд специфических трудностей, приводящих к снижению надежности энергоснабжения и, как следствие, к снижению производственной безопасности эксплуатации объектов нефтегазовой отрасли.

С целью определения резервов экономии энергоресурсов рассмотрена структура энергопотребления предприятий, установлены основные причины нерациональных потерь энергии и намечены пути их сокращения.

Наиболее адекватным показателем энергоэффективности предприятия является удельное энергопотребление. В диссертационной работе этот показатель рассмотрен на примере нефтедобывающего предприятия, и установлено, что рост удельных энергозатрат может служить одним из критериев оценки преда-варийного состояния технологического оборудования. Показано, что в пределах одного и того же месторождения, различие в объемах энергозатрат на добычу нефти может быть 2.. .4-кратным.

Для снижения нерациональных потерь электрической энергии необходимо обеспечить рациональную нагрузку трансформаторных подстанций. Эта задача решается в диссертационной работе путем разработки алгоритма расчета нагрузок, позволяющего оптимизировать распределение нагрузки трансформаторных подстанции нефтегазовых промыслов с учетом изменения фактической мощности потребителей энергии. Предлагаемый алгоритм позволяет повысить долговечность работы трансформаторных подстанции и силового оборудования за счет приближения степени их загрузки к номинальной.

Для повышения энергетической безопасности эксплуатации нефтегазодобывающих предприятий, увеличения надежности энергоснабжения и снижения потерь при передаче и преобразовании, а также с целью снижения стоимости электрической и тепловой энергии, в настоящее время в нефтегазовой отрасли все чаще используются автономные источники. При этом возникает задача выбора типа, мощности и места расположения автономных энергоагрегатов, с учетом их надежности, рабочего ресурса, стоимости и минимальных потерь энергии при передаче ее потребителям.

Проведен анализ эксплутационных характеристик промышленных блочных энергетических источников отечественного и зарубежного производства. Показано, что по критериям «долговечность - себестоимость энергии - надежность» приоритетными для нефтегазодобывающих предприятий являются секционированные газопоршневые энергоагрегаты мощностью по электроэнергии порядка 1... 5 МВт, работающие на попутном газе.

Разработана методика оптимального размещения автономных источников и другого энергетического оборудования на территории месторождения. Показано, что предлагаемый алгоритм позволяет не только повысить надежность электроснабжения объектов нефтегазовых месторождений, но и уменьшить в 2...5 раз потери электроэнергии в линиях электропередач.

Автор выражает свою искреннюю благодарность своему научному консультанту профессору И.Р. Байкову за неоценимую помощь и поддержку в решении возникающих в ходе работы задач, профессорам И.Р. Кузееву, Ю.Г. Матвееву, В.А. Буренину, Ф. Ш. Хафизову, Ф.А. Агзамову, Р.Г. Шарафиеву за обсуждение работы и конструктивную критику, позволившую существенно улучшить структуру диссертации. Автор благодарен кандидатам технических наук К.Р. Ахмадуллину, В.Г. Дееву, В.Я. Соловьеву и СВ. Китаєву за предоставление данных для расчетов, полезные консультации по производственным вопросам и активное участие во внедрении разработок в производство, и сотрудникам кафедры «Промышленная теплоэнергетика» УГНТУ за внимание к работе автора.

Методы получения и обработки информации в нефтегазовой отрасли

Методы контроля параметров надежности технических систем базируются на данных первичных измерений физических величин - расходов, давлений, температур, электрических величин и т.п. Точность и объем проводимых измерений определяют предельно возможную точность модели, построенной на их основе.

В недавнем прошлом основным источником производственной информации служили записи в диспетчерских журналах, в которые с периодичностью от нескольких часов до суток заносились показания штатных измерительных приборов. При таком способе записи информации оперативность реагирования на возникшие неисправности оказывалась недопустимо низкой, кроме того, многие эффективные математические методы обработки информации и моделирования оказывались принципиально неприменимы из-за недостаточного объема выборок измеряемых параметров. Например, известно , что для вычисления таких параметров, как корреляционная размерность аттрактора, энтропия, спектр показателей Ляпунова, и других стохастических характеристик, необходимо иметь объем выборки не менее М М =102+0 4D ivi _ iviMHH iU j j где D - размерность аттрактора.

Если принять для стохастических процессов нефтедобычи D 2,8 , то число экспериментальных точек должно быть не менее 1000. Понятно, что такие объемы выборок могут быть получены только с помощью автоматических измерительных систем.

Технические возможности современных измерительных приборов и диагностических устройств позволяют решать подобные задачи. Устройства штатной автоматики, оборудование и приборы технической диагностики энергетических машин, нефтегазопромысловые информационно-измерительные системы, позволяют получать и сохранять в памяти десятки тысяч измерений.

Новые технологии позволили преодолеть одну из существенных трудностей, ограничивающих достоверность статистических оценок и математических моделей нефтегазовых технологических процессов - а именно недостаточность объема и невысокую точность данных промышленной эксплуатации.

Современные автоматические компьютерные системы, принятые в эксплуатацию в большинстве нефтегазовых компаний, позволяют практически неограниченно пополнять базы данных по эксплутационным параметрам, типам и движению в процессе эксплуатации всей номенклатуры оборудования, затратам энергетических ресурсов на производство продукции и по множеству других производственных данных и показателей. Активное внедрение компьютерных систем в нефтегазовых компаниях началось около 8-10 лет назад (1990-1995г.) и к настоящему времени объем накопленной информации достиг «критической массы», позволяющих осуществить качественный скачок в подходах к проблемам надежности, диагностирования и прогнозирования в нефтегазовой отрасли.

Рассмотрим простой пример из нефтедобычи, демонстрирующий необходимость «глубокого» во времени накопления данных. Пусть на среднем по масштабам месторождении эксплуатируются 500 глубинных насосов, со средним эксплутационным ресурсом около 500 суток. Таким образом, происходит приблизительно 1 выход насоса из строя в сутки. Для адекватного статистического анализа надежности насосов необходимо выделить конкретный типоразмер насоса и его марку, а также учесть тип дефекта или отказа. Нетрудно рассчитать, что при 30 различных типах насосов, 5 укрупненных типах отказов и минимальном объеме выборки в 20 событий, требуемый период наблюдений превышает 8 лет. За этот же срок необходима информация по дебитам, обводненности продукции, приемистости нагнетательных скважин и другие производственные данные, без которых невозможно учесть влияние условий эксплуатации на надежность насосов. Рассмотренный простой пример показывает, что проведение адекватных расчетов параметров надежности практически невозможно без применения компьютерных технологий.

С другой стороны, методы моделирования технологических процессов и прогнозирования аварий оборудования требуют также большого объема информации, но полученной за сравнительно короткие сроки, сравнимые с характерным временем развития дефектов или условий эксплуатации (дебитов, обводненности жидкости, динамических уровней, содержания примесей и пр.). Как показывает практика, длительность подобных периодов составляет около 15...30 суток . Таким образом, становится очевидной необходимость ежесуточных измерений параметров эксплуатации, что возможно лишь при автоматизированном сборе данных.

Воздействие условий эксплуатации на параметры надежности нефтегазового орудования

Одним из важных факторов, оказывающих влияние на долговечность и надежность оборудования нефтегазодобычи, является совокупность параметров и характеристик месторождения. Очевидно, что рабочий ресурс совершенно идентичного оборудования, работающего в разных условиях, будет различен. Поскольку эти факторы определяются независимо от особенностей конструкций оборудования, его типа, марки и конструкционных материалов, назовем их условно «внешними» факторами. Степень влияния того или иного внешнего фактора не остается постоянной, но изменяется в процессе разра ботки месторождения. Количественное описание показателей надежности производится с помощью функции распределения вероятностей случайных величин, таких как время безотказной работы устройства, интервалы между отказами и т.д. Учет влияния внешних условий приводит к необходимости учета временных зависимостей параметров распределений.

Изучение влияния внешних факторов на эксплутационную надежность нефтегазового оборудования является важнейшим условием повышения уровня надежности нефтедобычи и достоверности методов технической диагностики объектов нефтепромысла.

Наиболее полной информацией о случайной величине, например, о времени наработки оборудования на отказ, является ее функция распределения. Как было показано в предыдущей главе, параметры функции распределения однотипного технологического оборудования, а во многих случаях и сам характер распределения, зависит от множества факторов, таких как типоразмер оборудования и целый ряд параметров эксплуатации - свойств пласта и добываемого продукта, дебита скважины, методов поддержания пластового давления и т.п.

Поэтому параметры надежности одного и того же технологического оборудования зависят от характеристик месторождения, которые, в свою очередь, изменяются во времени. Это приводит к существенным затруднениям при попытках построения теоретических моделей для описания параметров надежности, даже в тех случаях, когда имеется значительный объем производственных данных по отказам оборудования.

Поэтому до настоящего времени наиболее достоверным методом определения законов распределения в исследованиях надежности нефтегазодобычи является построение эмпирических функций распределения . Использование электронных баз данных, широко практикуемое в настоящее время большинством нефтегазодобывающих предприятий, позволяет значительно повысить достоверность эмпирических моделей за счет увеличения объема экспериментальных данных. При этом, как будет показано ниже, оказывается возможным не только построение функций распределения для каждого типа применяемого промыслового технологического оборудования, но и учет временных зависимостей интенсивности отказов, а также выявление связи показателей надежности с условиями эксплуатации, которая выражается, в частности, в корреляции интенсивности отказов с местоположением оборудования на территории месторождения .

Наиболее часто в исследованиях по надежности нефтегазового оборудования используется однопараметрическое распределение со стационарным потоком отказов (показательное), двухпараметрическое (нормальное и распределение Вейбулла) . Использование для построения эмпирических моделей трех и более параметров требует значительного объема экспериментального материала и до настоящего времени широко не применяется.

Функции распределения параметров надежности могут быть представлены в различных эквивалентных формах - в виде интегрального закона распределения вероятности отказов во времени F(t), плотности распределения f(t) = dF/dt, функции вероятности безотказной работы R(t) =1- F(t) и т.д.

Для эмпирического определения параметров надежности в данной работе использовалось функция вероятности безотказной работы R(t), определявшаяся на основании информации эксплуатационных баз данных по отказам согласно соотношению:

Разработка методов анализа данных вибродиагностики роторных машин

Вибродиагностика является в настоящее время одним из основных методов оценки технического состояния сложного и дорогостоящего оборудования нефтегазовой отрасли - насосов, компрессоров, турбин. С развитием техники регистрации и обработки вибросигналов, и особенно, при переходе к цифровой форме представления данных, диагностические возможности метода значительно увеличились. Так, считается, что вибродиагностические методы в настоящее время позволяют получить достоверность диагноза (отношение числа верных диагнозов к общему их числу) до 90% .

Достоверность вибродиагностики зависит не только от совершенства техники измерения и регистрации сигналов, но и от математических методов, которые применяются при их анализе. Так, по данным достоверность диагностирования по среднеквадратичному значению (СКЗ) виброскорости составляет 60-70%, по спектрам вибросигналов - 80%, с применением кепст-рального анализа (гомоморфной фильтрации) - 83%. Полный же арсенал методов (в совокупности с применением анализа синхронных спектров) увеличивает адекватность оценки технического состояния газотранспортного оборудования до 85-87%. Заметим, однако, что подобная точность постановки диагноза возможна лишь при высокой квалификации специалистов, так как автоматическое задание параметров в подобных алгоритмах обработки весьма затруднительно.

На практике точность диагностирования значительно ниже. Как показал статистический анализ аварийных отказов газоперекачивающих агрегатов (ГПА), эксплуатирующихся в ДП «Баштрансгаз», традиционные методы идентификации технического состояния агрегатов позволяют предсказать не более 30% аварий. В связи с этим представляет интерес разработка альтернативных методов вибродиагностики.

В последнее время наметилась тенденция к развитию так называемого модального анализа, т.е. расчета характеристик собственных колебаний кон струкции на основе построения математической модели всего механизма или его узлов. Сопоставление теоретических и экспериментальных спектров агрегата, безусловно, упростит трактовку последних, но теория этого метода развита в настоящее время недостаточно, что затрудняет его практическое применение.

Обзор существующих методов обработки и анализа исходной виброинформации показывает, что математическая обработка сигнала практически во всех случаях ограничивается фильтрацией, вычислением СКЗ и преобразованием Фурье. В данном разделе проведена попытка повышения достоверности вибродиагностического анализа с учетом шумовой составляющей измерений, а также рассмотрены возможности использования в диагностических целях методов, основанных на применении математической статистики, теории нелинейных явлений и синергетики.

Механические колебания узлов роторных машин, таких как газоперекачивающие агрегаты и нефтяные насосы, несут информацию о техническом состоянии агрегата в частотном диапазоне 10-1000 Гц, что используется для вибродиагностики .

Как показывает практика виброобследований, спектры колебаний одного и того же узла агрегата значительно отличаются, даже если период между записями спектров составляет часы и даже минуты. Этот факт не удается объяснить проявлением дефекта или изменением режима работы машины, следовательно, имеют место неучтенные при записи спектров колебания с большим периодом. Поскольку сами по себе низкочастотные колебания (НЧ) не могут изменить высокочастотный (ВЧ, имеется ввиду информативный диапазон 10-1000 Гц) спектр, то можно предположить, что нестабильность спектров во времени обусловлена нелинейным взаимодействием колебаний высоких и низких частот, что приводит к модуляции ВЧ колебаний с возникновением ряда комбинационных суммарных и разностных частот .

Рассмотрим один из подходов к изучению природы этого явления. Традиционно спектры принято представлять в виде суммы детерминированной и случайной составляющей ЧЯ = (/) + (/), (3.1) где V- амплитуда виброскорости; 0- функция, описывающая изменение амплитуды виброскорости от частоты в ВЧ диапазоне, которую можно представить в виде ряда Фурье i=m 0(/) = 0,(й) = S sin(+ Г І); і = 0 (f) - шумовая составляющая сигнала, имеющая в общем случае произвольное распределение.

В наших предположениях функция (f) описывает не шум, а является результатом нелинейного взаимодействия колебаний различных частотных диапазонов.

Функция 0(f) определяется механическим состоянием роторной машины и именно по ней возможно определение возникающих дефектов. Однако для выделения этой функции в «чистом виде» необходимо располагать информацией о зависимости (f), или, по крайней мере, оценить степень ее влияния на информативный ВЧ спектр.

Обобщенные характеристики фонда добывающих скважин месторождения и оценка эффективности ГТМ

Методы диагностики технического состояния нефтедобывающего оборудования, рассмотренные во второй главе настоящей работы, позволяют строить некоторую шкалу оценок технического состояния отдельных элементов месторождения (скважина, насос, коллектор и пр.). Однако подобная информация является недостаточной для оценки уровня технического состояния месторождения, рассматриваемого как единый объект.

Сам по себе постоянный контроль технических и технологических характеристик оборудования, эксплуатирующегося на отдельных скважинах, представляет интерес лишь с точки зрения диагностики оборудования и предупреждения аварий на единичных объектах, но не дает информации о техническом состоянии объекта (месторождение, цех, группа скважин), как единого целого.

Даже определив множество коэффициентов технического состояния разнотипного оборудования установленного на нефтяном промысле, сталкиваешься с проблемой интегральной оценки технического состояния всей совокупности оборудования, установленного на скважинах с различным сроком службы, различной обводненностью добываемой нефти, различным газовым фактором и пр.

В связи с этим представляется актуальным разработка методов интегральной оценки уровня технического состояния всего оборудования, эксплуатирующегося в пределах одного месторождения.

Рассмотрим один из подходов позволяющих реализовать комплексную оценку состояния фонда скважин. Этот подход реализован нами в работах . Построение предлагаемого комплексного показателя технического состояния какой-либо совокупности нефтедобывающих скважин основан на использовании коэффициента Джини .

Коэффициент Джини - Ка - используется в социологии для описания степени неравномерности распределения совокупного дохода общества по различным слоям населения. При полном равенстве доходов Kd = 0, если же общество резко дифференцированно по слоям (доходам), то Kd - 1.

Подобные свойства коэффициента Джини позволяют количественно оценивать вклад единичных составляющих в получение результирующего продукта по всей системе в целом.

Рассмотрим физический смысл коэффициента Kd применительно к задаче оценки технического состояния фонда добывающих скважин.

На рис.4.1 представлены результаты обработки данных по накопленным дебитам отдельных скважин месторождениях СП "ВатОйл" ТИП "Кога-лымнефтегаз" ООО "ЛУКОЙЛ-Западная Сибирь", полученных из базы данных ИИС СКАТ-95 для СП "ВатОйл".

При построении рис.4.1 дебиты единичных скважин предварительно ранжировались по величине относительно вклада в общий объем добычи в пределах месторождения. Геометрически, в координатах «общий объем добычи - дебит скважины (или «куста»)» Kd равен отношению площадей ОАВСО к площади треугольника OBD.

Очевидно, что если все скважины были идентичны по параметрам и давали бы равный вклад в общий суточный объем добычи нефти по месторождению, то огибающая ОАВ выродилась бы в биссектрису соответствующего координатного угла, а коэффициент Kd был бы равен нулю.

В реальных условиях равномерное распределение дебитов добывающих скважин - событие практически невозможное. Фактическое распределе ние добычи всегда описывается кривой подобной ОАВ (с той или иной степенью кривизны), которая носит название кривой Лоренца.

Подобное представление информации о суточных дебитах позволяет утверждать, что коэффициент Джини, характеризующий степень неравномерности дебитов отдельных скважин, заключен в пределах О Kd 1 Значению Kd =1 соответствует тот предельный случай, когда добычу всего месторождения обеспечивает лишь одна скважина.

Рассмотрим предлагаемый метод оценки технического состояния фонда эксплуатационных скважин на примере обработки информационной базы данных СП «ВатОйл».

При этом в соответствии с результатами исследований , будем считать, что наиболее информативным параметром, наиболее полно характеризующим текущее техническое состояние нефтедобывающего оборудования является добыча нефти.

Основ­ными источниками экономической эффективности в сфере эксплуа­тации являются повышение надежности техники, повышение ее производительности, снижение сопутствующих капитальных затрат, снижение затрат эксплуатационных материалов, затрат на техни­ческое обслуживание и ремонт.

Все перечисленные источники могут проявляться самостоятель­но, но чаще всего взаимосвязаны между собой. Так, повышение надежности техники увеличивает ее производительность, хотя по­следняя после стандартизации может возрасти и в силу других причин - изменения конструкции, автоматизации отдельных эле­ментов, использования прогрессивных материалов и пр.

Учет экономического эффекта, возникающего в результате по­вышения надежности техники, является исключительно сложным процессом. Для его раскрытия необходимо более детально рас­смотреть составляющие его элементы.

Надежность техники является комплексным показателем и ха­рактеризуется такими свойствами изделий, как безотказность, дол­говечность, ремонтопригодность и сохраняемость. По каждому из этих свойств установлен ряд показателей, характеризующих на­дежность изделия и регламентированных в НТД на продукцию и, в частности, в государственных стандартах. Основные показатели надежности техники отражены в табл. (3.4).

В целом повышение надежности меняет производительность техники, ее срок службы, эксплуатационные затраты, размер ка­питаловложений, т. е. все составляющие, используемые при расчете экономического эффекта от использования новой техники. Однако каждое из отдельных свойств надежности вносит свой вклад в по­лучение народнохозяйственного эффекта, и поэтому методы его расчета имеют свою специфику.

Экономический эффект от повышения безотказности определя­ется по формуле:

где C 1 и C 2 - себестоимость единицы продукции до и после повы­шения надежности; K 1 и K 2 - удельные капитальные вложения в производственные фонды до и после повышения надежности; Е Н - нормативный коэффициент экономической эффективно­сти; В 1 и В 2 - годовые объемы продукции (работы), производимой одной машиной до и после повышения надежности; и- годовые эксплуатационные издержки потребителя до и после повышения надежности в расчете на объем продукции (работы), производимой машиной с повышенной надежностью;и- сопутствующие капитальные вложения потребителя (без учета стоимости машины) до и после повышения надежности в расчете на объем продукции (работы), производимой машиной с повышен­ной надежностью;Р 2 -доля отчислений от балансовой стоимости на полное восстановление (реновацию) машины с повышенной надежностью;А 2 - годовой выпуск машин повышенной надежно­сти.

Таблица 3.4

Комплексный подход к изучению надежности

Основные свойства надежности

Характеристика свойств надеж­ности единичного изделия

Основные показатели

надежности

изме­рения

Безотказность

Наработка на от­каз

Наработка до от­каза

Установленная безотказ­ная наработка

Средняя наработка на отказ

Долговечность

Срок службы

Установленный ресурс

Средний ресурс.

Уста­новленный срок службы. Средний срок службы

Часы работы, циклы, км.пробега

Ремонтопри­годность

восстанов­ления

Среднее время восста­новления.

Удельная трудоемкость

восстановления

Месяцы, годы,

Сохраняемость

Срок сохраняемо­сти

Установленный срок со­храняемости.

Средний срок сохраняе­мости

В некоторых случаях коэффициент учета роста производитель­ности (B 2 /B 1) может быть представлен в виде:

где Т 1 и Т 2 - время работы оборудования до и после повышения надежности;

где δ - коэффициент загрузки оборудования; Ф об - эффективный годовой фонд времени.

Специфика расчетов экономической эффективности повышения надежности по каждому из его свойств проявляется не только в методе расчета самого эффекта, но и необходимых затрат, связан­ных с повышением того или иного показателя. Поэтому по каждо­му из описываемых элементов надежности необходимо рассмот­реть методы расчета затрат на достижение повышенных показа­телей надежности.

Затраты на повышение безотказности и методы их расчета можно представить в следующем виде:

единовременные затраты, включающие проведение проектных работ, увеличение затрат на установку более безотказных комп­лектующих деталей, узлов, агрегатов, осуществление резервирова­ния отдельных узлов и механизмов, определяются по формуле:

(3.59)

где К ПР - стоимость проектных работ; - увеличение стоимости отдельных деталей, узлов, агрегатов;п - количество деталей,узлов и агрегатов, подлежащих модернизации; - стоимость дополнительных устройств и механизмов;m

Разница в текущих затратах , складывающихся за счет более частого проведения профилактических осмотров, более тщатель­ного диагностирования технического состояния деталей, узлов, агрегатов и машины в целом, определяется по формуле:

(3.60)

где и-годовые эксплуатационные издержки до и после повышения надежности;B 2 /В 1 - коэффициент учета роста произ­водительности.

Экономический эффект от повышения долговечности определя­ется по формуле:

где С 1 и С 2 - себестоимость единицы продукции до и после повы­шения долговечности; K 1 и К 2 - удельные капитальные вложения в производственные фонды до и после повышения долговечности; Е - нормативный коэффициент экономической эффективно­сти; Р 1 и P 2 - доли отчислений от балансовой стоимости на полное восстановление (реновацию) до и после повышения долговечности; и- годовые эксплуатационные издержки до и после повы­шения долговечности;и- сопутствующие капитальные вложения потребителя до и после повышения долговечности;А 2 - годовой выпуск продукции с повышенной долговечностью.

Затраты на повышение долговечности также следует разделить на единовременные и текущие затраты.

Единовременные затраты, включающие стоимость проектных работ, увеличение стоимости отдельных деталей, узлов, агрегатов, введение дополнительных узлов и механизмов, определяются по формуле:

(3.62)

где К ПР - стоимость проектных работ; - увеличение стоимости отдельных деталей, узлов, агрегатов;- стоимость дополнительных устройств и механизмов;п - количество деталей, узлов и агрегатов, подлежащих модернизации; m - количество допол­нительных устройств и механизмов.

Текущие затраты, складывающиеся за счет более частого про­ведения профилактических осмотров и ремонтов, более тщатель­ного диагностирования технического состояния деталей, узлов, аг­регатов и машины в целом, определяются по формуле:

где Р 1 i и Р 2 j - количество осмотров и ремонтов одного видаi -го или j -го в год; З 1 и З 2 - затраты на проведение осмотров и ремонтов каждого вида; п и m - количество видов осмотров и ремонтов до и после повышения долговечности.

Экономическая эффективность повышения ремонтопригодности определяется по формуле:

где C 1 и С 2 - себестоимость единицы продукции до и после повы­шения ремонтопригодности; K 1 и К 2 - удельные капитальные вло­жения в производственные фонды до и после повышения ремонто­пригодности; Е Н - нормативный коэффициент экономической эффективности; B 1 и В 2 - годовой объем продукции (работы), про­изводимой машиной с повышенной ремонтопригодностью; Р 2 - до­ля отчислений от балансовой стоимости на полное восстановление (реновацию) машины с повышенной ремонтопригодностью; и- годовые эксплуатационные издержки до и после повыше­ния ремонтопригодности;и- сопутствующие капитальные вложения потребителя до и после повышения ремонтопригодности;А 2 -годовой выпуск продукции с повышенной ремонтопригод­ностью.

Затраты на повышение ремонтопригодности разделяются на единовременные, включающие стоимость проектных работ и затра­ты на разработку ремонтной документации, и текущие, связанные с увеличением стоимости отдельных узлов и механизмов, изготов­ленных с учетом требований повышения их приспособленности к техническому обслуживанию и ремонту. В результате повышения ремонтопригодности достигается:

уменьшение годовых эксплуатационных издержек:

увеличение коэффициента роста производительности:

И, наконец, последними являются показатели сохраняемости изделий. Источниками экономии в связи с повышением сохраняе­мости являются: уменьшение затрат на монтаж; сокращение сро­ков освоения проектной мощности.

Экономический эффект от повышения сохраняемости определя­ется по формуле:

где С 1 и С 2 - себестоимость единицы продукции до и после по­вышения сохраняемости; К 1 и К 2 - удельные капитальные вложе­ния в производственные фонды до и после повышения сохраняемости; Е Н - нормативный коэффициент экономической эф­фективности; и- годовые эксплуатационные издержки до и после повышения сохраняемости;и- сопутствующие капитальные вложения потребителя до и после повышения сохра­няемости;Р 2 - доля отчислений от балансовой стоимости на пол­ное восстановление (реновацию) машины с повышенной сохраня­емостью; А 2 - годовой выпуск продукции с повышенной сохраня­емостью.

Затраты на повышение сохраняемости образуются за счет:

увеличения стоимости проектных работ, в результате чего вы­рабатываются более совершенные конструктивные решения;

использования более эффективных методов консервации и упа­ковки;

улучшения условий хранения.