Сети мобильной связи lte. Принципы построения и функционирования сетей LTE

Только люди успели привыкнуть к понятию 3G и узнать все его преимущества, как началась активная интеграция нового поколения связи – 4G, в частности технологии LTE. Зачем нужен LTE и какие преимущества он может нам дать? Для начала необходимо понять, что это вообще такое.

LTE – это новая технология беспроводной связи, которая соответствует стандарту четвертого поколения. Под данный стандарт попадают все технологии мобильной связи, которые предоставляют скорость передачи данных не менее 10 Мбит/с. Технология LTE – это следующий этап в развитии сотовой связи. Она знаменует переход от систем CDMA (WCDMA) к новым системам OFDMA, а также обеспечивает переход от системы коммутации каналов к системе е2е IP. Другими словами происходит коммутация пакетов (пакетная передача данных).

Однако при всех преимуществах данной технологии, быстрому переходу на LTE препятствуют несколько факторов. Во-первых, для получения всех преимуществ от новой технологии необходимо соответствующее оборудование и усовершенствование имеющихся систем. Во-вторых, самим абонентам нужны будут такие мобильные устройства, которые смогли бы работать и в сетях 3G и LTE. Это объясняется тем, что данная технология только внедряется и не покрывает всю территорию страны.

1. Для чего нужен LTE – цели разработки технологии

Цели разработки и преимущества LTE заключаются в следующем:

  • Понижение стоимости предоставляемых услуг;
  • Повышение скорости передачи данных в беспроводных сетях;
  • Возможность предоставления большего спектра услуг своим абонентам;
  • Повышение гибкости использования уже имеющихся систем;
  • Повышение доступности мобильной связи для абонентов.

Главная цель разработки и внедрения технологии LTE заключается в повышении скорости передачи информации. Интеграция технологии LTE обеспечит возможность создания высокоскоростных систем мобильной связи, которые будут оптимизированы для пакетных передач данных. При этом скорость передачи данных теоритически составляет 300 Мбит/с для нисходящих каналов и около 75Мбит/с для восходящих каналов. Однако данная технология пока еще находится в стадии доработки и внедрения, из-за чего фактическая скорость в зоне действия сети отличается от теоритической.

Еще одна особенность технологии заключается в радиусе действия базовой станции LTE, который в оптимальном случае равен около 5 км. Однако в случае необходимости данный показатель может быть повышен до 30 км, а в некоторых случаях даже до 100 км (но только при достаточной высоте антенны).

Для плавного перехода от третьего поколения в четвертое действует система непрерывной передачи сигнала от LTE к 3G. Это необходимо для того, чтобы связь не прерывалась в случае выхода из зоны действия LTE. А как уже говорилось выше, данная технология новая и только начинает внедряться, из-за чего связь 4G не покрывает всю территорию страны.

2. iPad Air + 4G/LTE в России = любовь: Видео

3. LTE нужно ли оно нам?

О преимуществах технологии беспроводной связи нового поколения LTE уже было сказано выше, поэтому пользоваться ей или нет – это сугубо личное решение каждого абонента мобильной связи. Однако стоит учитывать тот факт, что стоимость такой связи на данный момент выше в сравнении с 3G. Поэтому каждый решает для себя, что ему необходимо – скорость или экономия. По прогнозам, в будущем планируется удешевление связи 4G, благодаря чему в скором будущем технология LTE станет доступной каждому.

Сотовые сети стандарта GSM по своей структуре изначально не были предназначены для мобильного интернета. Соответственно, в наши дни операторы сотовой связи вынуждены с целью удовлетворения потребностей населения вкладывать огромные деньги в модернизацию своих сетей до 3G (UMTS), а теперь уже и до 4G (LTE). Само собой, данные капиталовложения сотовые компании щедро заимствуют из наших с вами карманов, однако их работа тоже при этом весьма не легка.

Сейчас, когда внедрение сетей третьего поколения еще до конца в России не закончено, операторы уже приступили к работе над сетями следующего поколения - 4G или LTE.

На фото первая базовая станция LTE от Yota в Сочи:

Сам термин LTE расшифровывается как Long Term Evolution и в переводе на русский означает «долгосрочная эволюция». Длительное время на роль связи 4G претендовал стандарт WiMAX, однако впоследствии был отодвинут на задний план как менее востребованный вариант быстрого беспроводного интернета.

LTE является следующим после 3G поколением мобильной связи и работает на базе IP-технологий. Основное отличие LTE от предшественников - высокая скорость передачи данных. Теоретически она составляет до 326,4 Мбит/с на прием (download) и 172,8 Мбит/с на передачу (upload) информации. При этом в международном стандарте указаны цифры в 173 и 58 Мбит/с, соответственно. Данный стандарт связи четвертого поколения разработало и утвердило Международное партнерское объединение 3GPP.

Система кодирования последнего поколения - OFDM

Давайте разберемся, в чем же состоит главная особенность стандарта LTE. Так же как и в сетях 3G главным звеном в LTE можно назвать технологию кодирования и передачи данных OFDM-MIMO.

OFDM расшифровывается как Orthogonal Frequency-division Multiplexing и по-русски означает ортогональное частотное разделение каналов с мультиплексированием. Это цифровая схема модуляции, использующая близко расположенные друг от друга ортогональные поднесущие в большом количестве. Все поднесущие моделируются по стандартной схеме модуляции, такой как квадратурная амплитудная модуляция на небольшой символьной скорости с соблюдением общей скорости передачи данных, как и в простых схемах модуляции одной несущей в этой же самой полосе пропускания. В действительности сигналы OFDM генерируются благодаря применению "Быстрого преобразования Фурье".

Данная технология описывает направление сигнала от базовой станции (БС) к вашему мобильному телефону. Что же касается обратного пути сигнала, т.е. уже от телефонного аппарата к базовой станции, техническим разработчикам пришлось отказаться от системы OFDM и воспользоваться другой технологией под названием SC-FDMA. В расшифровке она читается как Single-carrier FDMA и в переводе означает мультиплексирование на одной несущей. Смысл ее в том, что при сложении большого количества ортогональных поднесущих образуется сигнал с большим пик-фактором (отношением амплитуды сигнала к своему среднеквадратичному значению). Для того чтобы такой сигнал мог передаваться без помех необходим высококлассный и довольно дорогой высоколинейный передатчик.

Именно это устройство создало некоторые сложности с получением лицензии на территории России под сети LTE. И, тем не менее, как обычно бывает в нашей стране, несмотря на искусственно созданные сложности, Минкомсвязи России признал перспективным направлением развития сотовых сетей именно стандарт LTE. Однако при проведении тендера на распределение часто 2,3 - 2,4 ГГц в 40 регионах Российской Федерации методом радиодоступа была указана лишь технология OFDMA, что исключает, непосредственно, LTE, т.к. в последнем случае кроме OFDMA необходимо еще и SC-FDMA. Из этого в очередной раз следует полная некомпетентность российских чиновников в тех вопросах, которыми они занимаются.

MIMO - Multiple Input Multiple Output - представляет собой технологию передачи данных с помощью N-антенн и приема информации M-антеннами. При этом принимающие и передающие сигнал антенны разнесены между собой на такое расстояние, чтобы получить слабую степень корреляции между соседними антеннами.

Положение LTE в эфире

На данный момент под сети 4G уже зарезервированы диапазоны частот. Наиболее приоритетными принято считать частоты в районе 2,3 ГГц. Здесь главным примером является Китай со своим сотовым оператором China Mobile, уже выделившим нужный частотный диапазон и проводящий тестовое вещание. С учетом огромного объема местного потребления сотовой связи использование данной частоты обречено на успех и преобладание в Китае.

Другой перспективный диапазон частот - 2,5 ГГц применяется в США, Европе, Японии и Индии. Имеется еще частотная полоса в районе 2,1 ГГц, но она сравнительно небольшая - доступны лишь 15 МГц в диапазоне 2,1 ГГц, а большинство европейских мобильных операторов ограничивают в этом диапазоне полосы до 5 МГц. В будущем, скорее всего, наиболее используемым будет частотный диапазон 3,5 ГГц. Это связано с тем, что на данных частотах в большинстве стран уже используются сети беспроводного широкополосного доступа в интернет и благодаря переходу в LTE операторы получат возможность вновь применять свои частоты без необходимости приобретения новых дорогих лицензий. В случае необходимости под сети LTE могут быть выделены и другие диапазоны частот.

В отношении используемых полос частот и методов распределения в LTE все довольно непонятно и противоречиво, т.к. сам стандарт достаточно гибкий. В разных структурах сети четвертого поколения могут базироваться на полосах частот в диапазоне от 1,4 до 20 МГц, в отличие от фиксированных 5 МГц в 3G (UMTS). Также имеется возможность применения как временного разделения сигналов TDD (Time Division Duplex - дуплексный канал с временным разделением), так и частотного - FDD (Frequency Division Duplex - дуплексный канал с частотным разделением). Например, сеть LTE, строящаяся в Китае, стандарта TD-LTE.

Зона обслуживания базовой станции сети LTE может быть разной. Обычно она составляет около 5 км, но в ряде случаев она может быть увеличена до 30 и даже 100 км, в случае высокого расположения антенн (секторов) базовой станции.

Другое позитивное отличие LTE - большой выбор терминалов. Помимо сотовых телефонов, в сетях LTE будут использоваться многие другие устройства, такие как ноутбуки, планшетные компьютеры, игровые устройства и видеокамеры, снабженные встроенным модулем поддержки сетей LTE. А так как технология LTE обладает поддержкой хендовера и роуминга с сотовыми сетями предыдущих поколений, все данные устройства смогут работать и в сетях 2G/3G.

Структура сетей четвертого поколения

Схема сетей 4G (LTE) выглядит следующим образом:

Как видно из данной схемы, сети LTE включают в себя модули сетей 2,75G (EDGE) и 3G (UMTS). Из-за данной особенности строительство сетей четвертого поколения будет достаточно специфичным и походит скорее на следующую ступень развития сегодняшних технологий, нежели на что-то принципиально новое.

К примеру, в соответствии с такой структурой, звонок или интернет-сессия в зоне действия сети LTE может быть без разрыва соединения передана в сеть 3G (UMTS) или 2G (GSM). Кроме того, сети LTE довольно легко интегрируются с сетями WI-FI (обозначение WLAN Access NW на вышеприведенной схеме) и Интернет.

Остановимся на подсистеме радиодоступа более подробно. По своей структуре сеть радиодоступа RAN - Radio Access Network - выглядит аналогично сети UTRAN UMTS, или eUTRAN, но имеет одно дополнение: приемо-передающие антенны базовых станций взаимосвязаны по определенному протоколу X2, который объединяет их в сотовую сеть - Mesh Network - и дает возможность базовым станциям обмениваться данными между собой напрямую, не задействуя для этого контроллер RNC - Radio Network Controller.

К тому же взаимосвязь базовых станций с системой управления мобильными устройствами MME - Mobility Management Entity - и сервисными шлюзами S-GW - Serving Gateway - осуществляется путем «многих со многими», что позволяет получить большую скорость связи с небольшими задержками.

Технология LTE против WiMAX

Наверняка многим из вас стало интересно, почему будущее именно за LTE? Ведь буквально год-два назад все считали стандартом 4G технологию WiMAX, хорошо известную такими провайдерами широкополосного беспроводного интернета, как Yota и Комстар.

В действительности стандарты LTE и WiMAX достаточно близки между собой. Они оба используют технологию кодирования OFDM и систему передачи данных MIMO. И в том, и в другом стандарте применяются FDD и TDD-дуплекирование при пропускной способности канала до 20 МГц. И обе из систем связи используют в роли своего протокола IP. Соответственно, обе технологии в реальности одинаково хорошо применяют свой частотный диапазон и обеспечивают сравнимую скорость передачи данных интернет-доступа. Но, конечно, есть у них и кое-какие отличия.

Одним из таких отличий является гораздо более простая инфраструктура сети WiMAX, а, следовательно, и более надежная технически. Данная простота стандарта обеспечивается его предназначением исключительно для передачи данных. С другой стороны, «сложности» LTE нужны для обеспечения ее совместимости со стандартами предыдущих поколений - GSM и 3G. И данная совместимость нам с вами, безусловно, потребуется.

Существуют и другие детали в различии между LTE и WiMAX. Например, диспетчеризация радиочастотных ресурсов. В WiMAX она производится по технологии Frequency Diversity Scheduling, согласно которой поднесущие, предоставляемые абоненту, распределяются по всему спектру канала. Это необходимо для рандомизации и усреднения влияния частотно-селективных замираний на широкополосный канал.

В сетях LTE применена другая технология устранения частотно-селективных замираний. Она называется частотно-селективной диспетчеризацией ресурсов - Frequency Selective Scheduling. При этом для каждой абонентской станции и каждого частотного блока несущей создаются индикаторы качества канала CQI - Channel Quality Indicator.

Еще одним очень важным моментом, связанным с планированием сетей связи массового использования - коэффициент переиспользования частот. Его роль - показывать эффективность использования доступной полосы радиочастот для каждой базовой станции в отдельности.

Базовая структура переиспользования частотного диапазона WiMAX состоит из 3-х частотных каналов. При использовании трехсекторной конфигурации сайтов (базовых станций определенного частотного диапазона), в каждом из секторов реализован один из 3-х частотных каналов. При этом коэффициент переиспользования частот равняется 3-м. Иными словами, в каждой из точек пространства имеется лишь треть радиочастотного диапазона.

Работа сотовой сети LTE (4G) производится с коэффициентом переиспользования частот равном 1. То есть, получается, что все базовые станции LTE работают на одной несущей. Внутрисистемные помехи в подобной системе сводятся к минимуму благодаря частотно-селективной диспетчеризации, гибкому частотному плану и координации помех между отдельными сотами. Абонентам в центре каждой соты могут даваться ресурсы из всей полосы свободного канала, а пользователям на краях сот предоставляются частоты только из определенных поддиапазонов.

Перечисленные выше особенности сетей LTE и WiMAX оказывают большое влияние на одну из их главных характеристик - степень радиопокрытия. Отталкиваясь от данного параметра определяется необходимое количество базовых станций для качественного покрытия конкретной территории. Соответственно, он напрямую влияет и на конечную стоимость строительства сетей LTE.

Согласно расчетом, сеть LTE способна обеспечить лучшую зону покрытия при одинаковом числе базовых станций, что является несомненным плюсом для всех операторов сотовой связи.

Технология LTE – что это такое? В современном мире инновационных технологий беспроводной связи наблюдается стремительное развитие. Многие уже наверняка слышали о технологии LTE, но не каждый понимает, что это такое, и зачем оно вообще нужно.

Благодаря огромному количеству всевозможных планшетных ПК, смартфонов и ноутбуков, которые имеются на отечественном рынке, пользователи все больше и чаще нуждаются в высокоскоростном беспроводном интернет соединении. А, как известно – спрос рождает предложение. Вот и здесь, мобильные операторы, учитывая огромный спрос, просто вынуждены предоставить своим абонентам более качественное и скоростное соединение.

Именно по этой причине в современные сети мобильной связи активно внедряются новые технологии, наиболее перспективной из которых является именно технология LTE. Сегодня мы наблюдаем постепенный переход от 3G к четвертому поколению связи, и именно технология LTE позволяет сделать это плавно и незаметно для пользователей. Это объясняется тем, что реализация LTE возможна в разных частотных диапазонах.

1. Что означает LTE?

Ответ на вопрос, что значит LTE - Long Term Evolution, что в переводе на русский язык означает – длительная эволюция. Изначально в качестве четвертого поколения мобильной связи планировалось использовать технологию WiMAX, но в силу множества факторов, свидетельствующих в пользу LTE, WiMAX все же был отодвинут на второй план.

LTE – это уникальная технология построения сети мобильной связи, которая относится к четвертому поколению связи. Построена эта технология на базе IP-технологий, а это означает, технология обладает повышенной скоростью передачи информации. Стандарт LTE был разработан и утвержден международным партнерским объединением 3GPP.

Некоторые считают, что технология LTE это простое усовершенствование третьего поколения связи, однако это мнение ошибочно. На самом деле LTE – это более глубокое и значительное изменение. Это переход от систем стандарта CDMA (WCDMA) к системам OFDMA. Помимо этого технология LTE знаменует переход от системы, которая использует коммутацию каналов, к системе, использующей коммутацию пакетов (е2е IP).

Что такое стандарт LTE? Это новая система связи, которая внедряется в имеющиеся сети, и обеспечивающая более высокие скорости интернет соединений.

2. Цели разработки стандарта LTE

В первую очередь стандарт связи LTE был разработан для достижения следующих целей:

  • Снижение стоимости передачи информации по беспроводной сети;
  • Существенное повышение скорости передачи данных;
  • Расширение спектра предоставляемых услуг и снижение их стоимости;
  • Увеличение гибкости применения уже имеющихся систем мобильной связи.

Главной целью разработки стандарта LTE является увеличение скорости передачи данных по беспроводным сетям. Все остальные цели автоматически будут достигнуты при достижении первой. Интеграция технологии LTE предоставляет возможность создания высокоскоростных систем мобильной связи, которые будут оптимизированы именно для пакетной передачи дынных. При этом скорость в канале приема (download), теоритически, составляет 326 Мбит/с, а в канале отдачи (upload) – 75 Мбит/с.

Однако учитывая тот факт, что технология еще находится в стадии доработки и только начала внедряться в действующие сети фактическая скорость передачи данных немного разниться с теоритической и в идеальных условиях составляет 100 Мбит/с при приеме сигнала и 50 Мбит/с при отдаче. Стоит отметить, что на сегодняшний день даже такие показатели достигаются далеко не везде. Хотя в любом случае скорость передачи данных в сети LTE значительно выше, нежели в 3G.

3. Поддержка голосовой связи в сети LTE

Как говорилось выше, технология LTE находится в стадии доработки и только внедряется в действующие сети, однако многие задают вопрос, - режим LTE что это такое? Возможна ли в данной сети голосовая связь?

Изначально технология LTE полностью разрабатывалась на основе IP-протоколов. Из-за этого данная технология, в основной своей форме, способна поддерживать исключительно передачу данных. Однако в настоящий момент ведутся активные разработки, которые позволят операторам предложить своим абонентам некоторые решения, позволяющие использовать голосовую связь в сети LTE.

Уже сегодня разрабатываются такие IP-решения, которые предоставят такую же функциональную совместимость, бесперебойную работу, а также гибкость, какую способны предложить имеющиеся мобильные технологии второго и третьего поколений.

4. LTE на iPhone 5s и что такое LTE: Видео

Такие возможности имеются у IMS. Это мультимедийные подсистемы, которые используют протоколы IP. Именно IMS предоставляет мобильным операторам возможность оказывать услуги высококачественной голосовой связи LTE. При этом сеть LTE строится таким образом, чтобы в случае выхода абонента из зоны покрытия LTE, он автоматически переключается на 3G без потери связи.

В планах операторов мобильной связи планируется следующий сценарий развития. Для начала будет построена сеть LTE только для передачи данных. Для голосовой связи будут использоваться уже имеющиеся сети 3G и 2G. Однако с течением времени планируется полностью перейти на LTE, как для передачи данных, так и для голосовой связи (VoLTE – Voice-over-LTE) на базе IMS.

Технология VоLТЕ – это спецификация голосовой передачи трафика от систем канальной коммутации и СМС к системам пакетной коммутации. Другими словами, благодаря VоLТЕ голосовой трафик будет передаваться непосредственно через связь LTE с применением IMS.

5. Преимущества технологии LTE

В первую очередь стоит понимать, что LTE – это не революционный, а эволюционный путь в развитии мобильной связи. Ведь для внедрения данной технологии используется уже имеющаяся инфраструктура. Даже не смотря на то, что сети третьего поколения еще долго будут использоваться во всех странах мира, технология LTE и четвертое поколение связи – это будущее мобильных сетей. Это объясняется целым рядом неоспоримых и очевидных преимуществ:

  • Существенно более высокая пропускная способность и, соответственно, более высокая скорость интернета;
  • Простота. Технология LTE поддерживает гибкие варианты полосы пропускания с несущей частотой 1,4-20 МГц. Помимо этого данная технология поддерживает дуплексную передачу данных с возможностью разделения сигналов по частоте (FDD), а также по времени (TDD);
  • Низкая задержка. Технология LTE имеет значительно меньшую задержку при передаче данных для протоколов плоскости пользователя. Это открывает массу возможностей, к примеру, у абонентов появляется возможность играть в многопользовательские онлайн-игры;
  • Более широкий спектр абонентских мобильных устройств. Планируется оснащать модулями LTE не только мобильные телефоны (смартфоны) и планшетные ПК, но и ноутбуки, видеокамеры, игровые приставки, а также другие бытовые и портативные приборы.

LTE включает в себя сеть радиодоступа (Evolved Universal Terrestrial Radio Access Network, E-UTRAN) и усовершенствованное пакетное ядро (Evolved Packet Core, EPC).

Сеть LTE построена как совокупность новых базовых станций eNB (Evolved NodeB или eNodeB), где соседние eNB соединены между собой интерфейсом Х2. eNB подключены к EPC посредством интерфейса S1. На рис.1 показано взаимодействие новых элементов в архитектуре сети: S-GW (Serving Gateway) – обслуживающих шлюзов, содержащих ПО управления по протоколу MM (MME – Mobility Management Entity).

Рис. 1. Упрощенная архитектура сети LTE

В сети радиодоступа радиоинтерфейс между UE и eNB осуществлен на основе технологии ортогонального частотного разнесения (O rthogonal F requency D ivision M ultiplexing, OFDMA). Работа EPC основана на технологии IP. Такую структуру относят к All-IP Network (AIPN).

Структура сети LTE приведена на рис. 2. Ядро сети EPC (Evolved Packet Core) состоит из обслуживающего шлюза S-GW (Serving Gateway), шлюза для выхода на пакетные сети P-GW (Packet Data Network Gateway), структуры управления по протоколу Mobility Management MME (Mobility Management Entity), связанной с S-GW и eNodeB сигнальными интерфейсами.


Рис. 2.

Функции eNodeB (Evolved NodeB )

eNodeB объединяет в себе функции базовых станций и контроллеров сетей 3-го поколения:

Обеспечивает передачу трафика и сигнализации по радиоканалу,

Управляет распределением радиоресурсов,

Обеспечивает сквозной канал трафика к S-GW,

Поддерживает синхронизацию передач и контролирует уровень помех в соте,

Обеспечивает шифрацию и целостность передачи по радиоканалу,

Выбирает MME и организует сигнальный обмен с ним,

Производит сжатие заголовков IP-пакетов,

Поддерживает услуги мультимедийного вещания,

При использовании структуры с усилителями мощности на антенной мачте организует управление антеннами по специальному интерфейсу Iuant.

Интерфейс S 1 , как показано на рис.2, поддерживает передачу данных с S-GW и сигнализации через ММЕ. Отметим, что eNB может иметь соединения с несколькими S-GW.

Интерфейсы X 2 используют для организации хэндоверов между соседними базовыми станциями, в том числе и при балансировке нагрузки между ними. При этом интерфейсы Х2 могут быть логическими, т.е. для их организации не обязательно реальное физическое соединение между eNB.

Функции обслуживающего шлюза S - GW :

Маршрутизация передаваемых пакетов данных,

Установка качественных показателей (Quality of Service, QoS) предоставляемых услуг,

Буферизация пакетов для UE, пребывающих в состоянии Idle Mode,

Предоставление учетных данных для тарификации и оплаты выполненных услуг.

S-GW является якорной структурой, обеспечивающей мобильность абонентов. Каждую работающую UE обслуживает определенный S-GW. Теоретически UE может быть связана с несколькими пакетными сетями; тогда ее будут обслуживать несколько серверов S-GW.

Функции P-GW (Packet Data Network Gateway )

Шлюз для выхода на пакетные сети P - GW организует точку доступа к внешним IP-сетям. Соответственно P-GW является якорным шлюзом для обеспечения трафика. Если абонент имеет статический IP-адрес, то P-GW его активизирует. В случае, если абонент должен получить на время сеанса связи динамический IP-адрес, P-GW запрашивает его с сервера DHCP (Dynamic Host Configuration Protocol) или сам выполняет необходимые функции DHCP, после чего обеспечивает доставку IP-адреса абоненту. В состав P-GW входит PCEF (Policy and Charging Enforcement Function), который входит обеспечивает качественные характеристики услуг на внешнем соединении через интерфейс Sgi и фильтрацию пакетов данных. При обслуживании абонента в домашней сети функции P-GW и S-GW могут выполнять как два разных, так и одно устройство. Интерфейс S5 представляет собой туннельное соединение GPRS или Proxy Mobile Ipv6. Если P-GW и S-GW находятся в разных сетях (например, при обслуживании абонента в роуминге), то интерфейс S5 заменяют интерфейсом S8.

Функции MME (Mobility Management Entity )

Управляющий блок ММЕ прежде всего поддерживает выполнение процедур протокола Mobility Management: обеспечение безопасности работы в сети при подключении UE и выбор S-GW, P-GW. ММЕ связан с HSS своей сети посредством интерфейса S6a. Интерфейс S10, соединяющий различные ММЕ, позволяет обслуживать UE при перемещениях абонента, а также при его нахождении в роуминге.

Функции PCRF

Policy and Charging Resource Function (PCRF) по сути представляет собой управляющий сервер, обеспечивающий централизованное управление ресурсами сети, учет и тарификацию предоставляемых услуг. Как только появляется запрос на новое активное соединение, эта информация поступает на PCRF. Он оценивает имеющиеся в его распоряжении ресурсы сети и направляет в PCEF шлюза P-GW команды, устанавливающие требования к качеству услуг и к их тарификации.

В характеристиках современных смартфонов нередко встречается поддержка LTE, но далеко не каждому пользователю известно, что это такое и как это повлияет на работу гаджета. В статье мы попытаемся подробно разобраться , чем он отличается от остальных видов соединения с сетью и зачем оно нужно современному пользователю.

Мобильный интернет прочно закрепился в жизни большинства пользователей сотовой связи. Его скорость и качество имеет не малое значение, поэтому инженеры сотовых операторов постоянно разрабатывают новые стандарты, LTE один из них. Он обеспечивает высокоэффективную скоростную передачу данных.

Фактически стандарт представляет собой промежуточный вариант, необходимый для перехода от сетей третьего к сетям четвёртого поколения. Классификация мобильных стандартов передачи данных сегодня выглядит следующим образом.

  • 2G - стандарт 2000 года. Скорость передачи информации не превышает 20 кБит. Подразумевает передачу изображений, текстовых файлов, голосовых сообщений. Сегодня эта сеть доступна везде, но используется только устаревшими моделями.
  • 3G - стандарт 2010 года (наиболее активный период внедрения технологии). Скорость передачи не более 3 мегабит. Поддерживает больше возможностей: видеосвязь, фильмы онлайн, свободный серфинг в интернете.
  • LTE или 4G - до сегодняшнего дня находится в стадии внедрения и доступна далеко не везде. Высокая скорость передачи данных, позволяет все то же что и предыдущий формат, но на более качественном уровне.

Таким образом, LTE это современный совершенный стандарт беспроводной передачи данных.

Чем отличаются гаджеты, поддерживающие LTE

Помимо вопроса о том, стоит разобраться чем привлекательны гаджеты, поддерживающие этот стандарт. Как правило, все современные смартфоны и планшеты рассчитаны на высокоскоростное соединение с интернетом, обеспечение видеосвязи или просмотр фильмов, а также другие проекты и сервисы, требующие обмена данными на высокой скорости. К сожалению, 3G не всегда в состоянии обеспечить и поддержать нужную скорость, а без возможности поддержки LTE к новому формату сети не подключаются.

Характеристики устройств

Гаджеты с поддержкой нового стандарта имеют следующие скоростные характеристики.

  • Скорость приёма информации до 100 Мбит, это обеспечивает быструю загрузку видеофайлов, хорошее качество связи при онлайн-вещании. Работа в интернете при такой скорости протекает без малейшей задержки на ожидание загрузки.
  • Помимо загрузки, взаимодействие с интернетом подразумевает и выгрузку информации. Скорость этого процесса также находится на высоком уровне и составляет 50 Мбит в секунду.
  • Скорость при обмене данными с сетью. Заявленная разработчиками, но редко реально наблюдающаяся в процессе работы составляет 300 Мб/с приём и 170 Мб/с передача.

Таким образом, устройства, оснащённые поддержкой LTE, обладают широкими возможностями и высочайшей скоростью обмена данными с интернетом, при условии нахождения в зоне покрытия нужного стандарта.

Стоит отметить, что переход из одной сети в другую, в случае поддержки всех форматов, происходит автоматически. При этом с обратным переключением часто возникают проблемы. Это можно отнести к минусам подобных устройств, возврат к стандарту 3G после выхода из зоны покрытия LTE происходит только посредством перезагрузки устройства.

Возможности смартфонов с LTE

Высокое качество мобильного интернета необходимо всем его пользователям, потому понимая стоит отдать предпочтение именно такому устройству. Что в результате получит пользователь:

  • с характеристиками максимально возможными в текущих условиях;
  • не только просмотр видео без задержек и дозагрузок, но и видеосвязь и онлайн-конференции;
  • кроме того, такие устройства стараются сделать максимально доступными для пользователей, поэтому имеются модели различных ценовых категорий.

Прежде чем покупать смартфон с поддержкой стандарта связи с интернетом, стоит уточнить в сопроводительных документах диапазон частот, которые доступны гаджету. Нередко случается, что устройство предназначено для значений, не соответствующих российским стандартам.

Смартфон с поддержкой высокоскоростного доступа в интернет можно использовать в качестве роутера и раздавать Wi Fi на другие устройства, телефоны или планшеты. При хорошем объёме трафика допустимо подключить к сети даже ноутбук или ПК при наличии нужного адаптера.

Большинство гаджетов премиум класса оснащены подобной возможностью, и она входит в число стандартных. Так, например, смартфоны компании Apple оснащены возможностью использования высокоскоростного соединения с сетью начиная с 5 модели, а 6 уже полноценно подключаются к сети в диапазонах доступных в России.

Каковы перспективы

Не успели люди толком разобраться в технологии , а в кулуарах уже шепчутся о том, что не за горами появление сетей пятого поколения. В связи с чем, можно смело рассчитывать на то, что LTE-4G в скором времени станет доступна в большинстве регионов страны.

Но на что ещё можно зачитывать пользователям, казалось бы, куда уже лучше, скорость загрузки и выгрузки позволяет пользоваться интернетом на высоком уровне. Тем не менее дальнейшие разработки подразумевают:

  • повышение скорости и увеличение качества передачи данных именно в мобильной сети;
  • появление новых форматов услуг, основанных на мобильном интернете с высокоскоростным соединением;
  • повышение качества услуг мобильной связи при условии снижения её стоимости.

Таким образом, при покупке смартфона не стоит отказывать себе в возможности пользоваться интернетом посредством сети самых высоких стандартов. Даже несмотря на то, что сегодня покрытие зоны 4G позволяет обратиться к ней только жителям центральных районов страны, распространение технологии идёт быстрыми темпами.