Аэрофотосъемка местности: способы и техника, методы времен Второй мировой войны и современные технологии. Рис.1 Плановая аэросъёмка

Если у вас стоит задача по оперативному картографированию, съемке газопроводов, нефтепроводов или ЛЭП для определения их состояния - наши специалисты быстро и в оговоренный срок выполнят для вас эту работу в любом месте Российской Федерации. На наших беспилотных самолетах установлена высококачественная зеркальная фотокамера с разрешением 24 мегапикселей, тепловизор с разрешением 640*480 пикселей и видеокамера с HD разрешением с десятикратным зумом, которые позволяют выполнять плановую и перспективную аэрофотосъемку. Для выполнения работ наша организация заключает с Заказчиком договор на оказание услуг по аэрофотосъемке. Для работ высокой точности на БПЛА установлен двухчастотный GPS/ГЛОНАСС - приёмник, использующий большинство передовых GPS/ГЛОНАСС - технологий, и способный следить за спутниками даже при затрудненных условиях окружающей среды.

И, конечно же, мы готовы обработать полученные материалы для подготовки фотоплана, фотосхемы или выполнить дешифрование.

Пример ортофотоплана площадью 14км*14км, снято с высоты 1.5 км с БПЛА Supercam-350 за один день

Сущность аэрофотосъемки

Аэрофотосъемка местности - это комплекс работ, включающий различные процессы от фотографирования земной поверхности с летящего самолета до получения аэрофотоснимков, фотосхем или фотопланов снятой местности. В него входят:
1. подготовительные мероприятия, заключающиеся в изучении местности, которая подлежит фотографированию, подготовке карт, проектировании маршрутов полетов самолета и в производстве расчета элементов аэрофотосъемки;
2. собственно летно-съемочные работы или фотографирование земной поверхности при помощи аэрофотоаппаратов;
3. фотолабораторные работы по проявлению снятой пленки и изготовлению позитивов;
4. геодезические работы по созданию на местности геодезической основы, которая необходима для исправления искажений аэроснимков, возникших в процессе аэрофотосъемки, привязки аэроснимков и для составления фотосхем и фотопланов;
5. фотограмметрические работы, которые проводятся как в полевом, так и камеральном периодах, и связаны с обработкой аэрофотоснимков для составления планов и карт снятой местности.

Все эти процессы тесно связаны один с другим и отчасти взаимно перекрываются. Аэрофотосъемка каждого объекта должна выполняться одной и той же организацией от начала до сдачи окончательной продукции. В результате проведения этих работ изготовляются контактные отпечатки, репродукции с накидного монтажа аэрофотоснимков, фотосхемы или фотопланы, составленные по данным геодезической основы. Все эти аэрофотосъемочные материалы используются в дальнейшем для решения целого ряда вопросов в области лесного хозяйства и лесной промышленности.

История аэрофотосъемки местности

Беспилотная аэрофотосъемка, как, впрочем, и сама история, развивается по спирали: в 1858 выполняя полет на воздушном шаре над Парижем, Гаспар Феликс Турнашон сделал первый в мире аэрофотоснимок, а уже в 1887 году французский фотограф Артур Батут разработал и выполнил первую беспилотную аэрофотосъёмку с помощью воздушного змея. Затем в аэрофотосъемке бурно развились идеи беспилотной авиации, что вылилось в запатентованный «Способ и средства для фотографирования пейзажей сверху» с помощью почтовых голубей немецкого аптекаря Юлиуса Нойброннера. Причем этот метод действительно широко применялся во время Первой Мировой войны. И только 24 апреля 1909 г. случилось "Первое использование кинокамеры, вмонтированной в летательный аппарат тяжелее воздуха" при съёмках короткометражного немого киноролика «Уилбур Райт и его самолёт». В настоящее время аэрофотосъемка делает очередной виток своей истории, становясь опять беспилотной.

Плановая и перспективная беспилотная аэрофотосъемка местности

При плановой съемке камера направлена вертикально вниз, под прямым углом к поверхности земли. На снимках мы видим плоскую картину (ортогональная проекция), напоминающую изображение на географических картах. При этом виде аэрофотосъемки мы можем определить взаиморасположение объектов на плоскости без учета их высот. При фотографировании объектов недвижимости мы можем видеть те части сооружений, которые направлены вверх (крыши). Такой вид съемки в основном используется для создания фотопланов. Аналогичный продукт может быть получен с использованием спутниковой и традиционной аэрофотосъемки.

При перспективной (обзорной) съемке камера направлена под углом к горизонту. Такой вид съемки невозможен для спутников и традиционной "большой авиации". При перспективной аэрофотосъемке на снимках мы видим объемную картину (аксонометрическая проекция): не только крыши сооружений, но и боковые поверхности (стены). Таким образом, мы можем судить не только о взаиморасположении объектов на плоскости, но и об их форме. Кроме того, при перспективной съемке мы можем определить высоту объектов относительно друг друга. При определенных углах перспективной съемки в кадре может присутствовать линия горизонта. В этом случае мы получаем возможность увидеть на одном снимке то, как участок или сооружение вписаны в окружающий ландшафт и их взаиморасположение с отдаленными объектами (дальние объекты, леса, водоемы, населенные пункты). На основе нескольких перспективных снимков, сделанных с поворотом камеры вокруг вертикальной оси, могут быть собраны панорамные снимки, включая полные 360-градусные круговые панорамы. Создание аэрофотопанорам возможно только при использовании специально оборудованного дистанционно управляемого вертолета, способного надолго зависать на определенной высоте, пока проводится съемка смежных кадров.

Этапы аэрофотосъемочных работ

Опыт, накопленный в области применения аэрометодов при изысканиях, показывает их исключительную эффективность по сравнению с традиционными методами сбора информации как в части значительного снижения трудоёмкости и сокращения сроков изысканий, так и в части широты охвата различных видов информации, необходимой для проектирования. Аэроизыскания выполняют в три этапа: подготовительный, полевой и камеральный.

В подготовительный период осуществляется сбор имеющейся на район изысканий топографической информации и материалов аэросъёмок прошлых лет, на основании которых обосновывают полосу варьирования конкурентоспособных вариантов трассы и составляют проект производства аэросъёмочных, полевых и камеральных аэрофотогеодезических работ.

В полевой период производят: наземные геодезические работы по созданию планово-высотного обоснования аэросъёмок; закрепление и маркировку точек опорной сети; различные виды аэросъёмочных работ, привязку и дешифрирование аэрофотоснимков. Важным видом аэрогеодезических изысканий является дешифрирование - выявление (обнаружение и опознавание) и раскрытие содержания (познания) различных объектов и элементов местности по их изображениям на снимках, их качественных и количественных характеристик, своеобразных свойств и особенностей.

В камеральный период выполняют полную обработку результатов геодезических измерений, фотограмметрическое сгущение геодезического съёмочного обоснования методами аналитической фототриангуляции, стереофотограмметрические работы по получению информации о рельефе и изготовлению топографических планов и цифровых моделей местности (ЦММ) в единой системе координат.

Оборудование для беспилотной аэрофотосъемки

Как правило, современные операторы беспилотных самолетов используют в своей ежедневной работе небольшой, размахом до 3 м, беспилотный самолет с обычной, бытовой или студийной, фотокамерой на основе ПЗС матрицы. Наиболее популярны "мыльницы" Samsung, Sony, Pentax. Фотографии с таких устройств годятся в целом для составления планов и схем. Аэрофотоснимки значительно более высокого качества дают зеркальные фотоаппараты - здесь лидерами и стандартом являются Canon 550D и его старший товарищ Canon 5D Mark II. При этом, конечно же, находят применение и большие многообъективные системы.

Летно-съемочные работы, выполняемые фотоаппаратом на основе матричного сенсора (ПЗС - матрица), больше напоминают традиционный аналоговый метод аэрофотосъёмки, когда все элементы матрицы одновременно экспонируются. В этом методе внутрипиксельная геометрия известна и строго определена. В матричной технологии в настоящее время проблема в том, что большие матричные решётки сложны в изготовлении. Поэтому комбинируют: делают большие по площади решётки из нескольких маленьких по площади. Например, из четырёх. Четырех-линзовый объектив формирует четыре отдельных изображения, которые трансформируют в центральную проекцию и автоматически стыкуют. Такие снимки обрабатываются по существующим программам аналитической обработки.

Второй главной частью, причем не менее важной, является система определения положения БПЛА/фотокамеры в пространстве. В простейшем случае это обычный малогабаритный GPS приемник с антенной, например Ublox. В настоящее время Российские производители комплексов с БЛА практически повсеместно переходят на приемники сигналов систем спутникового позиционирования совмещенного типа GPS/Глонасс. К сожалению, и они не могут обеспечить требуемую точность. Поэтому в более дорогих и серьезных аппаратах устанавливается дополнительный высокоточный приемник GPS, который позволяет при постобработке сырых данных определить координаты центра снимка с точностью до 5-10 см.

А если этот приемник использовать вместе с наземными базовыми GPS станциями, то точность привязки кадров к координатам вырастет до ошеломляющих!!! 5 см. Для выполнения съемки создаются базовые GPS-станции, данные которых используются для вычисления дифференциальных поправок при определении траектории летательного аппарата. Для определения траектории летательного аппарата и уточнения угловых данных инерциальной системы применяется метод совместной обработки GPS-данных и данных инерциальной системы. Привязка снимков к координатам, как правило, выполняется при помощи программ, написанных специально под конкретный тип приемника и БЛА. Применение такого метода расчета повышает точность определения как угловых параметров, так и местоположения.

Точность GPS/Глонасс навигации и особенности систем автоматического управления БПЛА позволяют достигать следующих параметров при полете по маршруту аэрофотосъемки:

Поперечное смещение от оси маршрута — ± 10 м;
удержание БПЛА на заданной высоте — ± 15 м;
расстояние от запроектированного центра фотографирования до точки срабатывания затвора фотоаппарата — ± 5 м;
изменение угла крена БПЛА на маршруте между двумя снимками — 10°;
изменение угла тангажа БПЛА на маршруте между двумя снимками — 6°.

Технология

Результатом цифровой аэрофотосъёмки местности являются цифровые аэрофотоснимки, а также зафиксированные в полете элементы внешнего ориентирования (линейные - Xs, Ys, Zs - координаты центра фотографирования; угловые - α, β, γ - ориентирование камеры относительно осей координат).

В соответствии с законами центрального проектирования, по которым строится изображение местности, аэронегатив (аэроснимок) содержит ряд искажений, величины которых определяются углом наклона оптической оси аэрофотоаппарата и колебанием рельефа местности. Устранение этих искажений осуществляется в процессе их компьютерной фотограмметрической обработки, и в частности - фотографического или цифрового преобразования, называемого трансформированием. В связи с этим использование аэроснимков без их предварительного трансформирования для картографического (топографического) обеспечения выполняемых работ, в том числе в качестве основы ГИС, ограничивается влиянием указанных искажений.

Показания специальных приборов и оборудования, зафиксированные в процессе аэрофотосъемки, обеспечивают стабилизацию съемочной камеры в полете или последующее определение по ним пространственного положения аэроснимков в абсолютной или относительной системе координат с целью последующего их использования при выполнении фотограмметрических работ и преобразовании аэроснимков в планы и карты. К числу таких приборов относят гироскопы, системы глобального позиционирования, оборудование для определения высоты полета, превышений между центрами фотографирования, а также аэронавигационные системы и др. Наличие указанных данных во многом определяет технологию камеральной обработки материалов аэрофотосъемки, существенно влияет на оперативность, точность фотограмметрических построений и объемы полевых работ по их обеспечению.

Прокладка маршрута

Аэрофотосъемка бывает площадная и линейная, в площадной съемке кроме продольного перекрытия снимков еще необходимо соблюдать и поперечное перекрытие. Исходными параметрами фотосъемки при помощи беспилотника являются требуемое разрешение снимка, разрешение аэрофотоаппарата, угол зрения объектива камеры, величина перекрытия кадров. Из этих данных рассчитывается высота полета, скорость беспилотника и частота срабатывания затвора фотокамеры.

Полет и фотографирование

Во время полета беспилотник в автоматическом режиме рассчитывает свою скорость и частоту срабатывания затвора (скорость кадров) так, чтобы обеспечить заданное перекрытие кадров. Перекрытие снимков с БПЛА отвечает обычным требованиям для аэрофотосъемки и составляет, как правило, 60% кадра. Снимки с БПЛА перекрываются на 60% в продольном перекрытии и на 30% в поперечном перекрытии.

Оперативный просмотр результатов аэрофотосъемки местности. В результате полета формируются набор фотографий и данные телеметрии, которые включают в себя координаты центра фотографирования, а также углы крена, тангажа и курса.

Этапы обработки аэрофотоснимков в фотограмметрическом ПО

1) Создание проекта (имя, система координат, диапазон высот объекта, размещение в системе ресурсов);

3) Импорт ориентирования из метаданных;

4) Внутренне ориентирование (Создание паспорта камеры);

5) Импорт внешнего ориентирования;

6) Формирование накидного монтажа по внешнему ориентированию;

7) Измерение сети (Автомат триангуляции БПЛА, автомат связующих точек с заданными параметрами, измерение опорного обоснования), контроль;

8) Уравнивание сети (вычисление систематики, самокалибровка, контрольные измерения), контроль;

9) Создание ЦМР (облако точек, TIN, структурные линии, матрица высот, горизонтали), контроль;

10) Трансформирование по изображениям, контроль;

11) Работа с ортофотоснимками (порезы, выравнивание яркости, нарезка на листы), контроль;

12) (Опционально) Стереовекторизация для создания 3D карт и 3D моделей;

13) (Опционально) Создание 2D карт.

Существует три вида обработки данных: аффинное преобразование кадров для создания ортофотосхемы равнинных территорий, полное ортотрансформирование кадров для создания ортофотосхемы территорий с выраженным рельефом, полное ортотрансформирование кадров для создания ортофотоплана с выполнением геодезических требований по масштабу.

Аффинное преобразование кадров для создания ортофотосхемы равнинных территорий

Программой определяются общие точки (от 50 до 1200) между каждой парой снимков. После этого решается уравнение, включающее в себя информацию по всем снимкам, для поиска минимума СКО (среднеквадратичного отклонения) между всеми векторами, соединяющими общие точки. Проще говоря, между каждой парой точек натягивается резинка, и все кадры выстраиваются так, чтобы общее натяжение резинок было минимальным. При этом кадр может преобразовываться только афинно, т.е. любая прямая отображается только в прямую.

Ортофотосхемы с беспилотного самолета

Программой определяются общие точки (от 50 до 1200) между каждой парой снимков. После этого решается полное фотограмметрическое уравнение с определением рельефа местности с точностью до 10 пикселей. При этом уточняются координаты центра фотографирования и параметры ориентирования (крен, тангаж, курс).

В соответствии с вычисленными данными проводится ортотрансформирование всех кадров и проецирование результата на плоскость. Привязка к реальным данным проводится по существующим в общедоступных картографических ресурсах данным. Например, по GoogleEarth. Точность этих данных на территории России составляет порядка 6 метров.

Ортофотопланы с БПЛА

Программой определяются общие точки (от 100 до 3000) между каждой парой снимков. После этого решается полное фотограмметрическое уравнение с определением рельефа местности с точностью до 2 пикселей. При этом уточняются координаты центра фотографирования и параметры ориентирования (крен, тангаж, курс) с высокой точностью.

В соответствии с вычисленными данными проводится ортотрансформирование всех кадров и проецирование результата на плоскость. Привязка к реальным данным проводится по результатам наземного обоснования, включающего в себя не менее одной точки на каждые 10 кадров или не менее 10 точек на один ортофотоплан. Половина этих точек используется для привязки, вторая половина для подтверждения требований точности. Точность формирования рельефа при этом соответствует требованиям соответствующего масштаба.

Результатом работы являются файлы формата geotiff с точностью, соответствующей заданному масштабу. Формат geotiff включает в себя два файла - ортотрансформированную аэрофотосъемку и цифровую модель рельефа (DEM - digital elevation model), которые можно открыть в любой ГИС программе, например ArcGis или GlobalMapper. По включенной DEM можно сформировать изолинии рельефа с любым перепадом высот.

3D модель рельефа местности

По результатам аэрофотосъемки выполняется восстановление рельефа по фотографиям с БПЛА. Совместно с DEM возможно выдать рельеф по изолиниям с требуемой точностью. Стандартный формат - векторные линии формата ArcGis, которые импортируются в любую картографическую систему.

Специалисты компании могут выдать результат практически в любом требуемом формате. Для этого нужно указать программу, в которой предполагается использовать результат.

Также возможно осуществить переход в местную систему координат из WGS. При выполнении наземного обоснования мы можем выполнить съемку координат на опознаках ГГС (государственной геодезической сети), тогда работа может сразу выполняться в местной системе координат без преобразования и соответствующей потери точности.

20.06.2015


В связи с широким применением аэрофотосъемки во многих отраслях лесного дела имеют значение различные виды фотографирования земной поверхности с самолета.
Виды аэрофотосъемки отличаются рядом признаков.
Фотографирование земной поверхности с самолета может происходить при различных положениях главной оптической оси аэрофотоаппарата. В зависимости от этого признака существуют следующие виды аэрофотосъемки: горизонтальная, плановая и наклонная (перспективная) - рис. 15.
Под горизонтальной подразумевается такая аэрофотосъемка, при которой главная оптическая ось аэрофотоаппарата занимает отвесное положение (α=0), плоскость негатива строго горизонтальна.
Если в момент фотографирования главная оптическая ось аэрофотоаппарата отклоняется от отвесной линии в среднем на 1-1,5°, но не более 3°, то такая аэрофотосъемка называется плановой.

Фотографирование же при наклонном положении главной оптической оси аэрофотоаппарата (α>3°) называется наклонной, или перспективной, аэрофотосъемкой. В том случае, когда на аэроснимке изображается естественный горизонт, аэрофотосъемка будет перспективной с горизонтом.
Кроме того, может быть планово-перспективная аэрофотосъемка, при которой по одному и тому же маршруту с помощью специальных аэрофотоаппаратов одновременно производятся плановые и перспективные аэроснимки.
В зависимости от характера покрытия местности аэроснимками аэрофотосъемка разделяется на одинарную, маршрутную и многомаршрутную, или аэрофотосъемку площади.
Oдинapнaя аэpoфoтocъeмкa представляет собой фотографирование отдельных объектов местности (например, гари, ветровала, склада древесины, участка леса, сплава и др.) одиночными аэроснимками. Такая аэрофотосъемка применяется при решении отдельных лесохозяйственных вопросов, при аэротаксации лесов и авиационной охране лесов от пожаров.
Маршрутной аэрофотосъемкой называется воздушное фотографирование полосы местности по определенному маршруту. В зависимости от объекта, подлежащего аэрофотосъемке, маршруты полетов могут быть прямолинейными (ряд кварталов леса), ломаными, или криволинейными (вдоль русла реки). При такой аэрофотосъемке между аэроснимками в маршруте осуществляется перекрытие, достигающее 56-60%. Оно называется продольным перекрытием.
Маршрутная аэрофотосъемка, состоящая из одного, двух или трех маршрутов, применяется для лесотранспортных, водномелиоративных и других работ, проводимых в пределах узкой полосы местности.
Многомаршрутная, или аэрофотосъемка площади, применяется в тех случаях, когда необходимо заснять лесной массив, занимающий значительную площадь. Производится она путем проложения ряда прямолинейных и параллельных между собой маршрутов аэроснимков, взаимноперекрывающихся. При данном виде аэрофотосъемки, помимо продольных перекрытий между аэроснимками в маршрутах, должно быть соблюдено и заданное перекрытие между аэроснимками соседних маршрутов полета, называемое поперечным перекрытием, Обычно оно составляет 30-40% (рис. 16).


В России ведущее место в картографировании страны, в том числе лесных массивов, заняла плановая аэрофотосъемка. Планово-перспективная аэрофотосъемка получила крайне ограниченное распространение, а перспективная аэрофотосъемка применяется для научных целей и для получения фотографии - панорамы местности.
По методу последующей фотограмметрической обработки аэроснимков и изготовления конечной продукции различаются три вида аэрофотосъемки: контурная, комбинированная и стереофотограмметрическая, или стереотопографическая.
Контурная аэрофотосъемка - это съемка, в результате которой получается контурный план местности.
Комбинированная аэрофотосъемка заключается в том, что контурный план местности создается путем использования материалов аэрофотосъемки, а рельеф изображается на нем горизонталями в результате полевых наземных топографогеодезических работ, преимущественно с применением мензульной съемки с использованием аэроснимков.
Стереофотограмметрическая, или стереотопографическая, съемка дает возможность получить топографический план местности на основании камеральной обработки аэроснимков при небольшом объеме геодезических работ.
Лётно-съемочный процесс для всех этих видов аэрофотосъемки в основном один и тот же, но стереофотограмметрическая съемка предъявляет специальные требования к оптике, юстировке аппарата и фиксированию элементов внешнего ориентирования.
Плановую аэрофотосъемку разделяют на крупномасштабную - при масштабе фотографирования крупнее 1:10000, среднемасштабную - при масштабе фотографирования от 1:10000 до 1:30000, мелкомасштабную-при масштабе фотографирования мельче 1:30000 (1:50000, 1:75000 и предельно до 1:100000).
Применение того или иного вида аэрофотосъемки в лесном деле зависит от назначения самой съемки и предъявляемых к ней требований. Аэроснимки, полученные в результате плановой, перспективной или других видов аэрофотосъемки в крупном или мелких масштабах, резко различаются по фотограмметрической обработке и использованию их для различных целей лесного хозяйства и лесной промышленности.
Фотограмметрическая обработка плановых аэроснимков наиболее проста в условиях равнинной местности. Здесь она заключается прежде всего в устранении искажений от несоблюдения вертикального положения главной оптической оси аэрофотоаппарата и от колебаний высоты полета.
Возможность использования плановых аэроснимков для таксации леса без предварительной и сложной фотограмметрической обработки (развертывания, трансформирования) является большим достоинством и позволяет сразу же после аэрофотосъемки применить их для полевых работ. В тех же случаях, когда для решения различных лесохозяйственных и лесоинженерных задач требуется составление более точных планов, создаются фотопланы с соблюдением потребной степени точности.
Основным недостатком плановой аэрофотосъемки считается меньшая производительность ее по сравнению с перспективной и планово-перспективной съемками. Но при современном со стоянии техники этот недостаток устраняется в связи с наличием широкоугольных объективов, применением увеличения фотоизображений и большого формата аэроснимков.
Аэроснимки наклонной аэрофотосъемки с перспективным изображением снятой местности имеют переменный масштаб, уменьшающийся от переднего плана к дальнему. При этом значительное уменьшение масштаба на дальнем плане вызывает резкое падение распознаваемости снимаемых объектов и таксационных показателей насаждений. Если на переднем плане деревья с кронами видны полностью, то по мере удаления от переднего плана к дальнему кроны деревьев все более налегают друг на друга и закрывают собой мелкие прогалины, речки, дороги, просеки и другие земные объекты.
При наклонной аэрофотосъемке в горной местности на аэроснимках получаются значительные искажения ситуации, появляются «мертвые» пространства, вследствие чего на них не фиксируется ряд важных деталей местности.
К числу основных недостатков наклонной аэрофотосъемки относится большая сложность их фотограмметрической обработки.
Заслуживает внимания так называемая щелевая аэрофотосъемка, разработанная в 1936 г. В.С. Семеновым. Схема двухщелевого аэрофотоаппарата системы Семенова приведена на рис. 17.


Сущность щелевой аэрофотосъемки заключается в непрерывном фотографировании полосы местности на движущуюся пленку сквозь узкую щель в фокальной плоскости камеры, расположенную перпендикулярно направлению полета. Щелевой аппарат затвора не имеет, объектив ею все время открыт. При щелевой аэрофотосъемке происходит непрерывное экспонирование пленки, поэтому контактный отпечаток имеет на рулонной бумаге вид сплошной ленты. Движение пленки синхронизировано с движением изображения, что и обусловливает резкость снимка.
Чаще всего щелевые аппараты делаются двухобъективными. Один из них, широкоугольный, дает мелкомасштабное изображение, другой - Крупномасштабное. С помощью этих аппаратов можно производить фотографирование с низкой высоты полета в облачные дни и в условиях сумерек, получать плановые аэроснимки одновременно в различных масштабах, выполнять стереоскопическую съемку одним объективом через обе щели и вести перспективную съемку под любым заданным углом. в частности, щелевая аэрофотосъемка под углом 45° применялась при изучении лесосырьевых баз в зимних условиях. Такая съемка названа аксонометрической. Это правильно только по отношению к середине ленты, так как изображения предметов в краевых частях получались под иными поперечными углами, непрерывно увеличивающимися от центра к краям аэроснимка. По этой причине измерительные свойства таких аэроснимков значительно хуже плановых. Кроме того, встречается полосатость (ребристость) изображения, возникающая за счет неполной синхронизации движения пленки с движением изображения.
Щелевая аэрофотосъемка имеет практическое значение для лесоустройства, различных лесоинженерных и лесохозяйственных целей.
За последние годы развитие получает двухмасштабная аэрофотосъемка. Такая аэрофотосъемка выполняется одновременно двумя аэрофотоаппаратами, в двух различных масштабах (мелком и крупном) при соотнощении 1:2. При лесоустройстве аэроснимки более мелкого масштаба используются для составления планово-картографических материалов, а аэроснимки более крупных масштабов служат для контурного дешифрирования, полевых работ, ориентирования на местности, таксационного и измерительного дешифрирования.
Применяемые для этой цели спаренные аэрофотоаппараты имеют различные фокусные расстояния и при наличии разных форматов аэроснимков (например, 18х18 см и 30x30 см) позволяют почти полностью покрыть снимаемую площадь аэроснимками двух масштабов. Для крупномасштабной аэрофотосъемки возможно уменьшение величины поперечного перекрытия (16-20%). так как такие аэроснимки фотограмметрической обработке не подвергаются.

В настоящее время наряду с топографическими картами для изучения местности и ориентирования на ней широко используются фотоснимки, получаемые путем фотографирования местности с самолета или какого - либо другого летательного аппарата. Такие изображения местности называются аэрофотоснимками или сокращенно аэрофотоснимками. Процесс фотографирования земной поверхности с самолёта называется аэрофотосъемкой или воздушным фотографированием.

Промежуток времени от начала фотографирования местности до получения аэрофотоснимков обычно сравнительно небольшой, поэтому по аэрофотоснимкам можно получить более свежие и достоверные данные о местности, чем по топографической карте. Преимущество аэрофотоснимка по сравнению с картой заключается еще и в том, что на нем получается подробное изображение всего, что имелось на местности в момент фотографирования, включая и временно находящиеся на ней различные предметы (объекты). Если сфотографировать местность, на которой происходят боевые действия войск, то по полученному аэрофотоснимку можно обнаружить места расположения и сосредоточения войск и боевой техники, начертание траншей и противотанковых рвов, огневые позиции артиллерии и многие другие данные о противнике, необходимые для принятия решения при организации и ведении боя. Таким образом, аэрофотоснимки являются одним из средств разведки.

Виды аэрофотоснимков. В момент фотографирования земной поверхности фотоаппарат может занимать отвесное или наклонное положение, в зависимости от этого различают два вида аэрофотосъемки - плановую и перспективную . Фотографирование местности при отвесном (вертикальном) положении аэрофотоаппарата называется плановой съемкой (рис.1), а аэрофотоснимки, полученные при такой съемке -плановыми. Если же в момент фотографирования аппарат находится в наклонном положении, то такая съемка называется перспективной (рис.2), а полученные аэрофотоснимки - перспективными. На перспективных аэрофотоснимках изображается местность, расположенная в момент фотографирования впереди самолета или в стороне от него. Поэтому местные предметы на них изображаются так, как видны в натуре. При этом изображения местных предметов на переднем плане аэрофотоснимка будет более крупным, чем на дальнем плане.

Рис.1 Плановая аэросъёмка.

Рис.2 Переспективная аэросъёмка.

Достоинством перспективных аэрофотоснимков является то, что по ним легко опознать изображенные местные предметы, особенно расположенные на переднем плане, и получить общее представление о сфотографированной местности. Однако детально изучить местность по перспективным аэрофотоснимкам нельзя, так как часть сфотографированной местности на них не просматривается - она закрыта предметами, расположенными на переднем плане. Например, на рис.3 видна только часть реки, а дальше, за поворотом, она закрыта населенным пунктом. Не видны, будут также предметы, расположенные за возвышенностями, дороги в лесу и т. д. Кроме того, масштаб перспективного аэрофотоснимка в различных его частях разный: на переднем плане масштаб крупнее, чем на дальнем, поэтому производить измерения по такому аэрофотоснимку сложно.

Рис.3 Переспективный аэрофотоснимок.

Практически в войсках, особенно при решении задач командирами подразделений, чаще используются плановые аэрофотоснимки (рис.4), на которых все местные предметы изображаются так, как они видны сверху. При этом если на аэрофотоснимке сфотографирована относительно ровная местность, то размеры местных предметов, независимо от того, в какой части аэрофотоснимка они расположены, уменьшаются при изображении на аэрофотоснимке примерно в одинаковое число раз, т. е. масштаб такого снимка практически одинаков на всей его площади. На плановых аэрофотоснимках в отличие от перспективных можно рассмотреть весь участок сфотографированной местности. Они позволяют изучить местность с большой подробностью и производить необходимые измерения практически так же, как на карте. Однако опознавание местных предметов на плановом аэрофотоснимке затруднено тем, что изображение предметов получается в непривычном виде. Поэтому, чтобы изучать местность по плановым аэрофотоснимкам, надо знать отличительные признаки предметов, а также уметь определять масштаб аэрофотоснимка и производить по нему измерения.

Рис.4 Плановый аэрофотоснимок.

Масштаб планового аэрофотоснимка. Масштабом аэрофотоснимка, как и карты, называется отношение, показывающее, во сколько раз изображение линейных отрезков местности на аэроснимке меньше этих же отрезков на местности. Он может быть определен одним из следующих способов.

Непосредственным измерением длин отрезков на местности и аэроснимке. Для этого необходимо измерить на местности по прямой линии расстояние между двумя местными предметами, которые четко опознаются на аэроснимке (перекрестки дорог, мосты на дороге, перекрестки улиц в населенном пункте, просеки в лесу и т. п.).

Измерив расстояние между этими же предметами на аэроснимке и разделив его на измеренную длину линии на местности, получим масштаб аэрофотоснимка. Например, расстояние, измеренное на местности, равно 600 м, на аэроснимке этот отрезок равен 12 см. Разделив 12 см на 60000 см, получим масштаб аэрофотоснимка 1:5000, т. е. 1 см на аэроснимке соответствует 50 м на местности.

По карте масштаб аэрофотоснимка определяется в такой последовательности (рис.5):

Рис.5 Определение масштаба аэрофотоснимка по карте.

Находят на аэроснимке и на карте две общие точки: перекресток дорог и угол огорода 2 на северо-восточной окраине Демидове;

Измеряют расстояние между указанными точками на аэроснимке (6 см);

Измеряют расстояние между этими же точками на карте и, пользуясь масштабом карты, определяют, чему оно равно на местности (расстояние на карте масштаба 1:25 000 равно 5,6 см, следовательно, расстояние на местности будет равно 1300 м);

Делят расстояние на аэроснимке (6 см) на расстояние, полученное по карте (1300 м или 130000 см), и получают масштаб аэрофотоснимка 1:21 666.

По известному размеру предмета. Допустим, что на аэроснимке четко опознано изображение моста. Длина моста на снимке равна 2 мм, а указанная на карте-14 м. Следовательно, масштаб аэрофотоснимка будет равен 2:14000= 1:7 000.

Измерение расстоянийний по плановому аэроснимку практически не отличается от измерения расстояний по карте. Трудности заключаются лишь в том, что аэроснимок может иметь необычный по сравнению с картой масштаб (например, 1:7540, 1:20600 и т. п.), что вызывает необходимость каждый раз вычислять расстояния. Для удобства измерения расстояний строят линейный масштаб для данного аэрофотоснимка по тем же правилам, что и для линейного масштаба шагов.

Аэрофотосъемку можно классифицировать по нескольким критериям – по величине угла наклона, масштабу, способу прокладки аэросъемочных маршрутов и др.

В зависимости от величины угла наклона между главной оптической осью съемочной камеры и отвесной прямой аэрофотосъемку подразделяют на плановую (угол < 3°) и перспективную (угол > 3°). Для целей картографирования применяется только плановая аэрофотосъемка, хотя современные технологии фотограмметрической обработки аэроснимков такого ограничения не накладывают.

В зависимости от поставленной задачи и размеров фотографируемого участка местности различают:

одинарную аэрофотосъемку , когда объект фотографирования размещен на одном-двух снимках;

маршрутную аэрофотосъемку , когда выполняется фотографирование узкой полосы местности (реки, дороги, береговые линии и др.);

площадную или многомаршрутную аэрофотосъемку , когда снимаемый участок по своим размерам не может быть изображен на снимках одного маршрута, и для его фотографирования необходимо несколько параллельных маршрутов на определенном расстоянии один от другого.

В зависимости от масштаба фотографирования аэрофотосъемку подразделяют на мелкомасштабную (масштаб аэроснимка 1:50000 и мельче), среднемасштабную (1:10000–1:50000) и крупномасштабную (1:10000 и крупнее).

В зависимости от целей и поставленных задач аэрофотосъемка выполняется в границах топографических планшетов, административно-территориальной единицы или объекта съемки.

В некоторых случаях при выполнении площадной аэрофотосъемки прокладываются дополнительные аэросъемочные маршруты, пересекающие основные. Такие маршруты размещаются, как правило, в начале и конце основных маршрутов и называются каркасными.

4.4 Понятие о трансформировании

Трансформированием называется преобразование центральной проекции, которую представляет собой аэронегатив (аэроснимок), полученный при наклонном положении главного оптического луча, в другую центральную проекцию, соответствующую его отвесному положению, с одновременным приведением его к заданному масштабу.

Трансформирование выполняют путем «обратного проектирования» изображения с наклонной картинной плоскости на предметную плоскость, соответствующую ортогональной проекции. В процессе трансформирования полностью исключаются все виды перспективных искажений аэроснимка, вызванных влиянием угла наклона, и разномасштабность смежных снимков, которая является следствием изменения высоты фотографирования. Названные искажения подчиняются определенным законам, потому их учет не вызывает затруднений.

Смещения точек снимка, вызванные влиянием рельефа местности, соответствуют изменениям его форм, поэтому их учет является одной из наиболее трудных задач фотограмметрии, строгое решение которой связано с разложением изображения на отдельные точки (зоны) и раздельным их трансформированием по известным высотам. Для учета влияния рельефа местности применяют несколько методов или технологических приемов, различающихся размерами таких зон и обеспечивающих устранение искажений с требуемой точностью. Рассматриваемые преобразования требуют наличия данных, по­зволяющих прямо или косвенно найти элементы внешнего ориентирования снимков. Поэтому методы трансформирования делятся на две основных, принципиально и технически различных группы – трансформирование по опорным точкам и элементам ориентирования .

Для трансформирования аналоговых аэроснимков применяют несколько способов, различающихся используемыми техническими средствами: аналитический, фотомеханический, оптико-графический, дифференциальный и др. Часть этих способов устарела и не используется.

Аналитический способ трансформирования основан на использовании зависимостей между координатами соответственных точек аэроснимка и местности.

Фотомеханический способ трансформирования основан на использовании специальных приборов – фототрансфораторов (рисунок 4.11). Эти приборы реализуют первую систему элементов трансформирования и предназначены для трансформирования плановых и перспективных снимков с преобразованными связками проектирующих лучей по опорным точкам или установочным данным.

Рисунок 4.11 – Автоматизированные фототрансформаторы ФТА и «Пеленг»:

1 – осветитель; 2 – кассета; 3 – пульт управления; 4 – счетчики коррекционных механизмов; 5 – экран; 6 – подвижная щель; 7 – объектив

Кассета рассчитана на установку в снимкодержатель как отдельного аэроснимка, так и целого аэрофильма длиной до 60 м. Закрепление фотоматериала на экране выполняется с помощью магнитных грузиков, а его выравнивание в плоскость – вакуумным присосом.

Оба прибора снабжены вычислительными устройствами для автоматического выполнения оптических и геометрических условий; значение децентрации вводится автоматически или вручную. Оба прибора оснащены щелевой установкой, позволяющей выполнять аффинное преобразование изображения путем его поперечного сдвига и продольного сжатия (растяжения). Ширина щели, через которую выполняется проектирование фрагмента снимка, регулируется в зависимости от параметров аэрофотосъемки.

Соответствующими рабочими движениями основные части фототрансформатора приводят в положение, при котором проекция снимка (негатива) на экран соответствует горизонтальному снимку, и фиксируют изображение на фотобумаге. Трансформированный фотоснимок получается в результате химической обработки экспонированной фотобумаги. Этот способ до недавнего времени был основным.

Оптико-графический способ трансформирования предполагает применение специальных малоформатных приборов– проекторов. Полученное с их помощью трансформированное изображение проектируют на лист бумаги, обводят карандашом и оформляют принятыми условными знаками. В настоящее время способ находит ограниченное применение при обновлении топографических или иных карт.

Дифференциальный способ трансформирования основан на преобразовании отдельных фрагментов исходного изображения с учетом высот их центров над средней плоскостью снимка и элементов внешнего ориентирования. Способ реализуется на приборах универсального типа либо на ЭВМ, а результатом обработки является ортофотоснимок (ортофотоплан).

Термин «дифференциальное трансформирование» (иногда «щелевое трансформирование ») в фотограмметрии применяется в случаях, когда ортофотоснимок создается с помощью прибора универсального типа. Для его получения выполняется сканирование одного из снимков стереопары вдоль оси Y с постоянным изменением высоты проектирования в соответствии с профилем местности и проектирование изображения на фотографический слой через щель ромбической или трапециевидной формы.

В настоящее время широко используется цифровое трансформирование, или ортотрансформирование снимков, базирующееся на использовании персональных ЭВМ и заключающееся в трансформировании каждого пикселя исходного цифрового изображения в соответствии с его высотой, определяемой по цифровой модели рельефа, и связи координат точек аэроснимка и местности.

Полученные в результате трансформированные снимки используют для монтажа фотоплана. Фотопланом называют фотографическое изображение местности, удовлетворяющее по точности требованиям, предъявляемым к плану.

В зависимости от целевого назначения фотопланы делят на топографические, составляемые в общегосударственной разграфке с соблюдением требований действующих инструкций и наставлений по топографической съемке, и специальные, изготавливаемые, как правило, в произвольной разграфке и с соблюдением ведомственных требований по точности и оформлению.

Существенным преимуществом фотоплана по сравнению с топографическим планом является высокая информационная емкость и наглядность. В то же время фотографическое изображение контуров отличается от условного их изображения на карте. Его оформление зачастую ограничивается подписью номенклатуры и выходов километровой сетки, что до некоторой степени затрудняет измерение по нему координат точек.

Для улучшения читаемости фотоплана на нем часто показывают соответствующими условными знаками некоторые объекты (населенные пункты, основные дороги и др.), наносят координатную сетку и проводят горизонтали. Такой документ, сочетающий в себе преимущества фотоплана и топографической карты, называют фотокартой.

В настоящее время наряду с топографическими картами для изучения местности и ориентирования на ней широко используются фотоснимки, получаемые путем фотографирования местности с самолета или какого-либо другого летательного аппарата. Такие изображения местности называются аэрофотоснимками или сокращенно аэроснимками. Процесс фотографирования земной поверхности с самолзта называется аэрофотосъемкой или воздушным фотографированием.

Промежуток времени от начала фотографирования местности до получения аэроснимков обычно сравнительно небольшой, поэтому по аэроснимкам можно получить более свежие и достоверные данные о местности, чем по топографической карте. Преимущество аэроснимка по сравнению с картой заключается еще и в том, что на нем получается подробное изображение всего, что имелось на местности в момент фотографирования, включая и временно находящиеся на ней различные предметы (объекты). Если сфотографировать местность, на которой происходят боевые действия войск, то по полученному аэроснимку можно обнаружить места расположения и сосредоточения войск и боевой техники, начертание траншей и противотанковых рвов, огневые позиции артиллерии и многие другие данные о противнике, необходимые для принятия решения при организации и ведении боя. Таким образом, аэроснимки являются одним из средств разведки.

Виды аэроснимков. В момент фотографирования земной поверхности фотоаппарат может занимать отвесное или наклонное положение, в зависимости от этого различают два вида аэрофотосъемки-плановую и перспективную. Фотографирование местности при отвесном (вертикальном) положении аэрофотоаппарата называется плановой съемкой (рис. 109), а аэроснимки, полученные при такой съемке,-плановыми. Если же в момент фотографирования аппарат находится в наклонном положении, то такая съемка называется перспективной (рис. 110), а полученные аэроснимки-перспективными. На перспективных аэроснимках изображается местность, расположенная в момент фотографирования впереди самолета или в стороне от него. Поэтому местные предметы на них изображаются так, как видны в натуре. При этом изображениа местных предметов на переднем плане аэроснимка будет более крупным, чем на дальнем плане.

Достоинством перспективных аэроснимков является то, что по ним легко опознать изображенные местные предметы, особенно расположенные на переднем плане, и получить общее представление о сфотографированной местности. Однако детально изучить местность по перспективным аэроснимкам нельзя, так как часть сфотографированной местности на них не просматривается - она закрыта предметами, расположенными на переднем плане. Например, на рис. 111 видна только часть реки, а дальше, за поворотом, она закрыта населенным пунктом. Не видны будут также предметы, расположенные за возвышенностями, дороги в лесу и т. д. Кроме того, масштаб перспективного аэроснимка в различных его частях разный: на переднем плане масштаб крупнее, чем на дальнем, поэтому производить измерения по такому аэроснимку сложно.

Практически в войсках, особенно при решении задач командирами подразделений, чаще используются плановые аэроснимки (рис. 112), на которых все местные предметы изображаются так, как они видны сверху. При этом если на аэроснимке сфотографирована относительно ровная местность, то размеры местных предметов, независимо от того, в какой части аэроснимка они расположены, уменьшаются при изображении на аэроснимке примерно в одинаковое число раз, т. е. масштаб такого снимка практически одинаков на всей его площади. На плановых аэроснимках в отличие от перспективных можно рассмотреть весь участок сфотографированной местности. Они позволяют изучить местность с большой подробностью и производить необходимые измерения практически так же, как на карте. Однако опознавание местных предметов на плановом аэроснимке затруднено тем, что изображение предметов получается в непривычном виде. Поэтому, чтобы изучать местность по плановым аэроснимкам, надо знать отличительные признаки предметов, а также уметь определять масштаб аэроснимка и производить по нему измерения.

Масштаб планового аэроснимка. Масштабом аэроснимка, как и карты, называется отношение, показывающее, во сколько раз изображение линейных отрезков местности на аэроснимке меньше этих же отрезков на местности. Он может быть определен одним из следующих способов.

Непосредственным измерением длин отрезков на местности и аэроснимке. Для этого необходимо измерить на местности по прямой линии расстояние между двумя местными предметами, которые четко опознаются на аэроснимке (перекрестки дорог, мосты на дороге, перекрестки улиц в населенном пункте, просеки в лесу и т. п.).

Измерив расстояние между этими же предметами на аэроснимке и разделив его на измеренную длину линии на местности, получим масштаб аэроснимка. Например, расстояние, измеренное на местности, равно 600 м, на аэроснимке этот отрезок равен 12 см. Разделив 12 см на 60000 см, получим масштаб аэроснимка 1:5000, т. е. 1 см на аэроснимке соответствует 50 м на местности.

По карте масштаб аэроснимка определяется в такой последовательности (рис. 113):

Находят на аэроснимке и на карте две общие точки: перекресток дорог и угол огорода 2 на северо-восточной окраине Демидове;

Измеряют расстояние между указанными точками на аэроснимке (6 см);

Измеряют расстояние между этими же точками на карте и, пользуясь масштабом карты, определяют, чему оно равно на местности (расстояние на карте масштаба 1:25 000 равно 5,6 см, следовательно, расстояние на местности будет равно 1300 м);

Делят расстояние на аэроснимке (6 см) на расстояние, полученное по карте (1300 м или 130000 см), и получают масштаб аэроснимка 1:21 666.

По известному размеру предмета. Допустим, что на аэроснимке четко опознано изображение моста. Длина моста на снимке равна 2 мм, а указанная на карте-14 м. Следовательно, масштаб аэроснимка будет равен 2:14000= 1:7 000.

Измерение. " ний по плановому аэроснимку практически не отличается от измерения расстояний по карте (см. разд. 3.2). Трудности заключаются лишь в том, что аэроснимок может иметь необычный по сравнению с картой масштаб (например, 1:7540, 1:20600 и т. п.), что вызывает необходимость каждый раз вычислять расстояния. Для удобства измерения расстояний строят линейный масштаб для данного аэроснимка по тем же правилам, что и для линейного масштаба шагов (см. разд. 7.1).