Техническое состояние. Процессы изменения состояния объектов

В многозадачной компьютерной системе процессы могут принимать различные состояния. Эти состояния в действительности могут не различаться ядром операционной системы, они удобная абстракция для понимания процессов.

Различные состояния процесса показано на диаграмме состояний, на которой стрелками показано переходы между состояниями. Как видно, некоторые процессы сохраняются в основной памяти, а другие во вторичной (виртуальной) памяти.

Основные состояния процесса

Во всех типах компьютерных систем процессы имеют следующие состояния:

  1. Созданный (новый)
  2. Ожидающий (готов)
  3. Запущенный
  4. Блокированный
  5. Завершенный

Созданный

(Другое название - новый ). Когда процесс создается впервые, он попадает в положение «создан» или «новый». В этом состоянии он ожидает входа в состояние «готов». В этом состоянии процесс может быть воспринят или отложен долгосрочным планировщиком.
В большинстве настольных компьютерных систем выбор выполняется автоматически, однако в операционных системах реального времени выбор может быть отложен. В системах реального времени перевод слишком большого числа процессов в состояние «готов» может привести к переконкуренции за системные ресурсы, что ведет к невозможности завершения процесса до заданного срока.

Готов

(Другое название - ожидающий). «Готов» процесс уже загружен в основную память и ожидает выполнения центральным процессором (контекстное переключение будет осуществлено диспетчером или краткосрочным планировщиком). В компьютерной системе может быть много «готовых» процессов. В однопроцессорной системе только один процесс будет выполняться в конкретный момент времени, все остальные «одновременно выполняемые» процессы будут ожидать выполнения.

Запущенный

(Другие названия - активный или исполняемый). «Запущенным» является тот процесс, который в данный момент выполняется центральным процессором. Если процесс исчерпает отведенный ему интервал времени, операционная система переключит контекст процесса снова в состояние «готов». Переключение контекста также может произойти, когда процесс завершится или когда он будет блокирован, нуждаясь в некотором ресурсе (например, ввода / вывода) и тогда он будет перемещен в положение «блокирован».

Блокированный

Если процесс «заблокируется» на ресурсе, он будет отстранен от процессора (ибо процесс не может продолжать исполнение) и переведен в блокированное состояние. Процесс будет оставаться "заблокированным" пока соответствующий ресурс не станет доступен. О разблокировании ресурса заблокированному процессу сообщает операционная система (о доступности ресурса сама операционная система сообщается с помощью прерывания). Как только операционная система узнает, что процесс разблокирован, он переводится в состояние "готов", с которого он может быть переведен в состояние «исполняемый», в котором он сможет использовать заново доступный ресурс.

Завершенный

Процесс может завершиться либо когда он в состоянии «исполняемый» и завершит свое выполнение, или когда его будет явно «снято» по команде оператора. В обоих случаях процесс переходит в состояние «завершенный». Если процесс не будет отстранен от памяти после вхождения в это состояние, то это состояние называется "зомби".

Дополнительные состояния процесса :

В системах, поддерживающих виртуальную память, возможны еще два дополнительных состояния. В обоих этих состояниях процесс «находится» во вторичной памяти (преимущественно - жесткий диск).

Выгруженный и ожидающий

(Другое название - приостановленный и ожидающий). В системах, которые поддерживают виртуальную память, процесс может быть выгружен из основной памяти и помещен в виртуальную память среднесрочным планировщиком. Оттуда, процесс может быть выгружен в состояние «ожидающий».

Выгруженный и заблокированный

(Другое название - приостановлен и блокирован). Процессы, которые являются заблокированными, могут также быть выгружены. В этом случае процесс является «выгружен и ожидающий» и может быть выгружен в тех же случаях, что и «выгружен и ожидающий процесс» (хотя в этом случае процесс будет в блокированном состоянии и может все еще ожидать пока ресурс станет доступным).

Процессы изменения технического работоспособного состояния объектов в принципе представляют собой процессы старения и деградации, приводящие к отказу изделия.

Причины изменения технического состояния объектов:

а) конструктивные (несовершенство конструкций изделий);

б) технологические (нарушение принятой технологии изготовления или ввиду ее неоптимальности);

в) эксплуатационные (нарушение правил эксплуатации);

г) старение и износ, приводящие к тому, что даже изделия высокого качества (с хорошими конструкцией и технологией, правильной эксплуатацией) отказывают с течением времени.

По характеру протекания процессы деградации можно разбить на две группы:

1) вызывающие внезапное (катастрофическое) изменение технического состояния вследствие резкого изменения условий протекания физических процессов в изделии, приводящего к скачкообразному изменению характеристик объектов (поломки от перегрузок, заедания, из-за погрешностей изготовления, ошибок обслуживающего персонала, сбоя системы управления и т. п.);

2) процессы, приводящие к постепенному изменению состояния (т. е. деградационные изменения в материалах (изделиях) с течением времени накапливаются и приводят к дрейфу параметров и потере работоспособности), износ, старение, коррозия, усталость и т. д.

В общем случае процесс изменения состояния машины можно представить в виде

где - вектор - функция от t; составляющая (кси) характеризует в машине необратимые изменения; (эта) - обратимые изменения; - погрешность измерительных цепей.

Составляющая определяет (тенденцию) «тренд» или закономерность постепенного изменения процесса, в большей степени детерминированную его часть, а и характеризуют стохастическую часть процесса.

Для простоты описания и можно их объединить и получить выражение:

Таким образом, деградационные процессы, по причине возникновения, могут быть детерминированными (закономерными, характеризующими постоянные отказы) и стохастическими (случайными).

В настоящее время существует пакет прикладных программ, реализующих алгоритмы прогнозирования деградационных процессов и микропроцессорные устройства для осуществления прогнозирования.

Системы диагностирования

Современные системы мониторинга позволяют уже не только контролировать величины параметров, сравнивая их с пороговыми значениями, и выявлять тенденции их изменения во времени, но и прогнозировать время , когда они достигнут пороговых значений.

Проблемы пользователя систем мониторинга связаны с необходимостью расшифровывать, оценивать, интерпретировать обнаруживаемые и прогнозируемые изменения состояния. Естественной границей, разделяющей системы мониторинга и диагностики, мог бы быть этап деления обнаруженных изменений на две группы, а именно, обратимые (т.е. изменение условий работы машины) и необратимые (дефекты). К сожалению, ни одна из систем мониторинга не решает полностью задачу такого деления. Поэтому системы диагностики должны вступать в действие до того, как обнаруженные системой мониторинга изменения будут разделены на группы обратимых и необратимых. В связи с этим, одной из основных характеристик систем диагностики следует считать глубину ее интеграции в систему мониторинга (т. е. стремятся т. о. повысить эффективность процесса систем диагностирования в целом).


Структура системы диагностирования

В общем случае система диагностирования состоит из 3-х элементов: объекта диагностирования (ОД), технических средств диагностирования (ТСД) и оператора (Оп).

Объект в системе диагностирования рассматривают как единое целое или как совокупность структурных единиц, объединенных связями (в том случае, если требуется диагностика отдельных частей объекта в различные моменты времени).

Для проведения функционального диагностирования и мониторинга используют ТСД, основой которого являются средства съема и обработки информации о состоянии объекта. Для осуществления тестового диагностирования в состав ТСД вводят средства, формирующие и стимулирующие тестовые воздействия, подаваемые на объект (по которым оценивают состояние машины, объекта). К ТСД помимо специальных устройств, различных датчиков относят также программные средства.

В самом общем случае оператор (человек) в СД выполняет следующие функции:

Воспринимает информацию о ходе диагностирования;

Осуществляет анализ поступившей информации;

В соответствии с результатами анализа принимает решение, формирует и выдает команды в СД.

Основными средствами приема информации у Оп являются зрение (~80% информации)и слух (~15%).

Важнейшей характеристикой систем диагностики является необходимая степень подготовки оператора. По объему требуемой от оператора диагностической подготовки системы могут быть разделены на три группы.

Первая группа – профессиональные системы диагностики , в которых оператор самостоятельно выбирает информационную технологию (т. е. технологию, методы получения диагностической информации) и средства измерения. Знания и опыт оператора-эксперта при использовании подобной системы полностью определяют глубину и достоверность диагноза и прогноза.

Вторая группа – экспертные системы диагностики , включающие в себя экспертные программы, содержащие ответы на типовые запросы оператора, т. е. помогающие оператору принимать решение в определенных ситуациях. Экспертные системы могут применяться операторами, имеющими специальную подготовку, но не обладающими знаниями и опытом экспертов-профессионалов.

Третья группа – системы автоматического диагностирования . Они строятся по методам, позволяющим автоматизировать постановку диагноза, формируя для оператора программу измерений, и не требуя от пользователя специальной подготовки. Время обучения оператора работе с такими диагностическими системами не превышает двух-трех дней. В настоящее время системы автоматического диагностирования получают широкое распространение, непрерывно расширяя номенклатуру диагностируемых машин и оборудования.

В зависимости от задач, решаемых в процессе диагностирования, характера использования и эксплуатации, а также конструктивных особенностей ОД элементы в системе диагностирования могут иметь различные связи или, иначе говоря, иметь различную структуру. Наиболее простую структуру имеет СД (рис.), предназначенная для функционального диагностирования.


восприятие

Входной выходной

функционирует

Х 0 – входные воздействия, поступающие на функционирующий ОД;

У 0 – реакция ОД на входные воздействия.

С рабочего или контрольных выходов ОД на ТСД поступают сигналы, несущие информацию о качестве продукции или выполнения ОД своих функций. Оп воспринимает с ТСД информацию о состоянии объекта и воздействует на ТСД, уточняя диагноз (проверяет, повторяет измерения). Характерная особенность этой СД – отсутствие связей Оп с объектом и односторонняя связь ТСД с ОД. Такой тип структуры применяют в том случае, когда необходимо оценить состояние объекта, правильное функционирование (работоспособное или неработоспособное) в процессе выполнения поставленных перед ним задач. Оператор принимает решение о дальнейшем использовании объекта без вмешательства в его рабочие функции.

х

В этой статье мы поговорим на такие темы, как: планирование процессов операционной системой, выделение ресурсов процессу, состояния процесса в ОС .

Понятие «вычислительный процесс » (или просто «процесс») является одним из основных при рассмотрении свойств ОС. Последовательный процесс (задача) – это выполнение отдельной программы с ее данными на последовательном процессоре (программа, находящаяся в решении).

Например:

  • Выполнение прикладных программ пользователей.
  • Выполнение утилит и других системных обрабатывающих программ.
  • Трансляция исходной программы, ее исполнение.

Планирование процессов

В первых вычислительных системах любая программа могла выполняться только после полного выполнения предыдущей задачи. Такой режим работы получил название однозадачного (однопрограммного ).

Поскольку первые вычислительные системы были построены в соответствии с принципами Джона Фон Неймана, все подсистемы и устройства компьютера управлялись исключительно центральным процессором. ЦП осуществлял и выполнение вычислений, и управление операциями ввода/вывода данных. Соответственно, пока осуществлялся обмен данными между оперативной памятью и внешними устройствами, процессор не мог выполнять вычисления.

Введение в состав вычислительной машины специальных контроллеров позволило совместить во времени (распараллелить) операции вывода полученных данных и последующие вычисления на ЦП. Однако все равно процессор продолжал часто и долго простаивать, дожидаясь очередной операции ввода/вывода. Поэтому было предложено организовать, так называемый, мультипрограммный (мультизадачный, многозадачный) режим работы вычислительной системы. Суть его заключается в том, что пока одна программа (один процесс или задача) ожидает завершения очередной операции ввода/вывода, другая программа (другая задача) может быть поставлена на решение.

Многозадачный режим можно охарактеризовать следующим образом:

  • благодаря совмещению во времени двух задач общее время их выполнения становится меньше, чем, если бы мы выполняли их по очереди (запуск одной из них после завершения другой).
  • время выполнения каждой задачи в общем случае становится больше, чем, если бы мы выполняли каждую из них как единственную: всякое разделение ресурсов замедляет работу одного из участников за счет дополнительных затрат времени на ожидание выполнения ресурса.

Выделение ресурсов

ОС поддерживает мультипрограммирование и старается эффективно использовать ресурсы путем организации к ним очередей запросов, составляемых тем или иным способом. Это требование достигается поддерживанием в памяти более одного процесса, ожидающего процессор, и более одного процесса готового использовать ресурсы, как только последние станут доступными.

При необходимости использовать какой–нибудь ресурс (оперативную память, устройства ввода/вывода, массив данных и др.) задача обращается к супервизору ОС (ее центральному управляющему модулю), посредством специальных вызовов (команд, директив) и сообщает о своем требовании. При этом указывается вид ресурса и, если надо, его объем (например, количество адресуемых ячеек ОП, количество дорожек или секторов на системном диске, устройство печати и объем выводимых данных).

Супервизор ОС может состоять из нескольких модулей: супервизора ввода/вывода, супервизора прерываний, супервизора программ, диспетчер задач и т.д.

Директива обращения к ОС передает ей управление, переводя процесс в привилегированный режим работы, если такой существует. Ресурс может быть выделен, задачей, обратившейся к супервизору с соответствующим запросом, если:

  • он свободен и в системе нет запросов от задач более высокого приоритета к этому же ресурсу.
  • текущий запрос и ранее выданные запросы допускают совместное использование ресурса.
  • ресурс используется задачей низшего приоритета и может быть временно отобран (разделяемый ресурс).

Получив запрос, ОС либо удовлетворяет его и возвращает управление задаче, выдавшей данный запрос, либо, если ресурс занят, ставит задачу в очередь к ресурсу, переводя ее в состояние ожидания. Очередь к ресурсу может быть организована несколькими способами, но чаще всего это осуществляется с помощью списковой структуры.

После окончания работы с ресурсом задача опять с помощью специального вызова супервизора (посредством соответствующей директивы) сообщает ОС об отказе от ресурса, или ОС забирает ресурс сама, если управление возвращается супервизору после выполнения какой-либо системной функции. Супервизор ОС, получив управление по этому обращению, освобождает ресурс и проверяет, имеется ли очередь к освободившемуся ресурсу. Если очередь есть – в зависимости от принятой дисциплины обслуживания (правила обслуживания) и приоритетов заявок он выводит из состояния ожидания задачу, ждущую ресурс, и переводит ее в состояние готовности к выполнению. После этого управление либо передается данной задаче, либо возвращается той, которая только что освободила ресурс.

При выдаче запроса на ресурс задача может указать, хочет ли она владеть ресурсом монопольно или допускает совместное использование с другими задачами.

Если в системе имеется некоторая совокупность ресурсов, то управлять их использованием можно на основе монопольной стратегии. Стратегия подразумевает четкую формулировку целей, следуя которым можно добиться эффективного распределения ресурсов.

В однопрограммной ОС присутствует только один пользовательский процесс. В мультипрограммной системе на ресурсы могут претендовать много независимых процессов.

Планирование процессов – это управление распределением ресурсов процессора между различными конкурирующими процессами путем передачи им управления согласно некоторой стратегии планирования.

Состояние процесса

Процесс создается, когда выполнение задания пользователя начинается, и уничтожается, когда задание завершается.

Если обобщать и рассматривать не только обычные ОС общего назначения, но и, например ОС реального времени, то можно сказать, что процесс может находиться в активном и пассивном состоянии.

В активном состоянии (то есть во время своего существования) процесс может участвовать в конкуренции за использование ресурсов в ОС, а в – пассивном – он только известен системе, но в конкуренции не участвует (хотя его существование в системе сопряжено с предоставлением ему оперативной и/или внешней памяти).

В свою очередь активный процесс может быть в одном из следующих состояний:

  • Выполнения (running ) – все затребованные процессом ресурсы выделены. В этом состоянии в каждый момент времени может находиться только один процесс, если речь идет об однопроцессорной вычислительной системе (процесс использует процессор для выполнения своих команд). В многопроцессорных системах при наличии соответствующей ОС количество активных процессов может достигать числа процессоров.
  • Готовности к выполнению (ready ) – ресурсы могут быть предоставлены, тогда процесс перейдет в состояние выполнения (процессы не блокированы и не активны).
  • Блокирования или ожидания (blocked) – затребованные ресурсы не могут быть предоставлены, или операция ввода/вывода не завершена (выполнение процесса может быть продолжено только после наступления некоторого ожидаемого им события).

Таким образом, возможные переходы из одного состояния процесса в другое в общем случае можно представить следующей схемой:

В любой момент времени выполняющимся процессом (т.е. использующим процессор) может быть только один процесс. При передаче управления процессу пользователя ОС устанавливает интервальный таймер. Тем самым задается квант времени, являющийся максимальным количеством времени процессора, на которое процесс получает управление. Если это время истекает, процесс переводится из состояния выполнения в состояние готовности. После этого ОС, согласно стратегии планирования, выбирает следующий процесс, находящийся в готовности, переводит его в состояние выполнения и передает ему управление.

Выбор процесса и передачу на него управления называют диспетчеризацией . Часть операционной системы, выполняющая эту функцию, называется диспетчером (dispetcher).

В обычных ОС (на рассматривая ОС реального времени) процесс появляется при запуске какой-нибудь программы. ОС организует (выделяет) для нового процесса соответствующий дескриптор процесса и процесс начинает выполняться. Поэтому пассивного состояния не существует.

В ОС реального времени ситуация иная. Обычно при проектировании системы реального времени уже заранее бывает известен состав программ (задач), которые должны будут выполняться. Известны и многие их параметры, которые необходимо учитывать при распределении ресурсов (объем памяти, приоритет, средняя длительность выполнения, открываемые файлы, используемые устройства и т.п.). Поэтому для них заранее заводят дескрипторы задач, с тем, чтобы в последствии не тратить драгоценное время на организацию дескриптора и поиск для него необходимых ресурсов. Таким образом, в ОС реального времени многие процессы (задачи) могут находиться в состоянии бездействия – пассивном состоянии.

Переходы между состояниями процесса

За время своего существования процесс может неоднократно совершать переходы из одного состояния в другое. Это обусловлено следующими факторами:

  • обращениями к ОС с запросами ресурсов.
  • обращениями к ОС с запросами на выполнение системных функций.
  • взаимодействием с другими процессами.
  • появлением сигналов прерывания таймера.
  • появлением сигналов прерывания устройств ввода/вывода и др.

Возможные переходы процесса из одного состояния в другое отображены в виде схем состояний. Процесс из состояния бездействия может перейти в состояние готовности в следующих случаях:

  1. По команде оператора (пользователя). Имеет место в тех диалоговых ОС, где программа может иметь статус задачи (и при этом являться пассивной), а не просто быть исполняемым файлом и только на время исполнения получать статус задачи (как это происходит в большинстве современных ОС).
  2. При выборе из очереди планировщика (характерно для ОС, работающих в пакетном режиме).
  3. По вызову из другой задачи (посредством обращения к супервизору один процесс может создать, инициировать, приостановить, остановить, уничтожить другой процесс).
  4. По прерыванию от внешнего инициативного устройства (сигнал о свершении некоторого события может запускать соответствующую задачу).

Устройство называется инициативным, если по сигналу запроса на прерывание от него должна запускаться некоторая задача.

  • При наступлении запланированного времени запуска программы.

Из состояния выполнения процесс может выйти по одной из следующих причин:

  1. Процесс завершается, при этом он посредством обращения к супервизору передает управление ОС и сообщает о своем завершении. В результате этих действий супервизор либо переводит его в список бездействующих процессов (процесс переходит в пассивное состояние), либо уничтожает (уничтожается не сама программа, а именно задача, которая соответствовала выполнению некоторой программы). В состояние бездействия процесс может быть переведен принудительно: по команде оператора или путем обращения к супервизору ОС из другой задачи с требованием остановить данный процесс.
  2. Процесс переводится супервизором ОС в состояние готовности к исполнению в связи с появлением более приоритетной задачи или в связи с окончанием выделенного ему кванта времени.
  3. Процесс блокируется (переводится в состояние ожидания) либо вследствие запроса операции ввода/вывода либо в силу невозможности предоставить ему ресурс, запрошенный в настоящий момент, а также по команде оператора на приостановку задачи, или по требованию через супервизор другой задачи.

Таким образом, движущей силой, меняющей состояние процессов, являются различные события. Один из основных видов событий — это прерывание.


Изобретение относится к области структурного распознавания образов и может быть использовано в автоматизированных системах оперативной диагностики технического и функционального состояний многопараметрического объекта по данным измерительной информации, а также в системах идентификации, распознавания, контроля и диагностики технического и функционального состояний изделий авиационной и космической промышленности, а также в энергетике и финансово-экономической деятельности. Технический результат заключается в наглядном представлении для динамического анализа обобщенных данных о состоянии многопараметрического объекта. Технический результат достигается за счет того, что производится оперативное преобразование результатов допусковой оценки факта и направления изменения динамических параметров по контролируемой характеристике исследуемого процесса в соответствующие информационные сигналы с обобщением по всему множеству параметров в заданном временном интервале, при динамическом анализе которых определяют относительную величину и характер изменения интегрального состояния многопараметрического объекта. 3 ил.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Изобретение относится к области структурного распознавания образцов и может быть использовано в автоматизированных системах оперативной диагностики технического и функционального состояний многопараметрического процесса или объекта (МПО) по данным измерительной информации, а также для динамического анализа изменения состояний сложных объектов и процессов в экономике, финансах и энергетике. Известны устройства и способы контроля и диагностики состояний технического объекта (СССР, А.С. N-01504653, A1, G 06 F 15/46, 1989 г.), при реализации которых в процессе контроля и диагностики фиксируются медленные изменения параметров за каждый цикл, а полученные данные сравниваются с эталонными значениями и на основании сравнения делается заключение о состоянии объекта, а также способ для ввода считываемых автоматически цифровых данных в полутоновые изображения (ЕВП/ЕР/, N-0493053, A2, G 06 K 1/12, 19/06, 15/00, 1992 г.) и способ обработки данных (ЕВП/ЕР/, N-0493105, A1, G 06 F 15/20, 1992 г.). Предлагаемые устройства и способы не позволяют оперативно проводить диагностику состояний МПО по большому множеству измерительных параметров. Наиболее близким по технической сущности является способ контроля и оценки технического состояния МПО по данным телеметрической информации (Патент N 2099792, Бюллетень N 35, 1997 г. М., кл. G 06 F 7/00, 15/00). Использование предлагаемого способа в реальных условиях обеспечивает проведение локального динамического анализа текущего состояния объекта диагностики с оперативным обнаружением источников возмущений и мест их возникновения в объектах по данным телеметрической информации. Вместе с тем, способ не позволяет проводить динамический анализ обобщенного состояния объекта (процесса) по всему объему диагностической информации, в том числе с определением величины и характера изменения интегрального состояния (класса состояний) объекта. Цель изобретения - наглядное представление для динамического анализа обобщенного по всему множеству контролируемых параметров состояния многопараметрического объекта или процесса с оперативным определением относительной величины и характера изменения его состояния, а также сокращение сроков анализа для информационной поддержки принятия решений при диагностике состояния МПО. Цель достигается реализацией заявляемого способа динамического анализа состояний МПО по данным измерительной информации, позволяющего реализовать принцип учета предыстории функционирования объекта (процесса) по последовательности переходов его из одного состояния в другое во времени. Способ позволяет обеспечить наглядное представление для динамического анализа изменения состояния МПО с экрана одного многоцветного видеомонитора и оперативное (в реальном масштабе времени) определение относительной величины изменения и характера развития диагностируемого процесса с оценкой последовательности (предыстории) его изменения. Все это в комплексе обеспечивает сокращение сроков анализа изменения состояния МПО и используемых технических средств отображения результатов обработки динамических данных для информационной поддержки принятия решений обработчиком-аналитиком, подготавливающему решения (АПР) по распознаванию состояния МПО и который является элементом автоматизированной системы диагностики. Пусть МПО характеризуется некоторым конечным множеством параметров

Которые изменяются во времени. При анализе динамических МПО весьма важными характеристиками являются различные оценки изменения класса состояния МПО.

Введем следующую характеристику изменения n-го параметра, которая определяет возможные оценки состояния этого параметра (класса состояний A n) в виде:
A n = < A 1 n , A 2 n , A 3 n >, n ∈ N, j = 1, 2, 3, (1)
где A 1 n состояние n-го параметра, который не изменяется в течение некоторого заданного временного интервала, что характеризует (по этому параметру) стабильное (неизменное) состояние K c n ∈ K объекта процесса; A 2 n (A 3 n) - состояние параметра, который уменьшает (увеличивает) свое физическое (или относительное) значение в течение некоторого заданного временного интервала, что характеризует соответствующее состояние (класс состояния) объекта или процесса K п n (K р n) объекта или процесса. Обобщая выражение (1) по всему множеству параметров n ∈ N, получаем обобщенные оценки изменения пространства состояний параметров МПО в виде
A = < A 1 , A 2 , A 3 >, j = 1, 2, 3, (2)
Состояние параметров, оцененных в соответствии с выражением (2) по этапам функционирования (движения, развития) МПО, определяет соответственно его обобщенное (интегральное) состояние и переходы объекта из одного класса состояний в другой (динамику состояний). Обобщенные множества (идентифицированные классы состояния параметры) A 1 , A 2 , A 3 и их распределение во времени, таким образом, определяют соответствующие множества (классы) состояний МПО K с, K п, K р. Для сложного МПО с высокой динамикой смены его состояний, комплексный (системный) анализ изменения даже незначительного количества динамических параметров при обработке в соответствии с выражениями (1-2) и традиционным графическим представлением вызывает определенные трудности. Это связано с рядом причин, среди которых основными для традиционных методов обработки являются высокая динамика изменения параметров и погрешности измерения, сбора, обработки и анализа измерительной информации, обусловленные активным или пассивным воздействием внешней среды. Особенно это характерно для удаленных от центра обработки МПО, таких как летательные аппараты и т.п., состояние которых контролируется десятками сотен и тысяч параметров. Аналогичные сложности по наглядному представлению и динамическому анализу большой группы параметров (показателей) возникают при анализе динамики состояний такого класса объектов как финансово-экономические МПО. Например, при оперативной оценке биржевых курсов на всех биржах традиционно используются различные показатели для характеристики динамики цен акций, зарегистрированных на них компаний, количество которых, как правило, весьма велико. Так, Американская фондовая биржа оценивает различные показатели для 800 зарегистрированных на бирже компаний. В этом случае в качестве динамического параметра можно рассматривать тот или иной показатель n-й компании, состояние которого может представляться в виде выражений (1), а состояние рассматриваемого показателя, обобщенное по всем компаниям, т.е. по бирже в целом в виде выражения (2). Высокая динамика цен акций и большое количество компаний, с одной стороны, и необходимость оперативной оценки динамики изменения (колебания) биржевых курсов, с другой, вызывают известные трудности при аналитической обработке и анализе исходных динамических данных, представляемых в традиционной табличной форме или в виде множества графиков. Таким образом, с повышением требований к диагностике состояния МПО по оперативности, например, при обеспечении оперативной диагностики в реальном масштабе времени протекания высокодинамических процессов на объекте, проведение обработки и представление ее результатов для анализа традиционными методами диагностики становится проблематичным. В этих условиях проведение наглядного представления и оперативного динамического анализа состояний МПО по всему множеству параметров вызывает значительные трудности ввиду отсутствия соответствующих методов оперативной оценки и представления необходимых обобщенных данных для информационной поддержки принятия решений по диагностике состояний МПО. Введем обобщенную характеристику

Где N - общее количество контролируемых динамических параметров (оцениваемых типовых показателей для всех компаний биржи), N(t i) - количество параметров, текущее значение которых в t i -й момент времени отнесено к одному классу из множества A выражения (2). На основе применения результатов допусковой оценки факта и направления изменения n-го параметра,

С дальнейшим обобщением по всему множеству N, а также с проведением декомпозиции в соответствии с выражением (2) и с использованием введенной характеристики (3) возможно проведение динамического анализа интегрального состояния МПО с оперативным определением относительной величины и характера изменения его состояния в виде так называемых цветокодовых матриц-диаграмм представления обобщенных данных для информационной поддержки принятия решений по диагностике состояния МПО. Так, кодируя определенным цветовым кодом видимого спектра каждый из выделенных классов состояний параметров (2) и представляя относительную величину A j * в виде информационного поля соответствующего множества параметров, получаем цветокодовые матрицы - диаграммы состояний МПО.

В качестве наблюдаемого процесса (объекта) могут быть: а) для сложных технических МПО - давление, температура и т.п.; б) для финансово-экономических МПО - индексы курсы акций (облигации) или курсовой цены, число акций определенного типа, номинал акции и т.п. В качестве оцениваемой характеристики процесса (объекта) могут быть: а) для сложных технических МПО - амплитуда, частота, дисперсия и т.п.; б) для финансово-экономических МПО - цена акций (номинальная, средневзвешенная) и т.п. В качестве используемых динамических параметров оцениваемой характеристики могут быть: а) для сложных технических МПО - быстро меняющиеся (вибропараметры), медленно меняющиеся параметры, траекторные параметры; б) для финансово-экономических МПО - контролируемые показатели по каждой зарегистрированной на бирже компании, и т.п. Сущность способа состоит в том, что с целью обеспечения наглядного представления для оперативного динамического анализа изменения обобщенного состояния МПО осуществляется преобразование результатов допусковой оценки факта и направления изменения динамических параметров по контролируемой характеристике исследуемого процесса в соответствующие информационные сигналы, с обобщением по всему множеству параметров в заданном временном интервале, при динамическом анализе которых определяют относительную величину и характер изменения интегрального состояния многопараметрического объекта. Операцию преобразования осуществляют путем формирования соответствующего цветового сигнала видимого спектра в зависимости от результатов допусковой оценки факта и направления изменения динамического параметра (падает - повышается) с обобщением по всему множеству параметров на заданном временном интервале, при этом отображают информационные сигналы посредством матрицы-диаграммы, столбцы которой соответствуют относительной величине оцененного класса состояния параметров объекта, строки - заданным временем интервалам, а относительную величину и характер изменения интегрального состояния объекта определяют по направлениям изменения и относительным величинам этого изменения во времени цветовых сигналов, обобщенных по всему множеству параметров по контролируемой характеристике исследуемого процесса. В соответствии с используемым принципом причинно-следственных зависимостей, происходящих во времени в МПО процессах, отображаемых параметрами, по временной шкале будет представлено изменение интегрального (обобщенного по всему множеству динамических параметров) состояния МПО, идентифицированное по наблюдаемому процессу (процессам). Это позволяет однозначно по виду цветокодовой матрицы-диаграммы, которую по наглядности представления можно отнести к когнитивной (т.е. порождающей новые значения у АПР), определять в наблюдаемые моменты времени по всему множеству относительную величину и характер развития процесса в МПО. Степень дискретизации наблюдаемой характеристики (параметра, показателя компании) A и выбор цветового решения определяет АПР в зависимости от специфики объекта и условий решаемой задачи оперативной диагностики по данным динамической информации. Таким образом, новизна предлагаемого способа по сравнению с известными устройствами и способами диагностики состояния объекта заключается в том, чтобы всю совокупность обрабатываемых по допусковому способу динамических параметров по контролируемой характеристике исследуемого процесса преобразуют в соответствующие информационные сигналы, при обобщении которых по всему множеству параметров, определяют относительную величину и характер изменения интегрального состояния многопараметрического объекта. При этом, на экране видеомонитора по временной шкале будут последовательно отображаться относительная величина и характер изменения каждого из составляющих классов изменения параметров (падает, повышается, не изменяется), совокупность которых характеризует динамику интегрального состояния объекта (процесса) последовательно во времени. Сущность предложенного способа хорошо иллюстрируется для финансовых МПО, например, при исследовании различных показателей для характеристики динамики цен акций зарегистрированных в биржах компаний. На фиг. 1 приведено традиционное представление графиков изменения контролируемого типового показателя для ряда (N=7) компаний, каждая из которых с заданной дискретностью сообщает соответствующие значения показателя, множество которых характеризует динамику изменения цен акций этой компании. На фиг. 2 приведено наглядное представление процесса изменения обобщенного типового показателя для всех N компаний в виде цветокодовой матрицы-диаграммы состояний МПО, где A j * - относительное количество компаний, контролируемый показатель каждой из которых принадлежит j-му классу состояния (в рассматриваемом случае j = 3); t i-5 - начало и t i+8 - конец устойчивого (лавинообразного) процесса изменения курса цен акций. < A 1 , A 2 , A 3 > идентифицированные классы состояний типового показателя (параметра), динамическое сочетание (интеграция) которых определяет соответствующие классы состояния < K с, K р, K п > исследуемого МПО, где K с - стационарный класс состояния МПО, K р (K п - класс состояния МПО, обусловленный изменением (ростом или падением) составляющих множества A j * . Использование предлагаемого способа позволит получить новые нетрадиционные формы представления динамики состояний МПО. Так, совмещая представление частиц множества (классов состояний параметров) A j * на одном информационном поле общего A * получаем компактное представление динамики распределения состояний МПО (фиг. 3). В это случае повышается наглядность проведения динамического анализа перехода МПО из одного класса состояний в другой. При этом обеспечивается наглядность выделения (декомпозиции) так называемых нечетных (размытых, расплывчатых) классов K н динамических состояний МПО, характеризуемый неопределенностью, вызванной как одновременным увеличением, так и уменьшением составляющих множества A * . Анализ рассматриваемых представлений обобщенных данных о МПО (фиг. 2, 3), раскрывающих суть предлагаемого способа, позволяет проводить оперативный динамический анализ интегрального состояния МПО, в том числе оценить характер изменения обобщенного по всем параметрам (компаниям) анализируемого показателя (процесса) для объекта (биржи) в целом. Так, проведение динамического анализа изменения состояния МПО с использованием предлагаемого способа, один из примеров реализации которого приведен на фиг. 3, позволяет:
а) определить устойчивый лавинообразный характер роста курса цен относительно количества акций компаний на интервале (t i-5 - t i-3), а также устойчивый и постепенный характер понижения роста курса на интервале (t i+2 - t i+4);
б) определить устойчивый лавинообразный характер падения курса цен относительного количества акций компаний на интервале (t i - t i+4), а также устойчивый и лавинообразный характер уменьшения падения курса на интервале (t i+5 - t i+8);
в) оценить распределение диаграммы изменения (роста или падения) курса цен по всему множеству наблюдаемых параметров (показателей), а также соотношения между ними по временной оси, что позволяет оценить в целом динамику движения денежной массы во времени;
г) оценить в относительной величине максимальную (минимальную) величину изменения (роста или падения) курса цен по общему количеству компаний, принявших решение о изменении ставок. Таким образом, способ позволяет осуществить наглядное представление для динамического анализа интегрального состояния объекта с экрана видеомонитора, оперативно (в реальном масштабе времени) обнаруживать изменение класса состояний МПО и оценивать относительную величину и характер изменения состояния по всему множеству контролируемых параметров. К достоинствам способа можно отнести:
возможность выявления новых (системных) свойств и закономерностей исследуемых процессов в МПО за счет наглядного представления обобщенных результатов оценки всего множества параметров в динамике их изменения, такое наглядное динамическое представление позволяет комплексно оценить величину и характер изменения интегрального состояния МПО по большому множеству контролируемых измерительных параметров, которые могут быть разнотипными;
высокую оперативность представления общей картины развития процесса изменения состояния МПО с возможностью оценки характера его развития, сокращение сроков анализа динамической информации и используемых технических средств ее отображения для информационной поддержки принятия решений обработчиком-аналитиком, подготавливающему решения по диагностике состояния МПО и который является элементом автоматизированной системы оперативной диагностики. От использования изобретения следует ожидать вторичный эффект, заключающийся в удешевлении систем диагностики различных технических объектов и систем организационно-технологического класса. Целесообразно использовать в системах идентификации, распознавания, контроля и диагностики технического и функционального состояния изделий авиационной и космической промышленности, а также в энергетике и финансово-экономической деятельности.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ динамического анализа состояний многопараметрического объекта или процесса, заключающийся в оперативном преобразовании результатов допусковой оценки параметров в соответствующие информационные сигналы в заданном временном интервале, отличающийся тем, что в качества оцениваемой характеристики процесса могут быть амплитуда, частота и т.п., в качестве параметров оцениваемой характеристики используют динамические параметры, операция преобразования осуществляют путем формирования соответствующего цветового сигнала видимого спектра в зависимости от результатов допусковой оценки факта и направления изменения динамического параметра (падает, повышается, не изменяется) с обобщением по всему множеству параметров на заданном временном интервале, отображают информационные сигналы посредством цветокодовой матрицы-диаграммы, столбцы которой соответствуют относительной величине оцененного класса состояния параметров объекта, а строки - заданным временным интервалам, определяют относительную величину и характер изменения интегрального состояния объекта по направлениях изменения и относительным величинам этого изменения во времени цветовых сигналов.

Переход оборудования из одного технического состояния (ТС) в другое обычно происходит вследствие повреждения или отказа.

Повреждение - событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния.

При повреждении работоспособность объекта сохраняется, но со временем повреждение может перейти в отказ, в результате чего работоспособность будет нарушена. Например, царапина на защитном покрытии печатной платы сначала не нарушает работоспособность прибора, но через определенное время под воздействием загрязнения, влаги и других факторов в этом месте может произойти замыкание проводников, которое приведет к отказу прибора.

Отказом называется событие, заключающееся в нарушении работоспособного состояния объекта. Критерием отказа является признак или совокупность признаков нарушения работоспособности объекта, установленных в нормативно-технической и (или) конструкторской (проектной) документации.

Наряду с понятиями «повреждение» и «отказ» в теории надежности и технической диагностике используются понятия «дефект» и «неисправность».

Дефект - это каждое отдельное несоответствие объекта установленным требованиям. Если есть дефект, значит, хотя бы один из показателей качества или параметров объекта вышел за предельное значение или не выполняется одно из требований нормативной документации. Термин «дефект» в основном применяется при контроле качества продукции (объекта) на стадии изготовления, а также при ремонте, например при дефектации объекта, при составлении ведомостей дефектов и контроле качества отремонтированного объекта.

Дефект может быть конструктивным (при несоответствии требованиям технического задания или правилам разработки объекта) и производственным (при несоответствии требованиям нормативной документации на изготовление и поставку объекта). Примерами дефектов могут служить выход размера детали за пределы допуска, неправильная сборка или регулировка прибора, царапина на защитном покрытии и др.

Неисправность означает нахождение объекта (изделия) в неисправном состоянии. Этот термин применяется при использовании, хранении и транспортировании объектов (изделий). Находясь в неисправном состоянии, объект может иметь один или несколько дефектов. В отличие от термина «дефект» термин «неисправность» применяется не ко всем объектам. Так, не называют неисправностями недопустимые отклонения параметров материалов, топлива, химических продуктов.

Различие между исправностью и работоспособностью заключается в том, что работоспособность определяется выполнением основных требований, а исправность - выполнением как основных, так и второстепенных. Поэтому понятие «исправность» шире, чем понятие «работоспособность». Действительно, если прибор исправен, то он обязательно и работоспособен, работоспособный прибор может быть и неисправным.

В соответствии с ГОСТ 27.002-89 различают следующие виды состояния технических объектов.

Исправное состояние - это состояние объекта, при котором он соответствует всем требованиям нормативно-технической и (или) конструкторской (проектной) документации. Состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации, называется неисправным.

Работоспособным называется состояние объекта, при котором значения всех параметров, характеризующих его способность выполнять заданные функции, соответствуют требованиям нормативнотехнической и (или) конструкторской (проектной) документации. Под неработоспособным понимают такое состояние объекта, при котором значение хотя бы одного параметра, характеризующего его способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации.

Предельное состояние - это состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна либо восстановление его работоспособного состояния невозможно или нецелесообразно.

При диагностировании объектов используют понятие правильного или неправильного функционирования.

Состояние правильного функционирования - состояние, при котором применяемый по назначению объект в целом или его составная часть выполняют в текущий момент времени предписанные им алгоритмы функционирования со значениями параметров, соответствующими установленным требованиям. Соответственно, в состоянии неправильного функционирования объект не выполняет предписанные алгоритмы функционирования с требуемыми значениями параметров.

Возможны случаи, когда существенное повреждение имеется в той части объекта, которая в обеспечении данного режима не участвует. В результате неработоспособный объект с учетом всех режимов работы может находиться в состоянии правильного функционирования. На пример, система автоматического удержания судна на курсе (авторулевой), работая в следящем или простом режиме, находится в режиме правильного функционирования. Главная обратная связь по курсу судна может быть неработоспособной и поэтому вместе с блоком коррекции в этих режимах не участвует.

Все множество возможных ТС объекта может быть разделено на подмножества состояний правильного и неправильного функционирования.

Рассмотрим взаимосвязь выделенных подмножеств ТС (рис. 3.1).

Пусть площадь, занятая на диаграмме прямоугольной фигурой В, характеризует множество всех возможных видов технического состояния объекта, а площади фигур И, Р и ПФ соответствуют подмножествам состояний исправного, работоспособного и правильно функционирующего (в определенном режиме) объекта.

Площади, дополняющие площади фигур И, Р и ПФ до площади В, обозначим как И, Р и ПФ. Им отвечают подмножества состояний неисправного, неработоспособного и неправильно функционирующего объекта соответственно.

Используя символику теории множеств, запишем соотношения для включенных друг в друга подмножеств:

Исправный объект всегда работоспособен и функционирует правильно, неисправный также может быть работоспособным и правильно функционирующим.

Объединение подмножеств и их дополнений приводит к полному (основному) множеству:

На рисунке показаны три характерных пересечения подмножеств:

- подмножество состояний неисправного, но работоспособного объекта (на диаграмме - это площадь с двойной штриховкой);

- подмножество состояний неработоспособного, но правильно функционирующего объекта.

Работоспособный объект может быть неисправным, но при этом правильно функционирующим. Неработоспособный объект всегда неисправен, но при этом он может быть правильно функционирующим в каком-либо режиме.

Правильно функционирующий в данном режиме объект может быть неисправным и с учетом всех режимов неработоспособным. Неправильно функционирующий объект всегда неисправен и неработоспособен.

Исправность и неисправность, работоспособность и неработоспособность, правильное и неправильное функционирование - это укрупненные технические категории, определяющие вид технического состояния.

Для облегчения задачи диагностирования каждый вид технического состояния подразделяют на группы состояний, которые характеризуются определенными общими свойствами. Переход объекта естественным путем из одной группы в другую означает появление совокупности физических дефектов, опознаваемых как обобщенный дефект.

Состояние объекта распознается с точностью до вида при его проверке и с точностью до группы при поиске дефекта. Если в результате проверки установлено, что объект работоспособен, можно определить группу (степень) его работоспособности. Если объект признан неработоспособным, то поиск дефекта осуществляется с точностью до группы неработоспособности, т. е. до обобщенного существенного дефекта.

Следует отметить, что отказ объекта может возникнуть в результате наличия одного или нескольких дефектов, но появление дефектов не всегда означает, что возник отказ. Таким образом, дефект, как и неисправность, в зависимости от его влияния на техническое состояние объекта может означать и повреждение, и отказ. В дальнейшем при диагностировании объектов будут рассматриваться дефекты, приводящие к отказу отдельного элемента или системы в целом.

Уровень технического состояния объекта (см. рис. 3.1) снижается под действием эксплуатационных факторов, приводящих к повреждению, отказу и переходу в предельное состояние из-за неустранимого нарушения требований безопасности, снижения эффективности эксплуатации, морального старения и др. Уровень технического состояния повышают путем проведения ТО и ремонта. Так, если в гирокомпасе перестала работать следящая система, следует говорить о возникновении отказа, так как нарушено одно из основных требований к нормальной работе гирокомпаса, и пользоваться таким прибором до устранения причины отказа нельзя.

Если перегорела одна из сигнальных лампочек на штурманском пульте, это не отказ, а повреждение, так как нарушается исправность только одной детали прибора и гирокомпас сохраняет свою работоспособность.