Большая энциклопедия нефти и газа. Все о мощности автономных электростанций

До реформы 2008 года большая часть энергетического комплекса Российской Федерации находилась под управлением РАО «ЕЭС России». Эта компания была создана в 1992 году и к началу «двухтысячных» годов стала практически монополистом российского рынка генерации и энерготранспортировки.

Реформирование отрасли было связано с тем, что РАО «ЕЭС России» неоднократно подвергались критике за неправильное распределение инвестиций, в результате чего значительно выросла аварийность на объектах электроэнергетики. Одной из причин расформирования послужила авария в энергосистеме 25 мая 2005 года в Москве, в результате которой была парализована деятельность многих предприятий, коммерческих и государственных организаций, остановлена работа метрополитена. А кроме этого, РАО «ЕЭС России» часто обвиняли в том, что организация продает электроэнергию по заведомо завышенным тарифам с целью увеличения собственной прибыли.

В результате расформирования РАО «ЕЭС России» была ликвидирована и созданы естественные государственные монополии в сетевой, распределительной и диспетчерской деятельности. Частный был задействован в сфере генерации и сбыта электроэнергии.

На сегодняшний день структура энергетического комплекса выглядит следующим образом:

  • ОАО «Системный оператор Единой энергетической системы» (СО ЕЭС) – осуществляет централизованное оперативно-диспетчерское управление Единой энергетической системой РФ.
  • Некоммерческое партнерство «Совет рынка по организации эффективной системы оптовой и розничной торговли электрической энергией и мощностью» - объединяет продавцов и покупателей оптового рынка электроэнергии.
  • Компании генерирующие электроэнергию. В том числе государственные - «РусГидро», «Росэнергоатом», управляемые совместно государством и частным капиталом ОГК (оптовые генерирующие компании) и ТГК (территориальные генерирующие компании), а также представляющие полностью частный капитал.
  • ОАО «Российские сети» - управление распределительным сетевым комплексом.
  • Энергосбытовые компании. В том числе ОАО «Интер РАО ЕЭС» - компания владельцами которой являются государственные структуры и организации. «Интер РАО ЕЭС» является монополистом по импорту и экспорту электроэнергии в РФ.

Кроме разделения организаций по видам деятельности, существует разделение Единой энергосистемы России на технологические системы действующие по территориальному признаку. Объединенные энергосистемы (ОЭС) не имеют одного собственника, а объединяют энергетические компании отдельно взятого региона и имеют единое диспетчерское управление, которое осуществляется филиалами «СО ЕЭС». На сегодняшний день в России действуют 7 ОЭС:

  • ОЭС Центра (Белгородская, Брянская, Владимирская, Вологодская, Воронежская, Ивановская, Тверская, Калужская, Костромская, Курская, Липецкая, Московская, Орловская, Рязанская, Смоленская, Тамбовская, Тульская, Ярославская энергосистемы);
  • ОЭС Северо-Запада (Архангельская, Карельская, Кольская, Коми, Ленинградская, Новгородская, Псковская и Калининградская энергосистемы);
  • ОЭС Юга (Астраханская, Волгоградская, Дагестанская, Ингушская, Калмыцкая, Карачаево-Черкесская, Кабардино-Балкарская, Кубанская, Ростовская, Северо-Осетинская, Ставропольская, Чеченская энергосистемы);
  • ОЭС Средней Волги (Нижегородская, Марийская, Мордовская, Пензенская, Самарская, Саратовская, Татарская, Ульяновская, Чувашская энергосистемы);
  • ОЭС Урала (Башкирская, Кировская, Курганская, Оренбургская, Пермская, Свердловская, Тюменская, Удмуртская, Челябинская энергосистемы);
  • ОЭС Сибири (Алтайская, Бурятская, Иркутская, Красноярская, Кузбасская, Новосибирская, Омская, Томская, Хакасская, Забайкальская энергосистемы);
  • ОЭС Востока (Амурская, Приморская, Хабаровская и Южно-Якутская энергосистемы).

Основные показатели деятельности

Ключевыми показателями деятельности энергосистемы являются: установленная мощность электростанций, выработка электроэнергии и потребление электроэнергии.

Установленная мощность электростанции – это сумма паспортных мощностей всех генераторов электростанции, которая может меняться в процессе реконструкции действующих генераторов или установки нового оборудования. На начало 2015 года установленная мощность Единой энергосистемы (ЕЭС) России составляла 232.45 тыс. МВт.

На 1 января 2015 года установленная мощность российских электростанций увеличилась на 5 981 МВт по сравнению с 1 января 2014 года. Рост составил 2.6%, а достигнуто это было за счет введения новых мощностей производительностью 7 296 МВт и увеличения мощности действующего оборудования, путем перемаркировки на 411 МВт. При этом были выведены из эксплуатации генераторы мощностью 1 726 МВт. В целом по отрасли по сравнению с 2010 годом рост производственных мощностей составил 8.9%.

Распределение мощностей по объединенным энергосистемам выглядит следующим образом:

  • ОЭС Центра – 52.89 тыс. МВт;
  • ОЭС Северо-Запада – 23.28 тыс. МВт;
  • ОЭС Юга – 20.17 тыс. МВт;
  • ОЭС Средней Волги – 26.94 тыс. МВт;
  • ОЭС Урала – 49.16 тыс. МВт;
  • ОЭС Сибири – 50.95 тыс. МВт;
  • ОЭС Востока – 9.06 тыс. МВт.

Больше всего в 2014 году увеличилась установленная мощность ОЭС Урала – на 2 347 МВт, а также ОЭС Сибири – на 1 547 МВт и ОЭС Центра на 1 465 МВт.

По итогам 2014 года в Российской Федерации было произведено 1 025 млрд. КВтч электроэнергии. По этому показателю Россия занимает 4 место в мире, уступая Китаю в 5 раз, а Соединенным Штатам Америки в 4 раза.

По сравнению с 2013 годом, выработка электроэнергии в Российской Федерации увеличилась на 0.1%. А в отношении к 2009 году рост составил 6.6%, что в количественном выражении составляет 67 млрд. КВтч.

Больше всего электроэнергии в 2014 году в России было произведено тепловыми электростанциями – 677.3 млрд. КВтч, ГЭС произвели – 167.1 млрд. КВтч, а атомные электростанции – 180.6 млрд. КВтч. Производство электроэнергии по объединенным энергосистемам:

  • ОЭС Центра –239.24 млрд. КВтч;
  • ОЭС Северо-Запада –102.47 млрд. КВтч;
  • ОЭС Юга –84.77 млрд. КВтч;
  • ОЭС Средней Волги – 105.04 млрд. КВтч;
  • ОЭС Урала – 259.76 млрд. КВтч;
  • ОЭС Сибири – 198.34 млрд. КВтч;
  • ОЭС Востока – 35.36 млрд. КВтч.

По сравнению с 2013 годом наибольший прирост в выработке электроэнергии был зафиксирован в ОЭС Юга – (+2.3%), а наименьший в ОЭС Средней Волги – (- 7.4%).

Потребление электроэнергии в России в 2014 году составило 1 014 млрд. КВтч. Таким образом, сальдовый остаток составил (+ 11 млрд. КВтч). А наибольшим потребителем электроэнергии по итогам 2014 года в мире является Китай – 4 600 млрд. КВтч, второе место занимают США – 3 820 млрд. КВтч.

По сравнению с 2013 годом потребление электроэнергии в России выросло на 4 млрд. КВтч. Но в целом, динамика потребления за последние 4 года остается примерно на одном и том же уровне. Разница между потреблением электроэнергии за 2010 и 2014 год составляет 2.5%, в пользу последнего.

По итогам 2014 года, потребление электроэнергии по объединенным энергосистемам выглядит следующим образом:

  • ОЭС Центра –232.97 млрд. КВтч;
  • ОЭС Северо-Запада –90.77 млрд. КВтч;
  • ОЭС Юга –86.94 млрд. КВтч;
  • ОЭС Средней Волги – 106.68 млрд. КВтч;
  • ОЭС Урала –260.77 млрд. КВтч;
  • ОЭС Сибири – 204.06 млрд. КВтч;
  • ОЭС Востока – 31.8 млрд. КВтч.

В 2014 году 3 ОЭС имели положительную разницу между произведенной и выработанной электроэнергией. Наилучший показатель у ОЭС Северо-Запада – 11.7 млрд. КВтч, что составляет 11.4% от произведенной электроэнергии, а наихудший у ОЭС Сибири (- 2.9%). Сальдовый остаток электроэнергии по ОЭС РФ выглядит так:

  • ОЭС Центра – 6.27 млрд. КВтч;
  • ОЭС Северо-Запада – 11.7 млрд. КВтч;
  • ОЭС Юга – (- 2.17) млрд. КВтч;
  • ОЭС Средней Волги – (- 1.64) млрд. КВтч;
  • ОЭС Урала – (- 1.01) млрд. КВтч;
  • ОЭС Сибири – (- 5.72) млрд. КВтч;
  • ОЭС Востока – 3.56 млрд. КВтч.

Стоимость 1 КВтч электроэнергии, по итогам 2014 года в России, в 3 раза ниже европейских цен. Среднегодовой европейский показатель составляет 8.4 российских рубля, в то время, как в Российской Федерации средняя стоимость 1 КВтч – 2.7 руб. Лидером по стоимости электроэнергии является Дания – 17.2 рубля за 1 КВтч, второе место занимает Германия – 16.9 рублей. Такие дорогие тарифы связаны в первую очередь с тем, что правительство этих стран отказались от использования атомных электростанций в пользу альтернативных источников энергии.

Если сопоставить стоимость 1 КВтч и среднюю зарплату, то среди европейских стран больше всего в месяц киловатт/час могут купить жители Норвегии – 23 969, второе место занимает Люксембург – 17 945 КВтч, третье Нидерланды – 15 154 КВтч. Среднестатистический россиянин может купить в месяц 9 674 КВтч.

Все российские энергосистемы, а также энергетические системы стран ближнего зарубежья соединены между собой линиями электропередач. Для передачи энергии на дальние расстояния используются высоковольтные линии электропередач мощностью 220 кВ и выше. Они и составляют основу российской энергосистемы и эксплуатируются межсистемными электросетями. Общая протяженность ЛЭП этого класса составляет 153.4 тыс. км., а в целом в Российской Федерации эксплуатируется 2 647.8 тыс. км линий электропередач различной мощности.

Атомная энергетика

Атомная энергетика представляет собой энергетическую отрасль, которая занимается генерацией электроэнергии за счет преобразования ядерной энергии. Атомные электростанции имеют два существенных преимущества перед своими конкурентами – экологичность и экономичность. При соблюдении всех норм эксплуатации АЭС практически не загрязняет окружающую среду, а ядерное топливо сжигается в несоизмеримо меньшем количестве, чем другие виды и топлива и это позволяет экономить на логистике и доставке.

Но, несмотря на эти преимущества, многие страны не хотят развивать атомную энергетику. Связано это в первую очередь с боязнью экологической катастрофы, которая может произойти в результате аварии на АЭС. После аварии на Чернобыльской АЭС в 1986 году к объектам атомной энергетики по всему миру приковано пристальное внимание мировой общественности. Поэтому эксплуатируются АЭС, в основном в развитых в техническом и экономическом отношении государствах.

По данным за 2014 год, атомная энергетика обеспечивает около 3% потребления мировой электроэнергии. На сегодняшний день электростанции с ядерными реакторами функционируют в 31 стране мира. А всего в мире насчитывается 192 атомные электростанции с 438 энергоблоками. Общая мощность всех АЭС мира составляет около 380 тыс. МВт. Наибольшее количество атомных электростанций находится в США – 62, второе место занимает Франция – 19, третье Япония – 17. В Российской Федерации функционирует 10 АЭС и это 5 показатель в мире.

АЭС Соединенных Штатов Америки в общей сложности вырабатывают 798.6 млрд. КВтч, это наилучший показатель в мире, но в структуре вырабатываемой электроэнергии всеми электростанциями США, атомная энергетика составляет около 20%. Наибольшая доля в выработке электроэнергии атомными электростанциями во Франции, АЭС этой страны вырабатывают 77% всей электроэнергии. Выработка французских атомных электростанций составляет 481 млрд. КВтч в год.

По итогам 2014 года, российскими АЭС было сгенерировано 180.26 млрд. КВтч электроэнергии, это на 8.2 млрд. КВтч больше чем в 2013 году, в процентом отношении разница составляет 4.8%. Производство электроэнергии атомными электростанциями России составляет более 17.5% от общего количества всей произведенной в РФ электроэнергии.

Что касается выработки электроэнергии атомными электростанциями по объединенным энергосистемам, то наибольшее количество было сгенерировано АЭС Центра – 94.47 млрд. КВтч – это чуть более половины всей выработки страны. А доля атомной энергетики в этой объединенной энергосистеме самая большая – около 40%.

  • ОЭС Центра – 94. 47 млрд. КВтч (39.8% от всей сгенерированной электроэнергии);
  • ОЭС Северо-Запада –35.73 млрд. КВтч (35% от всей энергии);
  • ОЭС Юга –18.87 млрд. КВтч (22.26% от всей энергии);
  • ОЭС Средней Волги –29.8 млрд. КВтч (28.3% от всей энергии);
  • ОЭС Урала – 4.5 млрд. КВтч (1.7% от всей энергии).

Такое неравномерное распределение выработки связано с месторасположением российских АЭС. Большая часть мощностей атомных электростанций сконцентрирована в европейской части страны, тогда как в Сибири и Дальнем Востоке они отсутствуют вовсе.

Самая крупная АЭС в мире – японская Касивадзаки-Карива, ее мощность составляет 7 965 МВт, а крупнейшая европейская АЭС – Запорожская, мощность которой около 6 000 МВт. Находится она в украинском городе Энергодар. В Российской Федерации самые крупные АЭС имеют мощности по 4 000 МВт, остальные от 48 до 3 000 МВт. Список российских атомных электростанций:

  • Балаковская АЭС – мощность 4 000 МВт. Находится в Саратовской области, неоднократно признавалась лучшей АЭС России. Располагает 4 энергоблоками, была введена в эксплуатацию в 1985 году.
  • Ленинградская АЭС – мощность 4 000 МВт. Крупнейшая АЭС Северо-Западного ОЭС. Располагает 4 энергоблоками, была введена в эксплуатацию в 1973 году.
  • Курская АЭС – мощность 4 000 МВт. Состоит из 4 энергоблоков, начало эксплуатации – 1976 год.
  • Калининская АЭС – мощность 4 000 МВт. Находится на севере Тверской области, располагает 4 энергоблоками. Открыта в 1984 году.
  • Смоленская АЭС – мощность 3 000 МВт. Признавалась лучшей АЭС России в 1991, 1992, 2006 2011 годах. Имеет 3 энергоблока, первый был запущен в эксплуатацию в 1982 году.
  • Ростовская АЭС – мощность 2 000 МВт. Крупнейшая электростанция юга России. На станции введены в эксплуатацию 2 энергоблока, первый в 2001 году, второй в 2010.
  • Нововоронежская АЭС – мощность 1880 МВт. Обеспечивает электроэнергией около 80% потребителей Воронежской области. Первый энергоблок был запущен в сентябре 1964 года. Сейчас действуют 3 энергоблока.
  • Кольская АЭС – мощность 1760 МВт. Первая в России АЭС построенная за полярным кругом, обеспечивает около 60% потребления электричества Мурманской области. Располагает 4 энергоблоками, была открыта в 1973 году.
  • Белоярская АЭС – мощность 600 МВт. Находится в Свердловской области. Была введена в эксплуатацию в апреле 1964 года. Является старейшей из ныне действующих АЭС в России. Сейчас действует только 1 энергоблок из трех предусмотренных проектом.
  • Билибинская АЭС – мощность 48 МВт. Является частью изолированной Чаун-Билибинской энергосистемы вырабатывая около 75% потребляемой ею электроэнергии. Была открыта в 1974 году, состоит из 4 энергоблоков.

Помимо существующих АЭС, в России ведется строительство еще 8 энергоблоков, а также плавучей атомной электростанции малой мощности.

Гидроэнергетика

Гидроэлектростанции обеспечивают довольно невысокую стоимость одного выработанного КВтч энергии. По сравнению с тепловыми электростанциями производство 1 КВтч на ГЭС обходится дешевле в 2 раза. Связано это с довольно простым принципом работы гидроэлектростанций. Строятся специальные гидротехнические сооружения которые обеспечивают необходимый напор воды. Вода, попадая на лопасти турбины, приводит ее в движение, которая в свою очередь приводит в действие генераторы вырабатывающие электроэнергию.

Но повсеместное использование ГЭС невозможно, так как необходимым условием эксплуатации является наличие мощного движущегося водного потока. Поэтому гидроэлектростанции сооружаются на полноводных крупных реках. Еще одним существенным недостатком ГЭС является перекрытие русла рек, что затрудняет нерест рыбы и затапливание больших объемов земельных ресурсов.

Но несмотря на негативные последствия для окружающей среды, гидроэлектростанции продолжают функционировать и строится на крупнейших реках мира. Всего в мире функционируют ГЭС общей мощностью около 780 тыс. МВт. Общее количество ГЭС подсчитать затруднительно, так как в мире действуют множество мелких ГЭС, работающих на нужны отдельного города, предприятия, а то и вовсе частного хозяйства. В среднем гидроэнергетика обеспечивает производство около 20% всей мировой электроэнергии.

Среди всех стран мира более всех от гидроэнергетики зависит Парагвай. В стране 100% электроэнергии вырабатывается на гидроэлектростанциях. Помимо этой страны от гидроэнергетики очень сильно зависят Норвегия, Бразилия, Колумбия.

Наибольшие гидроэлектростанции находятся в Южной Америке и Китае. Самая большая в мире гидроэлектростанция – Санься на реке Янзцы, ее мощность достигает 22 500 МВт, второе место занимает ГЭС на реке Парана – Итайпу, с мощностью 14 000 МВт. Самая крупная ГЭС России – Саяно-Шушенская, ее мощность около 6 400 МВт.

Помимо Саяно-Шушенской ГЭС в России действуют еще 101 гидроэлектростанция с мощностью более 100 МВт. Крупнейшие ГЭС России:

  • Саяно-Шушенская – Мощность - 6 400 МВт, среднегодовое производство электроэнергии – 19.7 млрд. КВтч. Дата ввода в эксплуатацию – 1985 год. ГЭС находится на Енисее.
  • Красноярская – Мощность 6 000 МВт, среднегодовое производство электроэнергии – около 20 млрд. КВтч, запущена в эксплуатацию в 1972 году, также расположена на Енисее.
  • Братская – Мощность 4 500 МВт, расположена на Ангаре. В год в среднем вырабатывает около 22.6 млрд. КВтч. Введена в эксплуатацию в 1961 году.
  • Усть-Илимская – Мощность 3 840 МВт, расположена на Ангаре. Среднегодовая производительность 21.7 млрд. КВтч. Была построена в 1985 году.
  • Богучанская ГЭС – Мощность около 3 000 МВт, была построена на Ангаре в 2012 году. Производит около 17.6 млрд. КВтч в год.
  • Волжская ГЭС – Мощность 2 640 МВт. Построена в 1961 году в Волгоградской области, среднегодовая производительность 10.43 КВтч.
  • Жигулевскя ГЭС – Мощность около 2 400 МВт. Была построена в 1955 году на реке Волга в Самарской области. В год производит около 11.7 КВтч электроэнергии.

Что касается объединенных энергетических систем, то наибольшую долю в выработке электроэнергии с помощью ГЭС имеют ОЭС Сибири и Востока. В этих ОЭС на долю гидроэлектростанций приходится 47.5 и 35.3% всей выработанной электроэнергии, соответственно. Это объясняется наличием в этих регионах крупных полноводных рек бассейна Енисея и Амура.

По итогам 2014 года ГЭС России было произведено более 167 млрд. КВтч электроэнергии. По сравнению с 2013 годом этот показатель уменьшился на 4.4%. Наибольший вклад в генерацию электроэнергии с помощью ГЭС внесла ОЭС Сибири – около 57% от общероссийского.

Теплоэнергетика

Теплоэнергетика является основой энергетического комплекса подавляющего большинства стран мира. Несмотря на то, что у тепловых электростанций масса недостатков, связанных с загрязнением окружающей среды и высокой себестоимостью электроэнергии, они используются повсеместно. Причина такой популярности – универсальность ТЭС. Тепловые электростанции могут работать на различных видах топлива и при проектировании обязательно учитывается какие энергоресурсы являются оптимальными для данного региона.

С помощью тепловых электростанций производится около 90% всей мировой электроэнергии. При этом на долю ТЭС использующих в качестве топлива нефтепродукты приходится производство 39% всей мировой энергии, ТЭС работающих на угле – 27%, а на долю газовых тепловых электростанций – 24% сгенерированного электричества. В некоторых странах существует сильная зависимость ТЭС от одного вида топлива. Например, подавляющее большинство польских ТЭС работают на угле, такая же ситуация и в ЮАР. А вот большинство тепловых электростанций в Нидерландах используют в качестве топлива природный газ.

В Российской Федерации основными видами топлива для ТЭС являются природный и попутный нефтяной газ и уголь. Причем на газу работает большинство ТЭС европейской части России, а угольные ТЭС преобладают в южной Сибири и Дальнем Востоке. Доля электростанций использующих в качестве основного топлива мазут незначительна. Кроме этого многие тепловые электростанции в России используют несколько видов топлива. Например, Новочеркасская ГРЭС в Ростовской области использует все три основных вида топлива. Доля мазута составляет 17%, газа – 9%, а угля – 74%.

По количеству произведенной электроэнергии в РФ в 2014 году тепловые электростанции прочно удерживают лидирующие позиции. Всего за прошедший год, ТЭС произвели 621.1 млрд. КВтч, это на 0.2% меньше чем в 2013 году. А в целом выработка электроэнергии тепловыми электростанциями РФ, снизилась до уровня 2010 года.

Если рассматривать выработку электроэнергии в разрезе ОЭС, то в каждой энергосистеме на долю ТЭС приходится наибольшее производство электричества. Больше всего доля ТЭС в ОЭС Урала – 86.8%, а наименьшая в ОЭС Северо-Запада – 45.4%. Что касается количественного производства электроэнергии, то в разрезе ОЭС это выглядит следующим образом:

  • ОЭС Урала – 225.35 млрд. КВтч;
  • ОЭС Центра – 131.13 млрд. КВтч;
  • ОЭС Сибири – 94.79 млрд. КВтч;
  • ОЭС Средней Волги – 51.39 млрд. КВтч;
  • ОЭС Юга – 49.04 млрд. КВтч;
  • ОЭС Северо-Запада – 46.55 млрд. КВтч;
  • ОЭС Дальнего Востока – 22.87 млрд. КВтч.

Тепловые электростанции в России разделяются на два вида ТЭЦ и ГРЭС. Теплоэлектроцентраль (ТЭЦ) представляет собой электростанцию с возможностью отбора тепловой энергии . Таким образом, ТЭЦ производит не только электроэнергию, но и тепловую энергию, использующуюся для горячего водоснабжения и отопления помещений. ГРЭС – тепловая электростанция производящая только электроэнергию. Аббревиатура ГРЭС осталась с советских времен и означала государственная районная электростанция.

На сегодняшний день в Российской Федерации функционирует около 370 тепловых электростанций. Из них 7 имеют мощность свыше 2 500 МВт:

  • Сургутская ГРЭС – 2 – мощность 5 600 МВт, виды топлива – природный и попутный нефтяной газ – 100%.
  • Рефтинская ГРЭС – мощность 3 800 МВт, виды топлива – уголь – 100%.
  • Костромская ГРЭС – мощность 3 600 МВт, виды топлива – природный газ -87%, уголь – 13%.
  • Сургутская ГРЭС – 1 – мощность 3 270 МВт, виды топлива – природный и попутный нефтяной газ – 100%.
  • Рязанская ГРЭС – мощность 3070 МВт, виды топлива – мазут – 4%, газ – 62%, уголь – 34%.
  • Киришская ГРЭС – мощность 2 600 МВт, виды топлива – мазут – 100%.
  • Конаковская ГРЭС – мощность 2 520 МВт, виды топлива – мазут – 19%, газ – 81%.

Перспективы развития отрасли

Последние несколько лет в российском энергетическом комплексе сохраняется положительный баланс между выработанной и потребленной электроэнергией. Как правило, общее количество потребленной энергии составляет 98-99% от выработанной. Таким образом можно сказать, что существующие производственные мощности полностью перекрывают потребности страны в электроэнергии.

Основные направления деятельности российских энергетиков направлены на повышение электрификации удаленных районов страны, а также на обновление и реконструкцию уже существующих мощностей.

Необходимо отметить, что стоимость электроэнергии в России существенно ниже, чем в странах Европы и Азиатско - Тихоокеанского региона, поэтому разработке и внедрению новых альтернативных источников получения энергии, не уделяется должного внимания. Доля в общем производстве электроэнергии ветроэнергетики, геотермальной энергетики и солнечной энергетики в России не превышает 0.15% от общего количества. Но если геотермальная энергетика очень сильно ограничена территориально, а солнечная энергетика в России не развивается в промышленных масштабах, то пренебрежение ветроэнергетикой является недопустимым.

На сегодняшний день в мире, мощность ветряных генераторов составляет 369 тыс. МВт, что всего на 11 тыс. МВт меньше, чем мощность энергоблоков всех АЭС мира. Экономический потенциал российской ветроэнергетики составляет около 250 млрд. КВтч в год, что равняется примерно четверти всей потребляемой электроэнергии в стране. На сегодняшний день производство электроэнергии с помощью ветрогенераторов не превышает 50 млн. КВтч в год.

Необходимо также отметить повсеместное внедрение энергосберегающих технологий, во все виды хозяйственной деятельности, которое наблюдается в последние годы. На производствах и в домашних хозяйствах используются различные приборы позволяющие сократить расход электроэнергии, а в современном строительстве активно используют теплоизоляционные материалы. Но, к сожалению, несмотря даже на принятый в 2009 году Федеральный Закон «Об энергосбережении и повышении энергетической эффективности в Российской Федерации», по уровню экономии электроэнергии и энергосбережения, РФ очень сильно отстает от стран Европы и США.

Будьте в курсе всех важных событий United Traders - подписывайтесь на наш

УСТАНОВЛЕННАЯ МОЩНОСТЬ ЭЛЕКТРОСТАНЦИИ

сумма номинальных мощностей генераторов электростанции. Напр., Конаковская ГРЭС имеет У. м. э. 2400 МВт (8 турбогенераторов мощностью 300 МВт каждый), Братская ГЭС - 4500 МВт (20 гидрогенераторов мощностью 225 МВт каждый).


Большой энциклопедический политехнический словарь . 2004 .

Смотреть что такое "УСТАНОВЛЕННАЯ МОЩНОСТЬ ЭЛЕКТРОСТАНЦИИ" в других словарях:

    установленная мощность (электростанции) - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN capacity …

    Установленная мощность электростанции - – мощность, определенная по паспортным данным основных агрегатов станции, работающих на внешнюю сеть. Временные методические указания по формированию и применению двухста вочных тарифов на ФОРЭМ. Утверждены ФЭК РФ 06.05.1997 г …

    установленная мощность земснаряда - установленная мощность Nуст Суммарная мощность всех двигателей, установленных на земснаряде, при питании их от береговой или плавучей электростанции или мощность энергетической установки автономного земснаряда. [ГОСТ 17520 72] Тематики снаряды… … Справочник технического переводчика

    установленная мощность электроустановки - Сумма номинальных мощностей электрических машин одного вида (например, генераторов, двигателей, трансформаторов), входящих в состав промышленного предприятия (например, электростанции) или электрической установки. Выражается в единицах активной… … Справочник технического переводчика

    Установленная мощность земснаряда - 66. Установленная мощность земснаряда Установленная мощность Nуст Суммарная мощность всех двигателей, установленных на земснаряде, при питании их от береговой или плавучей электростанции или мощность энергетической установки автономного… …

    Сумма номинальных мощностей электрических машин одного вида (например, генераторов, двигателей, трансформаторов), входящих в состав промышленных предприятия (например, электростанции) или электрические установки (например, электрические… … Большая советская энциклопедия

    Установленная электрическая мощность тепловой электростанции (ТЭС) - 2.1 Установленная электрическая мощность тепловой электростанции (ТЭС) суммарное значение наибольшей активной электрической мощности турбоагрегатов в соответствии с техническими условиями или паспортом на оборудование. Источник … Словарь-справочник терминов нормативно-технической документации

    Располагаемая мощность агрегата - (электростанции) – установленная мощность генерирующего агрегата (электростанции), за вычетом ограничений его мощности. ГОСТ 19431 84 … Коммерческая электроэнергетика. Словарь-справочник

    Располагаемая мощность агрегата (электростанции) - 52. Располагаемая мощность агрегата (электростанции) Располагаемая мощность E. Available power station capacity F. Puissance disponible d’une centrale Установленная мощность генерирующего агрегата (электростанции), за вычетом ограничений его… … Словарь-справочник терминов нормативно-технической документации

    Производственная мощность - (Production capacity) Определение производственной мощности, расчет производственной мощности Информация об определении производственной мощности, расчет производственной мощности Содержание Содержание 1. : понятие, виды, этапы планирования 2.… … Энциклопедия инвестора

Сложно переоценить значение электричества. Скорее, мы подсознательно недооцениваем его. Ведь практически вся окружающая нас техника работает от электросети. Об элементарном освещении и говорить не приходится. А вот производство электроэнергии нас практически не интересует. Откуда берется и как сохраняется (и вообще, возможно ли сохранить) электричество? Сколько реально стоит выработка электроэнергии? И насколько это безопасно для экологии?

Экономическое значение

Со школьной скамьи нам известно, что электроэнерговооруженность – один из основных факторов получения высокой производительности труда. Электроэнергетика – стержень всей деятельности человека. Нет ни одной отрасли, которая бы обходилась без нее.

Развитость этой отрасли свидетельствует о высокой конкурентоспособности государства, характеризует темпы роста производства товаров и услуг и почти всегда оказывается проблемным сектором экономики. Затраты на производство электроэнергии зачастую складываются из значительных первоначальных инвестиций, которые будут окупаться долгие годы. Несмотря на все свои ресурсы, Россия не исключение. Ведь значительную долю экономики составляют именно энергоемкие отрасли.

Статистика говорит нам о том, что в 2014 году производство электроэнергии Россией еще не вышло на уровень советского 1990 года. По сравнению с Китаем и США РФ производит - соответственно - в 5 и в 4 раза меньше электричества. Почему так происходит? Специалисты утверждают, что это очевидно: высочайшие непроизводственные расходы.

Кто потребляет электричество

Конечно, ответ очевиден: каждый человек. Но ведь сейчас нас интересуют промышленные масштабы, а значит, те отрасли, которым в первую очередь необходима электроэнергия. Основная доля приходится на промышленность – около 36%; ТЭК (18%) и жилой сектор (чуть больше 15%). Оставшийся 31% выработанного электричества приходится на непроизводственные отрасли, железнодорожный транспорт и потери в сетях.

При этом стоит учитывать, что в зависимости от региона структура потребления существенно меняется. Так, в Сибири действительно более 60% электричества используется промышленностью и ТЭК. А вот в европейской части страны, где расположено большее количество населенных пунктов, самым мощным потребителем оказывается жилой сектор.

Электростанции – основа отрасли

Производство электроэнергии в России обеспечивается почти 600 электростанциями. Мощность каждой превышает 5 МВт. Общая мощность всех электростанций составляет 218 ГВт. Как же мы получаем электроэнергию? В России используются такие типы электростанций:

  • тепловые (их доля в общем объеме производства около 68,5%);
  • гидравлические (20,3%);
  • атомные (почти 11%);
  • альтернативные (0,2%).

Когда речь заходит об альтернативных источниках электроэнергии, на ум приходят романические картинки с ветряками и солнечными батареями. Тем не менее, в определенных условиях и местностях это наиболее выгодные виды производства электроэнергии.

Тепловые электростанции

Исторически сложилось так, что тепловые электростанции (ТЭС) занимают основное место в производственном процессе. На территории России обеспечивающие производство электроэнергии ТЭС классифицируются по таким признакам:

  • источник энергии – органическое топливо, геотермальная или солнечная энергия;
  • вид вырабатываемой энергии – теплофикационная, конденсационная.

Еще одним важнейшим показателем считается степень участия в покрытии графика электронагрузки. Здесь выделяются базовые ТЭС с минимальным временем использования в году 5000 час; полупиковые (их еще называют маневренные) – 3000-4000 час в году; пиковые (используются только в часы максимальной нагрузки) – 1500-2000 час в году.

Технология производства энергии из топлива

Конечно, в основном производство, передача и использование электроэнергии потребителями происходит за счет работающих на органическом топливе ТЭС. Их различают по технологии производства:

  • паротурбинные;
  • дизельные;
  • газотурбинные;
  • парогазовые.

Паротурбинные установки самые распространенные. Они работают на всех видах топлива, включая не только уголь и газ, но и мазут, торф, сланцы, дрова и древесные отходы, а также продукты переработки.

Органическое топливо

Самый большой объем производства электроэнергии приходится на Сургутскую ГРЭС-2, мощнейшую не только на территории РФ, но и на весь Евразийский континент. Работая на природном газе, она выдает до 5600 МВт электроэнергии. А из угольных наибольшей мощностью обладает Рефтинская ГРЭС – 3800 МВт. Более 3000 МВт могут давать еще Костромская и Сургутская ГРЭС-1. Следует отметить, что аббревиатура ГРЭС не изменилась со времен Советского Союза. Она расшифровывается, как государственная районная электростанция.

Во время реформы отрасли производство и распределение электроэнергии на ТЭС должно сопровождаться техническим перевооружением действующих станций, их реконструкцией. Также среди первоочередных задач стоит строительство новых генерирующих энергию мощностей.

Электричество из возобновляемых ресурсов

Электроэнергия, полученная с помощью ГЭС, является важнейшим элементом стабильности единой энергосистемы государства. Именно гидроэлектростанции могут за считаные часы увеличить объемы производства электроэнергии.

Большой потенциал российской гидроэнергетики заключается в том, что на территории страны расположено почти 9% мировых запасов воды. Это второе место в мире по наличию гидроресурсов. Такие страны, как Бразилия, Канада и США, остались позади. Производство электроэнергии в мире за счет ГЭС несколько осложняется тем, что наиболее благоприятные места для их строительства существенно удалены от населенных пунктов или промышленных предприятий.

Тем не менее, благодаря электроэнергии, произведенной на ГЭС, стране удается сэкономить около 50 млн тонн топлива. Если бы удалось освоить весь потенциал гидроэнергетики, Россия могла бы экономить до 250 млн тонн. А это уже серьезная инвестиция в экологию страны и гибкую мощность энергетической системы.

Гидростанции

Строительство ГЭС решает множество вопросов, не связанных с выработкой энергии. Это и создание систем водоснабжения и водоотведения целых регионов, и строительство ирригационных сетей, столь необходимых сельскому хозяйству, и контроль паводков и т. д. Последнее, кстати, имеет немаловажное значение для безопасности людей.

Производство, передача и распределение электроэнергии в настоящее время осуществляется 102 ГЭС, единичная мощность которых превышает 100 МВт. Общая же мощность гидроустановок России приближается к 46 ГВт.

Страны по производству электроэнергии регулярно составляют свои рейтинги. Так вот, Россия сейчас занимает 5-е место в мире по выработке электричества из возобновляемых ресурсов. Наиболее значимыми объектами следует считать Зейскую ГЭС (она не только первая из построенных на Дальнем Востоке, но еще и довольно мощная – 1330 МВт), каскад Волжско-Камских электростанций (общее производство и передача электроэнергии составляет более 10,5 ГВт), Бурейскую ГЭС (2010 МВт) и т. д. Отдельно хочется отметить и Кавказские ГЭС. Из нескольких десятков работающих в этом регионе наиболее выделяется новая (уже введенная в эксплуатацию) Кашхатау ГЭС мощностью более 65 МВт.

Особого внимания заслуживают и геотермальные ГЭС Камчатки. Это очень мощные и мобильные станции.

Самые мощные ГЭС

Как уже отмечалось, производство и использование электроэнергии затруднено удаленностью основных потребителей. Тем не менее, государство занято развитием этой отрасли. Не только реконструируются имеющиеся, но и строятся новые ГЭС. Они должны освоить горные реки Кавказа, многоводные уральские реки, а также ресурсы Кольского полуострова и Камчатки. Среди самых мощных отметим несколько ГЭС.

Саяно-Шушенская им. П. С. Непорожнего построена в 1985 году на реке Енисей. Ее нынешняя мощность пока не достигает расчетных 6000 МВт в связи с реконструкцией и ремонтом после аварии 2009 года.

Производство и потребление электроэнергии Красноярской ГЭС рассчитано на Красноярский алюминиевый завод. Это единственный «клиент» введенной в эксплуатацию в 1972 году ГЭС. Ее расчетная мощность - 6000 МВт. Красноярская ГЭС единственная, на которой установлен судоподъемник. Он обеспечивает регулярное судоходство по реке Енисей.

Братская ГЭС введена в эксплуатацию в далеком 1967 году. Ее плотина перекрывает реку Ангару недалеко от города Братска. Как и Красноярская ГЭС, Братская работает на нужды Братского алюминиевого завода. Ему уходят все 4500 МВт электроэнергии. А еще этой гидростанции поэт Евтушенко посвятил поэму.

На реке Ангаре расположилась еще одна ГЭС – Усть-Илимская (мощность чуть более 3800 МВт). Строительство ее началось в 1963 году, а закончилось в 1979-м. Тогда же и началось производство дешевой электроэнергии для основных потребителей: Иркутского и Братского алюминиевых заводов, Иркутского авиастроительного завода.

Волжская ГЭС расположена севернее Волгограда. Ее мощность почти 2600 МВт. Эта крупнейшая в Европе гидроэлектростанция работает с 1961 года. Неподалеку от Тольятти функционирует самая «старая» из крупных ГЭС – Жигулевская. Она введена в эксплуатацию еще в 1957 году. Мощность ГЭС в 2330 МВт покрывает потребности в электричестве Центральной части России, Урала и Средней Волги.

А вот необходимое для нужд Дальнего Востока производство электроэнергии обеспечивает Бурейская ГЭС. Можно сказать, что она совсем еще «юная» - ввод в эксплуатацию состоялся только в 2002 году. Установленная мощность этой ГЭС – 2010 МВт электроэнергии.

Экспериментальные морские ГЭС

Гидроэнергетическим потенциалом обладают и множественные океанические и морские заливы. Ведь перепад высот во время прилива в большинстве из них превышает 10 метров. А это значит, что можно вырабатывать огромное количество энергии. В 1968 году была открыта Кислогубская экспериментальная приливная станция. Ее мощность составляет 1,7 МВт.

Мирный атом

Российская атомная энергетика является технологией полного цикла: от добычи урановых руд до производства электроэнергии. Сегодня в стране работает 33 энергоблока на 10 АЭС. Общая установленная мощность составляет чуть больше 23 МВт.

Максимальное количество электроэнергии АЭС было выработано в 2011 году. Цифра составила 173 млрд кВт/ч. Производство электроэнергии на душу населения атомными станциями выросло на 1,5% по сравнению с предыдущим годом.

Конечно, приоритетным направлением развития атомной энергетики является безопасность эксплуатации. Но и в борьбе с глобальным потеплением АЭС играют значительную роль. Об этом постоянно говорят экологи, которые подчеркивают, что только в России удается сократить выброс углекислого газа в атмосферу на 210 млн тонн в год.

Атомная энергетика получила свое развитие в основном на Северо-Западе и в европейской части России. В 2012 году всеми АЭС было выработано около 17% всей произведенной электроэнергии.

Атомные электростанции России

Крупнейшая АЭС России расположена в Саратовской области. Ежегодная мощность Балаковской АЭС составляет 30 млрд кВт/ч электроэнергии. На Белоярской АЭС (Свердловская обл.) сейчас работает только 3-й блок. Но и это позволяет назвать ее одной из самых мощных. 600 МВт электроэнергии получают благодаря реактору на быстрых нейтронах. Стоит отметить, что это был первый в мире энергоблок с быстрыми нейтронами, установленный для получения электричества в промышленных масштабах.

На Чукотке установлена Билибинская АЭС, которая вырабатывает 12 МВт электроэнергии. А Калининскую АЭС можно считать недавно построенной. Ее первый блок был введен в эксплуатацию в 1984 году, а последний (четвертый) лишь в 2010-м. Суммарная мощность всех энергоблоков составляет 1000 МВт. В 2001 году была построена и введена в эксплуатацию Ростовская АЭС. С момента подключения второго энергоблока - в 2010 году - ее установленная мощность превысила 1000 МВт, а коэффициент использования мощности составил 92,4%.

Энергия ветров

Экономический потенциал ветровой энергетики России оценивается в 260 млрд кВт/ч в год. Это почти 30% всей производимой сегодня электроэнергии. Мощность всех работающих в стране ветроустановок составляет 16,5 МВт энергии.

Особенно благоприятны для развития этой отрасли такие регионы, как побережье океанов, предгорные и горные районы Урала и Кавказа.


При выборе автономных систем энергоснабжения возникают вопросы, связанные с определением необходимой мощности электростанции, удовлетворяющей потребителя. В приводимых ниже рекомендациях, приведены минимальные сведения для правильного определения требуемой мощности автономной электростанции для бытового и полупромышленного использования.

Обычно, в паспортных данных на автономные электростанции указываются две мощности – полная мощность в кВА и активная мощность в кВт. Электрический генератор автономной электростанции вырабатывает электрическую энергию определенного напряжения (однофазного – 220/230В, или трехфазного -380В/400В) с частотой 50Гц и, в зависимости от мощности двигателя – бензинового или дизельного, с определенным током нагрузки. Кривые напряжения и тока представляют из себя синусоиды. В идеальном случае эти кривые должны совпадать и активная мощность быть идентичной полной. Однако при выработке электроэнергии переменного тока, всегда имеется некоторый угол сдвига между кривыми тока и напряжения. Несовпадение графиков обусловливает снижение мощности, реально отдаваемой генератором в сеть. Реальная мощность, снимаемая с клемм генератора в номинальном режиме, т.е. при номинальных паспортных напряжении и частоте, и является активной мощностью электростанции. Отношение активной мощности к полной называют коэффициентом мощности - Cos?, который равен косинусу угла сдвига между током и напряжением.

В большинстве случаев, автономные электростанции имеют коэффициент мощности, равный 0, 8. Соответственно, полная мощность в кВА, вырабатываемая генератором будет в 1, 25 раз больше, нежели мощность активная, измеряемая в кВт.

Для бытового потребителя, выбирающего автономную электростанцию небольшой мощности – до 7 кВт, достаточно убедиться, что суммарная паспортная мощность электроприемников, указанная на заводских табличках, например мощность электрочайника, суммарная мощность лампочек, не превышают активную мощность электростанции, указанную в кВт.

Для потребителей на большую нагрузку необходимо учитывать также дополнительные факторы.

Так, например, на работу и отдаваемую автономной электростанцией мощность, влияют такие факторы, как температура и относительная влажность окружающей среды, давление, а также характер нагрузки – чисто активная, индуктивная и т.д. В паспортных данных приводятся как правило данные для нормальных условий средней полосы европейской части России, т.е. - температура окружающей среды: 25?С, давление: 1000 МБар (750 мм рт. ст.), относительная влажность: 30 %.

При более сложных внешних условиях - повышенная температура воздуха, уменьшенное давления (например, в горных условиях), увеличенная влажность – соответственно отдаваемая в сеть мощность будет уменьшаться. Так в условиях разряженного воздуха в горах, двигатели внутреннего сгорания теряют свою мощность. В соответствии с этим и автономная электростанция не сможет обеспечить в горах паспортную мощность. Расчет отдаваемой электростанцией активной мощности в этом случае требует введения уменьшающих коэффициентов. В объеме данной статьи невозможно привести все поправочные коэффициенты и в каждом конкретном случае требуется обратиться либо к паспорту на установку или к специалистам компании поставщика. Здесь же ограничимся предупреждением, что, в некоторых случаях, отличные от паспортных данных внешние условия эксплуатации снижают реальную отдаваемую активную мощность на 40-50%.

В заключение, приведем дополнительно определения, касающиеся работы автономных электростанций в определенных режимах.

Рабочая мощность генераторной установки – это мощность, выражаемая в КВт, которая поступает на клеммы генератора при номинальном напряжении и частоте и при установленных условиях окружающей среды.

Длительная мощность - это номинальная мощность, которую может непрерывно поставлять генераторная установка неограниченное количество времени между техническим обслуживанием, установленным производителем и в установленных им условиях окружающей среды.

Мощность в основном режиме - это максимальная мощность в цикле различных нагрузок, которые поставляет генераторная установка в течение неограниченного количества времени между техническим обслуживанием, установленным производителем и в установленных им условиях окружающей среды. Средняя мощность, поставляемая генератором в течение 24 часового периода не должна превышать 80% от основной мощности.

Кратковременная мощность - это максимальная мощность, которую генератор может поставлять при установленных условиях окружающей среды максимум в течение 500 часов ежегодно, и максимум 300 часов между техобслуживаниями, установленными производителем. Предполагается, что подобное использование в таковых условиях будет влиять на срок службы генератора.

Максимальная мощность в режиме резервного источника питания – это допустимая максимальная мощность с различной нагрузкой в течение ограниченного числа часов в год (500 часов) при установленных условиях окружающей среды и в течение следующих максимальных рабочих периодов: 100% с нагрузкой в течение 25 часов/год; 90% с нагрузкой в течение 200 часов/год; превышение недопустимо.

По оперативным данным Системного оператора в 2014 году в Единой энергетической системе России введено 7 296,3 МВт новых генерирующих мощностей. Это самый большой объем годового ввода генерирующего оборудования в постсоветской истории российской энергетики.

Больший объем генерации в границах Единой энергосистемы России в последний раз вводился в 1985 году, когда в эксплуатацию было введено более 8,5 ГВт, в том числе три энергоблока Курской, Смоленской и Балаковской атомных электростанций мощностью 1 000 МВт каждый.

В течение прошлого года в ЕЭС России было выведено из эксплуатации 1 762,6 МВт устаревшего и неэффективного генерирующего оборудования.

Таким образом, установленная мощность электростанций в ЕЭС России по итогам 2014 года увеличилась на 2,6% и на 01.01.2015 г. составила 232 451,8 МВт.

За прошедший год введено в эксплуатацию более 20 единиц генерирующего оборудования в объединенных энергосистемах Центра, Урала, Юга и Сибири.

Наиболее крупные из них:

  • блок №3 Ростовской АЭС в Ростовской области установленной мощностью 1 070 МВт;
  • парогазовая установка (ПГУ) №3 Няганской ГРЭС в Ханты-Мансийском автономном округе – Югра установленной мощностью 424,6 МВт;
  • ПГУ №4 Череповецкой ГРЭС в Вологодской области установленной мощностью 421,6 МВт;
  • ПГУ №8 ТЭЦ-16 Мосэнерго в Москве - 421,0 МВт,
  • ПГУ №№ 1 и 2 Южноуральской ГРЭС-2 в Челябинской области - 408 и 416,6 МВт соответственно;
  • ПГУ №3.1 Нижневартовской ГРЭС в Ханты-Мансийском автономном округе - 413 МВт;
  • три гидроагрегата №№ 7, 8 и 9 Богучанской ГЭС в Красноярском крае установленной мощностью по 333 МВт каждый;
  • ПГУ №1 на Кировской ТЭЦ-3 в Кировской области - 236 МВт,
  • ПГУ Владимирской ТЭЦ-2 во Владимирской области - 231 МВт,
  • ПГУ Ижевской ТЭЦ-1 в Удмуртии - 230,6 МВт.
Значительные объемы ввода новой генерации в ЕЭС России зафиксированы также в 2013 году - 3,7 ГВт, 2012 году - 6,1 ГВт и 2011 году - 4,7 ГВт.

По оперативным данным ОАО «СО ЕЭС» потребление электроэнергии в Единой энергосистеме России в 2014 году составило 1013,7 млрд. кВт ч, что на 0,4 % больше объема потребления в 2013 году. Потребление электроэнергии в целом по России в 2014 году составило 1035,2 млрд. кВт ч, что также на 0,4% больше, чем в 2013 году.

Суммарные объемы потребления и выработки электроэнергии в целом по России складываются из показателей электропотребления и выработки объектов, расположенных в Единой энергетической системе России, и объектов, работающих в изолированных энергосистемах (Таймырская, Камчатская, Сахалинская, Магаданская, Чукотская, а также энергосистемы центральной и западной Якутии). Фактические показатели работы энергосистем изолированных территорий представлены субъектами оперативно-диспетчерского управления указанных энергосистем.

Выработка электроэнергии в России в 2014 году составила 1 046,3 млрд. кВт ч, что на 0,1% больше, чем в 2013 году. Электростанции ЕЭС России выработали 1 024,9 млрд. кВт ч (на 0,1% больше, чем в 2013 году).

Основную нагрузку по обеспечению спроса на электроэнергию в ЕЭС России в 2014 году несли тепловые электростанции (ТЭС), выработка которых составила 621,1 млрд. кВт ч, что на 0,2% меньше, чем в 2013 году. Выработка ГЭС за 2014 год составила 167,1 млрд. кВт ч (на 4,4% меньше, чем в 2013 году). АЭС в 2014 году выработано 180,3 млрд. кВт ч, что на 4,8 % больше объема электроэнергии, выработанного в 2013 году. Электростанции промышленных предприятий за 2014 год выработали 56,4 млрд. кВт ч (на 4,1% больше, чем в 2013 году).

Максимум потребления электрической мощности в ЕЭС России в 2014 году зафиксирован 31.01.2014 исоставил 154 709 МВт , что на 5,2% больше, чем аналогичный показатель 2013 года.