Одноканальная смо с неограниченной очередью. Одноканальная смо с ожиданием и ограниченной очередью N канальная смо с ограниченной очередью

В коммерческой деятельности в качестве одноканальной СМО с неограниченным ожиданием является, например, коммерческий директор, поскольку он, как правило, вынужден выполнять обслуживание заявок различной природы: документы, переговоры по телефону, встречи и беседы с подчиненными, представителями налоговой инспекции, милиции, товароведами, маркетологами, поставщиками продукции и решать задачи в товарно-финансовой сфере с высокой степенью финансовой ответственности, что связано с обязательным выполнением запросов, которые ожидают иногда нетерпеливо выполнения своих требований, а ошибки неправильного обслуживания, как правило, экономически весьма ощутимы.

В то же время товары, завезенные для продажи (обслуживания), находясь на складе, образуют очередь на обслуживание (продажу).

Длину очереди составляет количество товаров, предназначенных для продажи. В этой ситуации продавцы выступают в роли каналов, обслуживающих товары. Если количество товаров, предназначенных для продажи, велико, то в этом случае мы имеем дело с типичным случаем СМО с ожиданием.

Рассмотрим простейшую одноканальную СМО с ожиданием обслуживания, на которую поступает пуассоновский поток заявок с интенсивностью л и интенсивностью обслуживания µ.

Причем заявка, поступившая в момент, когда канал занят обслуживанием, ставится в очередь и ожидает обслуживания.

Размеченный граф состояний такой системы приведен на рис. 3.5

Количество возможных состояний ее бесконечно:

Канал свободен, очереди нет, ;

Канал занят обслуживанием, очереди нет, ;

  • - канал занят, одна заявка в очереди, ;
  • - канал занят, заявка в очереди.

Модели оценки вероятности состояний СМО с неограниченной очередью можно получить из формул, выделенных для СМО с неограниченной очередью, путем перехода к пределу при m>?:

Рис. 3.5

Следует заметить, что для СМО с ограниченной длиной очереди в формуле

имеет место геометрическая прогрессия с первым членом 1 и знаменателем. Такая последовательность представляет собой сумму бесконечного числа членов при. Эта сумма сходится, если прогрессия, бесконечно убывающая при, что определяет установившийся режим работы СМО, с при очередь при с течением времени может расти до бесконечности.

Поскольку в рассматриваемой СМО ограничение на длину очереди отсутствует, то любая заявка может быть обслужена, поэтому, следовательно, относительная пропускная способность, соответственно, а абсолютная пропускная способность

Вероятность пребывания в очереди k заявок равна:

Среднее число заявок в очереди -

Среднее число заявок в системе -

Среднее время пребывания заявки в системе -

Среднее время пребывания заявки с системе -

Если в одноканальной СМО с ожиданием интенсивность поступления заявок больше интенсивности обслуживания, то очередь будет постоянно увеличиваться. В связи с этим наибольший интерес представляет анализ устойчивых СМО, работающих в стационарном режиме при.

На практике довольно часто встречаются одноканальные СМО с очередью (врач, обслуживающий пациентов; телефон-автомат с одной будкой; ЭВМ, выполняющая заказы пользователей). В теории массового обслуживания одноканальные СМО с очередью также занимают особое место (именно к таким СМО относится большинство полученных до сих пор аналитических формул для немарковских систем). Поэтому мы уделим одноканальной СМО с очередью особое внимание.

Пусть имеется одноканальная СМО с очередью, на которую не наложено никаких ограничений (ни по длине очереди, ни по времени ожидания). На эту СМО поступает поток заявок с интенсивностью X; поток обслуживаний имеет интенсивность, обратную среднему времени обслуживания заявки Требуется найти финальные вероятности состояний СМО, а также характеристики ее эффективности:

Среднее число заявок в системе,

Среднее время пребывания заявки в системе,

Среднее число заявок в очереди,

Среднее время пребывания заявки в очереди,

Вероятность того, что канал занят (степень загрузки канала).

Что касается абсолютной пропускной способности А и относительной Q, то вычислять их нет надобности: в силу того, что очередь неограниченна, каждая заявка рано или поздно будет обслужена, поэтому по той же причина

Решение. Состояния системы, как и раньше, будем нумеровать по числу заявок, находящихся в СМО:

Канал свободен,

Канал занят (обслуживает заявку), очереди нет,

Канал занят, одна заявка стоит в очереди,

Канал занят, заявок стоят в очереди,

Теоретически число состояний ничем не ограничено (бесконечно). Граф состояний имеет вид, показанный на рис. 20.2. Это - схема гибели и размножения, но с бесконечным числом состояний. По всем стрелкам поток заявок с интенсивностью А переводит систему слева направо, а справа налево - поток обслуживаний с интенсивностью

Прежде всего спросим себя, а существуют ли в этом случае финальные вероятности? Ведь число состояний системы бесконечно, и, в принципе, при очередь может неограниченно возрастать! Да, так оно и есть: финальные вероятности для такой СМО существуют не всегда, а только когда система не перегружена. Можно доказать, что если строго меньше единицы то финальные вероятности существуют, а при очередь при растет неограниченно. Особенно «непонятным» кажется этот факт при Казалось бы, к системе не предъявляется невыполнимых требований: за время обслуживания одной заявки приходит в среднем одна заявка, и все должно быть в порядке, а вот на деле - не так.

При СМО справляется с потоком заявок, только если поток этот - регулярен, и время обслуживания - тоже не случайное, равное интервалу между заявками. В этом «идеальном» случае очереди в СМО вообще не будет, канал будет непрерывно занят и будет регулярно выпускать обслуженные заявки. Но стоит только потоку заявок или потоку обслуживаний стать хотя бы чуточку случайными - и очередь уже будет расти до бесконечности. На практике этого не происходит только потому, что «бесконечное число заявок в очереди» - абстракция. Вот к каким грубым ошибкам может привести замена случайных величин их математическими ожиданиями!

Но вернемся к нашей одноканальной СМО с неограниченной очередью. Строго говоря, формулы для финальных вероятностей в схеме гибели и размножения выводились нами только для случая конечного числа состояний, но позволим себе вольность - воспользуемся ими и для бесконечного числа состояний. Подсчитаем финальные вероятности состояний по формулам (19.8), (19.7). В нашем случае число слагаемых в формуле (19.8) будет бесконечным. Получим выражение для

Ряд в формуле (20.11) представляет собой геометрическую прогрессию. Мы знаем, что при ряд сходится - это бесконечно убывающая геометрическая прогрессия со знаменателем . При ряд расходится (что является косвенным, хотя и не строгим доказательством того, что финальные вероятности состояний существуют только при ). Теперь предположим, что это условие выполнено, и Суммируя прогрессию в (20.11), имеем

(20.12)

Вероятности найдутся по формулам:

откуда, с учетом (20.12), найдем окончательно:

Как видно, вероятности образуют геометрическую прогрессию со знаменателем . Как это ни странно, максимальная из них - вероятность того, что канал будет вообще свободен. Как бы ни была нагружена система с очередью, если только она вообще справляется с потоком заявок самое вероятное число заявок в системе будет 0.

Найдем среднее число заявок в СМО . Тут придется немного повозиться. Случайная величина Z - число заявок в системе - имеет возможные значения с вероятностями

Ее математическое ожидание равно

(20.14)

(сумма берется не от 0 до а от 1 до так как нулевой член равен нулю).

Подставим в формулу (20.14) выражение для

Теперь вынесем за знак суммы :

Тут мы опять применим «маленькую хитрость»: есть не что иное, как производная пор от выражения значит,

Меняя местами операции дифференцирования и суммирования, получим:

Но сумма в формуле (20.15) есть не что иное, как сумма бесконечно убывающей геометрической прогрессии с первым членом и знаменателем ; эта сумма равна а ее производная . Подставляя это выражение в (20.15), получим:

(20.16)

Ну, а теперь применим формулу Литтла (19.12) и наймем среднее время пребывания заявки в системе:

Найдем среднее число заявок в очереди Будем рассуждать так: число заявок в очереди равно числу заявок в системе минус чйсло заявок, находящихся под обслуживанием. Значит (по правилу сложения математических ожиданий), среднее число заявок в очереди равно среднему числу заявок в системе минус среднее число заявок под обслуживанием. Число заявок под обслуживанием может быть либо нулем (если канал свободен), либо единицей (если он занят). Математическое ожидание такой случайной величины равно вероятности того, что канал занят (мы ее обозначили ). Очевидно, равно единице минус вероятность того, что канал свободен;

Следовательно, среднее число заявок под обслуживанием равно

Рассмотрим теперь одноканальную СМО с ожиданием.

Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание поток имеет интенсивность λ. Интенсивность потока обслуживания равна μ (т. е. в среднем непрерывно занятый канал будет выдавать μ обслуженных заявок). Длительность обслуживания - случайная величина, подчи­ненная показательному закону распределения. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Рассмотрим систему с ограниченной очередью . Предположим, что независимо оттого, сколько требований по­ступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N -требований (заявок), из которых одна обслуживается, а (N -1) ожидают, Клиенты, не попавшие в ожидание, вынуждены об­служиваться в другом месте и такие заявки теряются.

Обозначим - вероятность того, что в системе находится n заявок. Эта величина вычисляется по формуле:

Здесь - приведенная интенсивность потока. Тогда вероятность того, что канал обслуживания свободен и в системе нет ни одного клиента, равна: .

С учетом этого можно обозначить

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N-1):

вероятность отказа в обслуживании заявки:

относительная пропускная способность системы:

абсолютная пропускная способность:

А =q ∙λ;

среднее число находящихся в системе заявок:

среднее время пребывания заявки в системе:

;

средняя продолжительность пребывания клиента (заявки) в очереди:

W q =W s - 1/μ;

среднее число заявок (клиентов) в очереди (длина очереди):

L q =λ(1-P N )W q .

Рассмотрим пример одноканальной СМО с ожиданием.

Пример 9.2 . В зону таможенного контроля в пункте пропуска автомобили въезжают по системе электронной очереди. Каждое окно оформления прибытия/убытия представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих оформления, ограниченно и равно 3, то есть (N -1)=3. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль в зону таможенного контроля не пропускается, т.е. в очередь на обслуживание не становится. Поток автомобилей, прибывающих на оформление имеет интенсивность λ =0,85 (автомобиля в час). Время оформления автомобиля распределено по показательному закону и в среднем равно =1,05 час. Требуется определить вероятностные характеристики окна оформления прибытия/убытия пункта пропуска, работающего в стационарном режиме.

Решение.

Интенсивность потока обслуживаний автомобилей:

.

Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей λ и μ, т.е.

.

Вычислим вероятности нахождения п заявок в системе:

;

P 1 =ρ∙P 0 =0,893∙0,248=0,221;

P 2 =ρ 2 ∙P 0 =0,893 2 ∙0,248=0,198;

P 3 =ρ 3 ∙P 0 =0,893 3 ∙0,248=0,177;

P 4 =ρ 4 ∙P 0 =0,893 4 ∙0,248=0,158.

Вероятность отказа в обслуживании автомобиля:

P отк =Р 4 = ρ 4 ∙P 0 ≈0,158.

Относительная пропускная способность окна оформления:

q =1–P отк =1-0,158=0,842.

Абсолютная пропускная способность окна оформления

А =λ∙q =0,85∙0,842=0,716 (автомобиля в час).

Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):


.

Среднее время пребывания автомобиля в системе:

часа.

Средняя продолжительность пребывания заявки в очереди на обслуживание:

W q =W s -1/μ=2,473-1/0,952=1,423 часа.

Среднее число заявок в очереди (длина очереди):

L q =λ∙(1-P N)∙W q = 0,85∙(1-0,158)∙1,423=1,02.

Работу рассмотренного окна оформления можно считать удовлетворительной, так как не обслуживается в среднем 15,8% случаев (Р отк =0,158).

В коммерческой деятельности в качестве одноканалыюй СМО с неограниченным ожиданием является, например, коммерческий директор, поскольку он, как правило, вынужден выполнять обслуживание заявок различной природы: документы, переговоры по телефону, встречи и беседы с подчиненными, представителями налоговой инспекции, полиции, товароведами, маркетологами, поставщиками продукции и решать задачи в товарно-финансовой сфере с высокой степенью финансовой ответственности, что связано с обязательным выполнением запросов, которые ожидают иногда нетерпеливо выполнения своих требований, а ошибки неправильного обслуживания, как правило, экономически весьма ощутимы.

В то же время товары, завезенные для продажи (обслуживания), находясь на складе, образуют очередь на обслуживание (продажу). Длину очереди составляет количество товаров, предназначенных для продажи. В этой ситуации продавцы выступают в роли каналов, обслуживающих товары. Если количество товаров, предназначенных для продажи, велико, то в этом случае мы имеем дело с типичным случаем СМО с ожиданием.

Рассмотрим простейшую одноканальную СМО с ожиданием обслуживания, на которую поступает пуассоновский поток заявок с интенсивностью X и интенсивностью обслуживания р. Причем заявка, поступившая в момент, когда канал занят обслуживанием, ставится в очередь и ожидает обслуживания. Размеченный граф состояний такой системы приведен на рис. 5.17.

Рис. 5.17

Количество возможных состояний ее бесконечно:

So - канал свободен, очереди нет, k = 0;

S - канал занят обслуживанием, очереди нет, k = 1; S 2 - канал занят, одна заявка в очереди, k = 2;

5/, - канал занят (k - 1), заявка в очереди.

Модели оценки вероятности состояний СМО с неограниченной очередью можно получить из формул, выведенных для СМО с ограниченной очередью, путем перехода к пределу при т >


Следует заметить, что для СМО с ограниченной длиной очереди в формуле

имеет место геометрическая прогрессия с первым членом 1 и знаменателем р. Такая последовательность представляет собой сумму бесконечного числа членов при т -*? оо. Эта сумма сходится, если прогрессия, бесконечно убывающая при р 1 очередь при t -* оо с течением времени может расти до бесконечности.

Поскольку в рассматриваемой СМО ограничение на длину очереди отсутствует, то любая заявка может быть обслужена, поэтому Pofc = 1, следовательно, относительная пропускная способность Q = р 0 б с = 1, соответственно р ОТК = О, а абсолютная пропускная способность А = XQ = X, L 0 ^ = р.

Вероятность пребывания в очереди k заявок равна

Среднее число заявок в очереди

Среднее число заявок в системе

Среднее время ожидания обслуживания в очереди

Среднее время пребывания заявки в системе

Если в одноканальной СМО с ожиданием интенсивность поступления заявок больше интенсивности обслуживания, % > р, то очередь будет постоянно увеличиваться. В связи с этим наибольший интерес представляет анализ устойчивых СМО, работающих в стационарном режиме при X р, р

Пример 5.18. Булочная «Горячий хлеб» имеет одного контроле- ра-кассира. В течение часа приходят в среднем 54 покупателя. Средняя стоимость одной покупки составляет 7 руб. Среднее время обслуживания контролером-кассиром одного покупателя составляет 1 мин. Определим выручку от продажи, характеристики СМО и проведем анализ ее работы.

Решение

По условиям задачи п = 1; X = 54 ед/ч; р = 60 ед/ч, и поскольку р = Х/р = 0,9, то очередь нс будет расти бесконечно, следовательно, предельные вероятности существуют:

Вероятность того, что контролер-кассир свободен,

Вероятность того, что контролер-кассир занят работой,

Среднее число покупателей в очереди

Среднее время пребывания покупателя в булочной

Среднее число покупателей в булочной

Вероятность того, что в булочной находятся 1, 2, 3,4 человека, а следовательно, ожидают расчета в очереди у контролера-кассира 1, 2, 3 человека соответственно

Вероятность того, что ожидают расчета у контролера-кассира не более трех человек, равна

Доля времени простоя контролера-кассира составляет всего 10% от продолжительности рабочего дня, однако время ожидания обслуживания в очереди ощутимо - 9 мин, поэтому следует уменьшать время обслуживания t of -)C , введя дополнительный кассовый аппарат и соответственно контролера-кассира, иначе покупатели будут уходить в другое торговое предприятие, что приведет к ухудшению экономических показателей хозяйственной деятельности, в частности к уменьшению выручки от продажи хлеба и образованию остатков хлеба па следующий день и к потере его качества.

Пример 5.19. Интенсивность потока автомобилей на АЗС к колонке за бензином АИ-92 составляет 30 автомобилей в час, а среднее время заправки равно 5 мин. Проведем анализ работы системы массового обслуживания АЗС.

Решение

X = 30 ед/ч; = 5 мин = 1/12 ч.

Определим характеристики СМО. Интенсивность нагрузки:

Поскольку р > 1, то АЭС не будет работать в стационарном режиме и очередь будет постоянно увеличиваться, поэтому необходимо ввести еще одну колонку с бензином АИ-92 или уменьшить время обслуживания до величины ~ 1,9 мин, тогда

следовательно, р

Пример 5.20. В парикмахерской работает только один мужской мастер. Среднее время стрижки одного клиента составляет 20 мин. Клиенты в среднем приходят каждые 25 мин. Средняя стоимость стрижки составляет 60 руб. Как в первую смену с 9 до 15 ч, так и во вторую - с 15 до 21 ч работает один мастер. Провести анализ работы системы обслуживания.

Решение

п = 1; X = 2,4 клиента/ч; t Q fc = 20 мин = 1/3 ч.

Интенсивность нагрузки

Долю времени простоя мастера

Вероятность того, что мастер занят работой,

Среднее число клиентов в очереди

Среднее время ожидания в очереди

Среднее время пребывания клиентов в парикмахерской

Система работает вполне удовлетворительно. Поскольку р X = 4 клиента/ч, то интенсивность нагрузки составит р > 1 и очередь будет постоянно увеличиваться, что приведет к неустойчивому режиму работы СМО.