Сбои машины образуют пуассоновский поток с интенсивностью. Процесс пуассона

Информатика, кибернетика и программирование

Определение Пуассоновского потока. Пуассоновский поток это ординарный поток без последействия. Классической моделью трафика в информационных сетях является Пуассоновский простейший поток. Он характеризуется набором вероятностей Pk поступления k сообщений за временной интервал t: где k=01 число сообщений; λ интенсивность потока.

1. Определение Пуассоновского потока. Свойства.

Пуассоновский поток - это ординарный поток без последействия.

Классической моделью трафика в информационных сетях является Пуассоновский (простейший) поток. Он характеризуется набором вероятностей P(k) поступления k сообщений за временной интервал t:

где k=0,1,… - число сообщений; λ - интенсивность потока.

Заметим, что интервал времени измерения количества сообщений t и интенсивность потока λ являются постоянными величинами.

Семейство Пуассоновских распределений P(k) в зависимости от λ изображено на рис.1. Большее значение λ соответствует более широкому и симметричному графику плотности вероятности.

Рис. 1. Пуассоновские распределения. Плотности вероятностей.

Математическое ожидание (среднее) и дисперсия Пуассоновского потока равны λ t .

Зная вероятность поступления данных за период, можно получить распределение интервала τ между соседними событиями:

Отсюда вывод: пуассоновский поток характеризуется экспоненциальным распределением интервалов между событиями.

Основным свойством пуассоновского потока , обусловливающим его широкое применение при моделировании, является аддитивность: результирующий поток суммы пуассоновских потоков тоже является пуассоновским с суммарной интенсивностью:

При моделировании Пуассоновский поток можно получить мультиплексированием совокупности ON/OFF источников, которые называются Марковскими процессами (рис.2.).

Рис. 2. Получение Пуассоновского распределения

2. СМО с отказами (классическая система Эрланга)

Здесь мы рассмотрим одну из первых по времени, «классических» задач теории массового обслуживания; эта задача возникла из практических нужд телефонии и была решена в 1909 г. датским инженером-математиком А.К. Эрлангом. Задача ставится так: имеется n каналов (линий связи), на которые поступает поток заявок с интенсивностью λ. Поток обслуживаний каждого канала имеет интенсивность μ. Найти предельные вероятности состояний системы и показатели ее эффективности.

Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе): S 0 , S 1 ,…, S n , где S k – состояние системы, когда в ней находится k заявок, т.е. занято k каналов.

Граф состояний СМО соответствует процессу гибели и размножения (рис. 3).

Рис. 3. Граф состояний СМО

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью λ. Интенсивность же потока обслуживаний, переводящих систему из любого правого состояния в соседнее левое, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S 2 (два канала заняты), то она может перейти в состояние S 1 (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживаний будет 2μ . Аналогично суммарный поток обслуживаний, переводящий СМО из состояния S 3 (три канала заняты) в S 2 , будет иметь интенсивность 3μ , т.е. может освободиться любой из трех каналов, и т.д.

В формуле (1) для схемы гибели и размножения получим для предельной вероятности состояния:

(1)

где члены разложения - коэффициенты при p 0 в выражениях для предельных вероятностей p 1 , p 2 ,..., p n .

Заметим, что в формулу (1) интенсивности λ и μ входят не по отдельности, а только в виде отношения μ/λ. Обозначим: μ/λ = p , и будем называть величину ρ приведенной интенсивностью потока заявок или интенсивностью нагрузки канала. Она выражает среднее число заявок, приходящих за среднее время обслуживания одной заявки. Пользуясь этим обозначением, перепишем формулу (1) в виде:

(2)

При этом:

(3)

Формулы (2) и (3) для предельных вероятностей получили названия формул Эрланга в честь основателя теории массового обслуживания.

Вероятность отказа СМО есть предельная вероятность того, что все n каналов системы будут заняты, т.е.

Отсюда находим относительную пропускную способность – вероятность того, что заявка будет обслужена:

Абсолютную пропускную способность получим, умножая интенсивность потока заявок λ на Q:

(4)

Осталось только найти среднее число занятых каналов k. Эту величину можно было бы найти «впрямую», как математическое ожидание дискретной случайной величины с возможными значениями 0,1,..., n и вероятностями этих значений p 0 , p 1 , …, p n :

Подставляя сюда выражения (3) для p k и выполняя соответствующие преобразования, мы, в конце концов, получили бы формулу для k. Однако среднее число занятых каналов можно найти проще, если учесть, что абсолютная пропускная способность A системы есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем μ заявок (в единицу времени), то среднее число занятых каналов:

или, учитывая (4):


А также другие работы, которые могут Вас заинтересовать

58607. Табличные информационные модели 106.5 KB
Предмет усвоения: табличные информационные модели таблица типа объекты-свойства таблица типа объекты-объекты один таблица типа объекты объекты несколько таблица типа объекты свойства объекты. Средства усвоения: Логический анализ: Таблица типа ОС это таблица содержащая информацию...
58610. Семейное право 50.5 KB
Цель урока: дать характеристику основ семейного права РФ и продолжить формирование способностей учащихся к выбору действий и поступков в морально-правовой ситуации в соответствии с нормами семейного законодательства и морали. Задачи урока: формирование системы знаний семейного права...
58612. Менеджмент 33.5 KB
Ход урока. Мы с вами вместе вспомнили о менеджменте его функциях факторах внутренней и внешней среды менеджмента роли коммуникаций Самоанализ урока Анализ структуры. На данном занятии присутствовали все основные этапы прохождения урока.
58613. Темперамент и выбор профессии 60.5 KB
Задачи урока: Образовательная ознакомить учащихся с понятиями тип темперамента характер; Развивающая развить у учащихся интерес к выбору будущей профессии; Воспитательная содействовать воспитанию трудолюбия стремления к выбору будущей профессии...
58615. Урок по рендерингу анимации 3d Max. Экспорт анимации 3d Max в видео 230.5 KB
В разделе Render Output нажимаем кнопку Files и переходим в папку или создаём новую куда будем сохранять получившиеся кадры анимации. Нажимаем кнопку Sve для возврата в окно Render Setup Запускаем визуализацию нажатием на кнопку Render.

Восстанавливаемые объекты после ремонта продолжают эксплуатироваться по прямому назначению. Надежность восстанавливаемых объектов принято оценивать по характеристикам потока отказов. В общем случае потоком событий называется последовательность однородных событий, следующих одно за другим в случайные моменты времени. В теории надежности восстанавливаемых объектов в основном рассматриваются простейшие потоки событий, характеризующиеся ординарностью, стационарностью и отсутствием последействия (такие потоки событий чаще всего встречаются на практике).

Поток событий называется ординарным, если вероятность появления двух и более отказов в единичном интервале времени пренебрежимо мала по сравнению с вероятностью появления одного отказа. Таким образом, отказы в системе возникают по одному.

Поток событий называется стационарным, если вероятность попадания того или иного числа событий на интервал времени т зависит только от длины интервала и не зависит от того, где именно на оси расположен этот интервал. Стационарность потока событий означает, что плотность потока постоянна. Очевидно, что при наблюдении поток может иметь сгущения и разрежения. Однако для стационарного потока эти сгущения и разрежения не носят закономерного характера, а среднее число событий, попадающих на единичный интервал времени, остается постоянным для всего рассматриваемого периода.

Отсутствие последействия в простейшем потоке событий означает, что вероятность появления отказов в единичном интервале времени не зависит от возникновения отказов во всех предыдущих интервалах времени, т. е. отказы возникают независимо друг от друга. В электронно-вычислительных средствах поток отказов равен сумме потоков отказов отдельных устройств. Если каждый в отдельности поток оказывает на суммарный поток достаточно равномерное и небольшое влияние, то суммарный поток будет простейшим.

Пусть простейший поток отказов обладает следующими свойствами.

1. Время между отказами распределено по экспоненциальному закону с некоторым параметром А, (формулы (4.16)-(4.21)):

Следовательно, и Т 0 - наработка до первого отказа распределена по экспоненциальному закону с тем же параметром X (средняя наработка до первого отказа есть математическое ожидание Т :

При таких условиях интенсивность отказов X(t) оказывается постоянной величиной:

2. Пусть r(t) - число отказов за время t (r(t) является случайной величиной). Вероятность того, что за время t произойдет m отказов при интенсивности отказов X, определяется законом Пуассона (см. (4.22)):

3. Среднее число отказов за время t равно:

4. Вероятность того, что за время t не произойдет ни одного отказа, равна: P(t) = е ~ и.

Описанный простейший поток событий также называют стационарным пуассоновским потоком. Как уже было сказано выше, такой поток характерен для сложных высоконадежных объектов.

Процесс функционирования восстанавливаемого объекта можно описать как последовательность чередующихся интервалов работоспособности и простоя, связанного с восстановлением. Предполагается, что отказ объекта немедленно фиксируется и с этого же момента начинается восстановительная процедура. Интервалы работоспособности (мы предполагаем 100%-ное восстановление объекта) являются независимыми и одинаково распределенными случайными величинами, при этом они не зависят от интервалов восстановления, которые также являются независимыми и одинаково распределенными случайными величинами (скорее всего, с другим распределением). Каждая из этих последовательностей интервалов формирует свой простейший поток событий.

Напомним, что в случае восстанавливаемых объектов основной характеристикой является параметр потока отказов. Эксплуатация таких объектов может быть описана следующим образом: в начальный момент времени объект начинает работу и работает до отказа, после отказа происходит восстановление и объект вновь работает до отказа и т. д. Параметр потока отказов определяется через ведущую функцию Q(t) данного потока, представляющую собой математическое ожидание числа отказов за время 1:

где r(t) - число отказов за время t.

Параметр потока отказов со(0 характеризует среднее число отказов, ожидаемых в малом интервале времени, и определяется по формуле (2.9):

Ведущая функция может быть выражена через параметр потока отказов:

Для стационарных пуассоновских потоков, как было сказано выше, интенсивность отказов - величина постоянная и равна X; при этом она совпадает с параметром потока отказов. Действительно, по свойству 3 стационарного пуассоновского потока среднее число отказов за время г равно: Q.(t) = M = Xt, следовательно,

Средняя наработка на отказ. Как уже говорилось, этот показатель представляет собой отношение наработки к математическому ожиданию числа отказов в течение этой наработки. Поскольку при стационарном потоке отказов M {\displaystyle } .
Условное распределение моментов скачков τ 1 , … , τ n ∣ X (b) − X (a) = n {\displaystyle \tau _{1},\dots ,\tau _{n}\mid X(b)-X(a)=n} совпадает с распределением вариационного ряда, построенного по выборке длины n {\displaystyle n} из R [ a , b ] {\displaystyle R} .

Плотность этого распределения f τ 1 , … , τ n (t) = n ! (b − a) n I (t j ∈ [ a , b ] ∀ j = 1 , n ¯) {\displaystyle f_{\tau _{1},\dots ,\tau _{n}}(t)={\frac {n!}{(b-a)^{n}}}\mathbb {I} (t_{j}\in \ \forall j={\overline {1,n}})}

ЦПТ

  • Теорема.

P (X (t) − λ t λ t < x) ⇉ x λ t → ∞ Φ (x) ∼ N (0 , 1) = 1 2 π ∫ − ∞ x e − u 2 2 d u {\displaystyle \mathbb {P} {\biggl (}{\frac {X(t)-\lambda t}{\sqrt {\lambda t}}}

Скорость сходимости:
sup x | P (X (t) − λ t λ t < x) − Φ (x) | ⩽ C 0 λ t {\displaystyle \sup \limits _{x}{\biggl |}\mathbb {P} {\biggl (}{\frac {X(t)-\lambda t}{\sqrt {\lambda t}}},
где C 0 {\displaystyle C_{0}} - константа Берри-Эссеена .

Применение

Поток Пуассона служит для моделирования различных реальных потоков: несчастных случаев, потока заряженных частиц из космоса, отказов оборудования и других. Так же возможно применение для анализа финансовых механизмов, таких как поток платежей и других реальных потоков. Для построения моделей различных систем обслуживания и анализа их пригодности.

Использование потоков Пуассона значительно упрощает решение задач систем массового обслуживания , связанных с расчетом их эффективности. Но необоснованная замена реального потока потоком Пуассона там, где это недопустимо, приводит к грубым просчетам.