Во все лопатки. Разработка и анализ технологического процесса обработки сопловых лопаток тнд

Для новых поколений газотурбинных двигателей (ГТД) характерной особенностью является замена традиционно используемых дисков с лопатками на моноколёса - блиски (blisk от сокращения английских слов bladed disk) и аналогичные бездисковые кольцевые конструкции - блинги (bling от сокращения английских слов bladed ring).

Для повышения жёсткости, прочности и дополнительного облегчения конструкций типа блинг разработаны технологии кольцевых вставок из металлокомпозитов, например Ti-SiC.

Моноколёса и крыльчатки давно используются в производстве малых ГТД (для вертолётов, бизнес-авиации, наземной техники). Но только в последние годы их начали применять для двигателей военной и гражданской авиации, что обусловлено рядом причин.

  1. Моноколёса позволяют существенно уменьшить размеры обода диска за счёт устранения замковых соединений и снизить массу конструкций типа «блиск» на 30 %, а конструкции «блинг» - на 70 %.
  2. Для создания компактных конструкций ГТД с повышенными удельными параметрами у компрессоров несколько осевых ступеней заменяют одним широкохордным моноколесом или крыльчаткой. Это позволяет увеличить угловую скорость вращения ротора (до 50 — 80 тыс. об/мин) и напорность ступеней.
  3. Для малых диаметров колёс размещение лопаток с хвостовиками на ободе диска становится проблематичным.

Применяемые в отечественных ГТД моноколёса, несмотря на относительно небольшую номенклатуру, значительно отличаются друг от друга конструктивным исполнением. Для изготовления моноколёс в основном применяются титановые сплавы ВТЗ-1, ВТ5-1, ВТ-6, ВТ-8, ВТ-25, а также алюминиевые сплавы АК4-1, АК-6, ВД-17.

Размеры монолитных колёс находятся в диапазоне 170 — 700 мм по наружному диаметру и 25 — 175 мм по ширине. Количество лопаток, даже на колёсах примерно одного диаметра, различно. Высота лопаток составляет 0 — 200 мм, причём для осевых колёс она значительно выше, чем для центробежных.

Толщина лопаток составляет от 0,9 до 3,0 мм, что в значительной степени влияет на жёсткость технологической системы и требует продуманного выбора технологических переходов при обработке, а в некоторых случаях применения промежуточной заливки межлопаточного пространства перед фрезерованием.

Точность изготовления профилей лопаток моноколёс должна соответствовать ОСТ 102571-86 «Предельные отклонения размеров, формы и расположения пера», а шероховатость трактовых поверхностей - Ra = 0,32 — 0,63 мкм.

Почти во всех конструкциях монолитных колёс профиль межлопаточного пространства строится с использованием простых образующих, что облегчает составление управляющих программ обработки. Отечественные 5-координатные фрезерные станки типа ДФ-224Р, ДФ-966, МА 55С5Н, имеющие угол поворота инструмента ±22,5°, позволяют обрабатывать моноколёса с простой формой межлопаточных каналов по 3-4 координатам. Фрезерование лопаток моноколёс, имеющих сложные поверхности, на таких станках с достаточной технологической точностью невозможно, так как обработка должна производиться одновременно по 5 координатам.

Увеличение центробежных сил и, следовательно, контактных давлений и вибраций в замковых соединениях лопаток с диском приводит к фреттинг-коррозии, вызывающей снижение усталостной прочности и ускоряющей появление усталостных трещин, что, в свою очередь, способствует отрыву лопаток и выходу двигателя из строя. Снизить напряжения в соединении лопатки с диском можно благодаря применению высоконапорных моноколёс.

Это связано также с успехами, полученными в области технологии обработки межлопаточных каналов, появлением прогрессивного оборудования и современным проектированием лопаточных машин.

Таким образом, несмотря на высокую трудоёмкость изготовления, моноколёса имеют ряд преимуществ, которые на современном этапе позволяют им успешно конкурировать с осевыми сборными колёсами компрессоров ГТД.

У двигателя пятого поколения EJ-200 ротор компрессора состоит из семи блисков, включая вентиляторный блиск с широкохордными лопатками. Несколько ступеней блисков имеет двигатель серии BRR 700. По мнению специалистов, отработанная технология изготовления моноколёс в итоге оказывается экономически более выгодной, чем традиционное производство дисков и лопаток.

Западные производители газотурбинных двигателей используют для изготовления дисков три базовые технологии:

  • фрезерование лопаток в монолитной заготовке;
  • электрохимическая прошивка межлопаточных каналов после предварительного фрезерования или в монолитной заготовке;
  • сварка лопаток с диском методом линейной сварки трением.

Каждая из этих технологий имеет свои преимущества и недостатки и используется в зависимости от сложности формы лопаток, материала и габаритов.

Фрезерование блисков является традиционным способом. Он особенно эффективен при опытном производстве. В серийном производстве этот метод может быть экономически выгоден при изготовлении титановых блисков сравнительно небольших размеров. Блиски из высокопрочных сталей и никелевых сплавов получать фрезерованием неэффективно вследствие низкой обрабатываемости этих материалов. Фрезерованием невозможно получить очень тонкие лопатки. При изготовлении блиска из титанового сплава диаметром 500 мм, имеющего 85 лопаток с хордой 33 мм, одна лопатка фрезеруется в течение -15 мин. Скорость резания при черновой обработке составляет -100 м/мин, а при чистовой — 300 м/мин. Такие высокие скорости резания, полученные путём оптимизации условий обработки, позволили увеличить производительность фрезерования на 50 %. Шероховатость рабочих поверхностей лопаток после фрезерования составляет Ra =1,5 мкм. После фрезерования ручные доводочные работы не выполняются. В качестве финишной обработки используется виброполирование, а для предварительного прорезания пазов - абразивная струйная резка.

Электрохимическая обработка (ЭХО) является эффективным способом серийного производства блисков средних и малых размеров. К достоинствам ЭХО можно отнести высокую стабильность, производительность, отсутствие износа электродов. При использовании ЭХО не требуется ручная доработка поверхностей. Современное технологическое оборудование позволяет эффективно автоматически контролировать параметры процесса. В то же время, возникает ряд сложностей при подготовке производства. Это касается, в первую очередь, оптимизации формы электрода, выполняемой опытным путём в несколько итераций (до настоящего времени отсутствуют эффективные методики расчёта формы электрода для таких сложных поверхностей, как лопатки). Требуется квалифицированный опытный персонал. Перед чистовой ЭХО пазы между лопатками могут быть предварительно получены фрезерованием или струйно-абразивной резкой.

В настоящее время налажено серийное производство моноколёс диаметром 650 мм, имеющих 40 лопаток с хордой 72 мм и высотой 100 мм, из титанового сплава Ti-6Al-4V. ЭХО выполняется после предварительного чернового фрезерования с припуском 2 мм при плотности тока 0,5 А/мм 2 и подаче 1 мм/мин. Шероховатость поверхности после обработки составляет Rz = 5 — 10 мкм, время обработки одной лопатки - 5 мин.

Линейная сварка трением первоначально была разработана для ремонта повреждённых лопаток, которые нельзя было ремонтировать обычной сваркой. Сегодня этот метод применяется для получения блисков с лопатками большого размера. Каждая лопатка приваривается отдельно.

Моноколёса относятся к наиболее ответственным деталям двигателя. Надёжность и себестоимость их изготовления неразрывно связана с уровнем технологии производства. Разработанный на ММПО «Салют» технологический процесс изготовления моноколёс включает следующие основные операции:

  • заготовка - непрофилированная поковка (шайба);
  • предварительная и окончательная обточка поковок выполняется на токарных станках MDW-20S ;
  • предварительная и окончательная обработка поковок при наличии внецентренных крепёжных отверстий осуществляется на токарно-фрезерных центрах INTEGREX 1060 фирмы «MAZAK» (Япония). При больших габаритах и массе используют станки с вертикальной осью вращения заготовки типа «MORISEIKI» (Япония).

  • предварительное и окончательное фрезерование межло- паточных каналов выполняется на многоцелевых станках с ЧПУ фирмы «STARRAG» (Германия);

  • окончательная обработка межлопаточных каналов (полирование, скругление кромок пера лопаток на пневмомашинах типа СМ21-3-18000 борфрезами и войлочными кругами с накатанным абразивом);
  • контроль геометрии межлопаточных каналов, выполняемый непосредственно на фрезерном станке с ЧПУ, на котором вместо обрабатывающего инструмента устанавливается контрольная измерительная головка, выдающая информацию в системе ЧПУ станка на экран дисплея или распечатку отклонений. Контроль геометрии межлопаточных каналов может выполняться также на контрольно-измерительной машине.
  • С целью автоматизации процесса подготовки управляющих программ, выбора параметров режущего инструмента для предварительного и окончательного фрезерования и оценки формообразования используются математические модели межлопаточных каналов. Фрезерование межлопаточных каналов на станках фирмы «STARRAG» выполняется с достаточной точностью и шероховатостью поверхностей под окончательную безразмерную обработку.

    Технология окончательной безразмерной обработки межлопаточных каналов отрабатывается на вибро-гидравлических машинах в среде свободного абразива, где лопатки получают требуемую шероховатость поверхностей и сохраняют заданный профиль входной и выходной кромок.

    В современных ГТД часто используются осевые компрессоры. Центробежные компрессоры встречаются значительно реже. Основной деталью центробежного компрессора является крыльчатка. По конструктивным признакам различают следующие виды крыльчаток: открытые (заборники), полузакрытые и закрытые. Полузакрытые и закрытые бывают односторонними и двухсторонними.


    Виды крыльчаток: а - открытая; б - полузакрытая; в - закрытая литая; г - закрытая паяная

    Открытая крыльчатка представляет собой ступицу с лопатками (лопастями) без торцевой стенки. Полузакрытая крыльчатка имеет ступицу и диск, к которым примыкают лопатки. Последние бывают прямыми и криволинейными трапецеидального сечения и с постепенным утолщением к ступице.

    У небольших крыльчаток лопатки могут иметь заборные части. В большинстве современных ГТД применяют полузакрытые крыльчатки.

    Закрытые крыльчатки (литые) и сборные (паяные) в авиационных газотурбинных двигателях применяются редко, что обусловлено трудностью их изготовления и недостаточной прочностью.

    Соединение компрессора с валом и передача крутящего момента от вала турбины к крыльчатке осуществляются:

    • креплением вала к крыльчатке с помощью фланцев и шпилек;
    • соединением эвольвентными шлицами;
    • креплением крыльчатки с цапфой штифтами; цапфа имеет торцевые шлицы для передачи крутящего момента.

    Точность обработки отдельных поверхностей и их взаимного расположения характеризуется следующими величинами:

    • посадочные поверхности (поверхности А) и лабиринтные пояски (Д) - 6 — 10-Й квалитеты;
    • наружный диаметр (поверхность Б) - 8 — 10-й квалитеты;
    • остальные поверхности - 11 — 12-й квалитеты;
    • биения наружного диаметра (Б) и торцов (Б, Г) относительно посадочных поверхностей (А) - 0,02 — 0,05 мм;
    • шероховатость лопаток полузакрытых и открытых крыльчаток Ra = 0,16 — 0,08 мкм.

    Большинство открытых и полузакрытых крыльчаток выполняют из алюминиевых деформируемых сплавов АК4-1, АК6-1, БД-17. Если температура крыльчаток в условиях эксплуатации выше 200 °С, то крыльчатки изготавливают из титановых сплавов ВТ-10, ВТ-25У. Для закрытых цельных крыльчаток применяют литейные алюминиевые сплавы, а для сборно-паяных - стали 30ХГСА, 12Х18Н9Т и др.

    Заготовки открытых и полузакрытых крыльчаток обычно получают в закрытых штампах. Заготовки крыльчаток из алюминиевых сплавов отливают в земляные формы, металлические кокили и оболочковые формы.

    Механическая обработка крыльчаток делится на три этапа. При черновом этапе обрабатываются все поверхности крыльчатки и снимается до 70 % всего припуска. Обработка ведётся с большими подачами и глубинами резания. На чистовом этапе снимаются оставшиеся 30 % припуска. Точность и шероховатость поверхности на этом этапе, в основном, соответствует требованиям чертежа. На окончательном этапе полируются лопатки и полки.

    Технологическими базами при обработке открытых и полузакрытых крыльчаток служат наружные поверхности Б, отверстия А и торцы В и Г.

    Основные этапы технологического процесса изготовления полузакрытой крыльчатки:

    • штамповка;
    • точение наружного контура и подрезка торца;
    • ультразвуковой контроль материала заготовки;
    • растачивание отверстия и подрезка другого торца;
    • сверление отверстий под шпильки и развёртывание двух из них;
    • черновое и чистовое точение наружного контура крыльчатки (раздельно правую и левую стороны);
    • координатно-расточная;
    • фрезерование лопаток (предварительное);
    • термообработка (стабилизация);
    • фрезерование лопаток (окончательное);
    • обработка шлицев;
    • окончательное точение наружного контура крыльчатки;
    • балансировка;
    • технический контроль.

    Обработка цилиндрических поверхностей и торцов крыльчаток выполняется на токарных станках с ЧПУ, токарно-револьверных и токарно-фрезерных многоцелевых станках.

    Более всего для изготовления турбинных моноколёс подходит 5-координатный обрабатывающий центр. Диапазон наклона поворотного стола от -60 до +150°. Фрезерование выполняется со спиральным и боковым входом инструмента.

    На ММПП «Салют», освоена и внедрена высокоточная размерная обработка межлопаточных каналов моноколёс компрессоров на швейцарских станках фирмы «Shtarrag», для чего организован специализированный участок, на котором размещены фрезерные станки с ЧПУ, оборудование для перезаточки и контроля режущего инструмента, контрольные приборы.

    Отличительной особенностью этого оборудования является:

    • одновременная обработка четырёх моноколёс;
    • автоматическое бесступенчатое регулирование подачи с помощью системы «адаптивного контроля», специально разработанной для черновой и чистовой обработки;
    • температурная стабилизация (опоры шпинделя, меж- центровое расстояние и т.п.) посредством охлаждения компрессором позволяет добиться максимальной частоты вращения шпинделя и улучшения точности обработки при многошпиндельном, многоместном длительном режиме работы.

Изобретение относится к области машиностроения, а именно к способам изготовления лопаток авиационных газотурбинных двигателей (ГТД) из материалов, способных деформироваться в холодном или горячем состоянии. Изготавливают заготовку лопатки. Образовывают аэродинамический профиль в каждом сечении пера. Образовывают хвостовик. Проводят отделочные операции. Образование аэродинамического профиля и хвостовика осуществляют одновременной закруткой пера и хвостовика и их калибровкой в штампе. Плоскую заготовку изготавливают с сечениями, площадь и протяженность которых равна соответственно площади соответствующих сечений отштампованной лопатки и протяженности хорд данных сечений. В результате обеспечивается увеличение коэффициента использования металла и точности изготовления, повышение качества широкохордных лопаток ГТД и снижение затрат времени. 2 ил.

Предлагаемое изобретение относится к области машиностроения, а именно к способам изготовления лопаток авиационных газотурбинных двигателей (ГТД) из материалов, способных деформироваться в холодном или горячем состоянии.

В современных конструкциях вентиляторов авиационных двигателей широкое применение находят крупногабаритные широкохордные лопатки, позволяющие существенно снизить шумность вентилятора, увеличить тягу и в целом повысить экономичность газотурбинного двигателя.

Известны традиционные технологии производства лопаток, включающие в себя изготовление штамповкой заготовки лопатки с поэтапной закруткой профиля пера и припусками по перу и замку, с последующим удалением припусков обработкой резанием, электрофизическими и иными методами (Крымов В.В., Елисеев Ю.С., Зудин К.И. Производство лопаток газотурбинных двигателей. М., "Машиностроение / Машиностроение - Полет", 2002 г., стр.66-100, 101-197).

Данный способ становится чрезвычайно трудоемким и металлозатратным при производстве широкохордных лопаток из-за их больших габаритов (длина может достигать 1,5 м, при отношении высоты к хорде менее 2) и сложной геометрической формы.

Сложная конфигурация предварительных переходов снижает технологичность выполнения сопутствующих операций, начиная от зачистки дефектов штамповки, до использования специализированных ложементов для нагрева перед следующим штамповочным переходом.

Уменьшение припуска на механическую обработку профиля пера приводит к росту удельных усилий штамповки, а одновременное получение его окончательной конфигурации требует увеличение жесткости штампового комплекта в сборе для гашения высоких сдвигающих усилий при штамповке.

Одновременная окончательная доводка профиля пера по толщине и конфигурации, несмотря на известные способы механического, химического и электрохимического фрезерования, является высоко трудоемкой операцией.

Известен способ изготовления лопаток газотурбинного двигателя (патент РФ №2257277) - прототип. Суть способа заключается в том, что на первом этапе проектирования технологического процесса перерабатывают конструкторский чертеж лопатки, раскручивая и раздвигая между собою расчетные сечения пера, «укладывая» при этом хорды раскручиваемых сечений в одной плоскости. Полученный модифицированный чертеж лопатки является основой для проектирования заготовки-штамповки. Заготовка-штамповка, имеющая раскрученный профиль пера, изготавливается методами объемной штамповки с припуском по перу и замку под дальнейшую обработку резанием. После удаления чернового припуска, например фрезерованием, выполняют закрутку профиля пера в горячем состоянии с привлечением специальных устройств. Впоследствии, изготовленная таким способом заготовка подвергается всем традиционным стадиям технологического процесса изготовления лопатки.

Недостатком способа является то, что определение силовых параметров по расчету процесса горячей закрутки пера лопатки, имеющей сечение аэродинамического профиля, переменным по длине проблематично т.к. анализ существующих математических моделей определения силовых параметров при скручивании ограничен рассмотрением стержней с элементарными геометрическими сечениями (круг, эллипс, квадрат, прямоугольник). Поэтому деформации при закрутке изделия неизбежно приводят к искажению аэродинамического профиля, которое может превосходить поле допуска. Подбор технологических режимов и геометрических параметров заготовки требует большого количества трудоемких и затратных по времени опытных работ для каждого типа размера широкохордной лопатки. Процесс не стабилен, зависит от многих факторов и требует наличия специального оборудования.

Для устранения вышеуказанных негативных моментов предлагается разделить операции: формирование сдаточной толщины профиля пера и формирование его контура. Дополнительно это позволяет существенно расширить спектр оборудования для выполнения первого этапа, а все сопутствующие операции адъюстажной и механической обработки данного этапа проводить на более технологичном в обработке спрямленном контуре.

В настоящем изобретении предпринимается попытка представить новый метод производства лопаток газотурбинных двигателей с оформленным контуром, методом однопереходной изотермической безоблойной окончательной штамповки (закрутка + калибровка), который сокращает или решает вышеупомянутые проблемы.

Изобретением решается задача изготовления широкохордных лопаток ГТД, сложной геометрической формы на стандартном оборудовании.

Техническим результатом настоящего изобретения является повышение качества изготовления широкохордных лопаток ГТД, а также стабильности технологического процесса при одновременном снижение затрат.

Способ изготовления лопаток газотурбинного двигателя, включающий изготовление заготовки лопатки, образование аэродинамического профиля в каждом сечении пера лопатки, образование хвостовика и проведение отделочных операций, образование аэродинамического профиля в каждом сечении пера лопатки и образование хвостовика осуществляют путем одновременной закрутки пера и хвостовика и их калибровки в штампе изотермической штамповкой, при этом изготавливают плоскую заготовку, выполненную с сечениями, площадь и протяженность которых равна соответственно площади соответствующих сечений отштампованной лопатки и протяженности хорд данных сечений.

Сущность изобретения поясняется чертежами, на которых показано:

на фиг.1 - широкохордная лопатка 1, выполненная, например, из титана или из одного из его сплавов;

на фиг.2 - спрямленная заготовка широкохордной лопатки.

Предлагаемый согласно изобретению способ изготовления лопаток газотурбинных двигателей осуществляется следующим образом.

1. Производство плоской заготовки 4 (фиг.2) методами экструзии и (или) прецизионной штамповки, а также вальцовки и (или) высадки и (или) механической обработкой плоского или сортового проката.

2. Подготовка базовых элементов 3 последующей чистовой механической обработки пера и одновременно укладочных элементов для однопереходной штамповки либо на этапе прецизионной штамповки заготовки и(или) дополнительной мех. обработки полученных ранее заготовок или получаемые путем приварки к заготовке 4 и дополнительной мех. обработки.

3. Подготовка плановой проекции заготовки для однопереходной штамповки либо на этапе прецизионной штамповки заготовки и(или) дополнительной мех. обработки полученных ранее заготовок (при этом обеспечивается равенство хорд заготовки пера 6 и хорд готового изделия 7).

4. Подготовка высотных размеров заготовки для однопереходной штамповки либо на этапе прецизионной штамповки заготовки и (или) дополнительной мех. обработки полученных ранее заготовок.

5. Применение тепла и давления к заготовке для изотермической штамповки (одновременная закрутка аэродинамического профиля («пера») 1 и хвостовика («замка») 2 с одновременной калибровкой) и производства по существу необходимой готовой внешней конфигурации и размеров профиля пера. Для высокоугловой закрутки аэродинамического профиля (более 40°) и калибровки широкохордных вентиляторных лопаток используются специально вводимые удерживающие элементы штамповой оснастки (не показаны).

6. Чистовая обработка изделия для удаления избытка материала с входной и выходной кромки (5) изотермически отштампованной внешней конфигурации для получения готового профиля пера.

7. Удаление базовых (укладочных) элементов 3 фиг.1.

8. Механическая обработка хвостовика лопатки («замка») 2.

Пример конкретного выполнения. Проведена опытная штамповка широкохордной лопатки ГТД в закрытом штампе. Материал - титановый сплав марки ВТ6. Температура штамповки не более 850°С. Инструмент нагревали до температуры не более 850°С. Размеры готовой лопатки: длина - 1200 мм, максимальная ширина хорды 620 мм.

Предлагаемый способ изготовления широкохордных лопаток позволяет разработать эффективную технологию, с применением которой возможно производство ряда лопаток для ГТД из прогрессивных металлов и сплавов.

Преимущество предложенного технического решения позволяет расширить технологические возможности стандартного оборудования, вести процесс при минимальных затратах времени. Значительно повышается коэффициент использования металла, увеличивается точность изготовления и стабильность технологического процесса.

Способ изготовления лопаток газотурбинного двигателя, включающий изготовление заготовки лопатки, образование аэродинамического профиля в каждом сечении пера лопатки, образование хвостовика и проведение отделочных операций, отличающийся тем, что образование аэродинамического профиля в каждом сечении пера лопатки и образование хвостовика осуществляют путем одновременной закрутки пера и хвостовика и их калибровки в штампе изотермической штамповкой, при этом изготавливают плоскую заготовку, выполненную с сечениями, площадь и протяженность которых равна соответственно площади соответствующих сечений отштампованной лопатки и протяженности хорд данных сечений.

Похожие патенты:

Изобретение относится к машиностроению, а именно к обработке металлов ультразвуковой ковкой, и может быть использовано для изготовления деталей с повышенными технико-эксплуатационными характеристиками и для формирования закругленных кромок с переменной толщиной.

Изобретение относится к обработке металлов давлением и может быть использовано в авиационной промышленности при изготовлении заготовок лопаток с двумя хвостовиками или с одним хвостовиком и бандажной полкой. Нагретую заготовку устанавливают в контейнер между двумя полуматрицами составной матрицы, выполненной с каналом. При этом часть заготовки располагают на нижнем пуансоне. Заготовку деформируют с образованием шейки путем смыкания полуматриц. Затем формируют один из хвостовиков лопатки движением нижнего пуансона вверх после остановки полуматриц. Заготовку выдавливают через канал составной матрицы верхним пуансоном при движении нижнего пуансона в нижнее положение. При этом часть заготовки оставляют в контейнере и формируют штамповку переменного сечения, расширяющуюся по направлению к оставшейся в контейнере части заготовки. В результате обеспечиваются расширение спектра получаемых штамповок, увеличение коэффициента использования металла, повышение прочностных характеристик изделия. 2 ил.

Изобретения относятся к обработке металлов давлением и могут быть использованы при изготовлении лопаток турбин методом горячей штамповки. Исходную заготовку размещают в горизонтальном приемнике разъемной матрицы, состоящей из двух полуматриц с вертикальной плоскостью разъема. Полуматрицы выполнены с горизонтальным сквозным отверстием, образующим приемник, и радиально расположенными относительно приемника полостями под лопатки. К обоим торцам заготовки прикладывают осевое усилие посредством расположенных с обеих сторон пуансонов. В результате производят деформирование заготовки до полного заполнения полостей под лопатки и получают многоштучную поковку. Поковка состоит из лопаток, соединенных пресс-остатком. Поковку извлекают из штампа и отделяют лопатки от пресс-остатка. В результате обеспечивается повышение пластичности материала заготовки при его истечении в полости полуматриц, снижение технологического усилия, а также повышение точности получаемых изделий и коэффициента использования материала. 2 н. и 2 з.п. ф-лы, 18 ил. 1 пр.

Изобретение относится к области машиностроения, а именно к способам изготовления лопаток авиационных газотурбинных двигателей из материалов, способных деформироваться в холодном или горячем состоянии


dx.doi.org/ 10.18577/2307-6046-2016-0-10-1-1

УДК 621.74:629.7.03-226.2

ОТ МОНОКРИСТАЛЛИЧЕСКИХ НЕОХЛАЖДАЕМЫХ ЛОПАТОК К ЛОПАТКАМ ТУРБИН С ПРОНИКАЮЩИМ (ТРАНСПИРАЦИОННЫМ) ОХЛАЖДЕНИЕМ, ИЗГОТОВЛЕННЫМ ПО АДДИТИВНЫМ ТЕХНОЛОГИЯМ (обзор по технологии литья монокристаллических лопаток ГТД)

Приведены этапы становления и развития процесса монокристаллического литья лопаток из жаропрочных, интерметаллидных сплавов, сплавов с композиционной структурой типа ВКЛС, создания опытно-промышленного и промышленного оборудования для осуществления процесса направленной кристаллизации, а также развития систем охлаждения лопаток путем создания сложных внутренних полостей. Рассмотрены проблемы, связанные с получением лопаток с проникающей системой охлаждения. Обсуждается прогноз получения лопаток с проникающей системой охлаждения без применения керамических форм и стержней, т. е. по аддитивной технологии.


Введение

Многочисленные исследования и статистические данные по поломке авиатехники в связи с отказом двигателя показали, что основной причиной разрушения лопаток ГТД (наиболее нагруженных деталей двигателя) является их разрыв по границам зерен, ориентированным перпендикулярно основным растягивающим напряжениям от центробежных сил. Это послужило толчком для развития технологии направленной кристаллизации, обеспечивающей получение лопаток со столбчатой структурой, границы зерен в которой ориентированы параллельно главной оси лопатки (рис. 1).

Рис. 1. Лопатки с равноосной (а ), направленной (б ) и монокристаллической (в ) структурой

Лопатки со столбчатой структурой имеют более высокий ресурс работы на двигателе в отличие от лопаток с равноосной структурой. Дальнейшие исследования показали, что границы зерен, расположенные параллельно оси лопатки, имеют неблагоприятно ориентированные относительно действующих напряжений участки. Таким образом, появилась идея создать лопатки, в структуре которых межзеренные границы отсутствуют, т. е. сделать их монокристаллическими. Исследовательские центры всего мира были мобилизованы на решение этой задачи. Перед ВИАМ также была поставлена задача разработать технологию монокристаллического литья, создать оборудование для ее осуществления, усовершенствовать сплавы, предназначенные для направленной кристаллизации, и внедрить в промышленность.

В 1968 г. молодыми специалистами (В.В. Герасимов, В.Н. Толораия, А.В. Яковлева, А.В. Рогов, Е.Р. Черкасова, Л.Б. Василенок) под руководством профессора, д.т.н. Дмитрия Андреевича Петрова были начаты экспериментальные работы по получению монокристаллов жаропрочных сплавов. Эксперименты проводили на модернизированной установке «Редмет-4». Для расширения экспериментальных возможностей Конструкторский отделВИАМ спроектировал специализированные установки (проекты 1591, 1604, 1790), которые были изготовлены и сданы в эксплуатацию. По предложению Д.А. Петрова вокруг оснований моделей образцов и неохлаждаемых лопаток были изготовлены так называемые «стартовые козырьки» переменного сечения, которые позволили получить первые монокристаллические отливки (рис. 2). Нетехнологичность «стартовых козырьков» приводила к малому выходу годных по монокристаллической структуре отливок.

В дальнейшем были предложены стартовые основания в виде конусов - для круглых образцов или конических законцовок пера для лопаток (рис. 3). Это резко повысило выход годных по монокристаллической структуре отливок. Для управления кристаллографической ориентацией (КГО) получаемых отливок (очень важная характеристика для монокристаллов) в вершину стартовых оснований предложено устанавливать затравки с заранее заданной КГО. Опробованы два варианта затравок: из того же сплава, что и материал лопаток, и из тугоплавкого сплава типа Ni-W (рис. 3, д ). В дальнейшем более широкое промышленное внедрение получили затравки из сплава системы Ni-W. Это открыло путь к промышленному производству монокристаллических лопаток, основным преимуществом которых являлось отсутствие границ зерен, по которым в основном происходило разрушение деталей при эксплуатации. Одновременно с разработкой процесса направленной кристаллизации решался вопрос о повышении его производительности, чтобы приблизиться к производительности равноосного литья, но с более высоким качеством получаемых деталей. Повысить производительность можно было только путем увеличения скорости охлаждения отливки при направленной кристаллизации. Этого удалось добиться благодаря применению жидкометаллических охлаждающих сред, конвективное охлаждение в которых дает существенно больший эффект, чем охлаждение формы с отливкой путем излучения в вакууме. Влияние повышения скорости охлаждения на структурные изменения в отливках, а также схемы направленной кристаллизации приведены на рис. 4.

Рис. 2. Внешний вид первых монокристаллических лопаток (а ) и прямоугольных образцов (б ), выращенных с помощью стартовых козырьков

Рис. 3. Стартовые устройства (схема и общий вид) для получения монокристаллических образцов и лопаток:

а , б - для лопаток с бандажной полкой; в - для лопаток без бандажной полки; г - для цилиндрических образцов; д - два варианта затравок; 1 , 2 - оптимальный и допустимый вариант профиля стартового устройства соответственно; 3 - профиль пера лопатки; R 1 и R 2 - радиусы, образующие профиль

Рис. 4. Схемы установок для направленной кристаллизации с применением водоохлаждаемого медного (а б ) и микроструктура образцов:

I - в поперечном направлении (×100); II - в продольном направлении (×100); III - междендритные области (×500); IV - морфология упрочняющей γʹ-фазы (×10000); микроструктуры образцов, полученных по технологии направленной кристаллизации с применением водоохлаждаемого (а ) и жидкометаллического кристаллизаторов (б )

Повышение степени дисперсности структурных составляющих положительно сказывается на всех эксплуатационных свойствах деталей из жаропрочных сплавов, поэтому разработанный и опробованный в ВИАМ процесс направленной кристаллизации с применением жидкометаллических охлаждающих сред положен в основу технического задания на разработку промышленного оборудования.

В ВИАМ разработаны техническое задание и конструкторские чертежи (ведущий конструктор А.С. Шалимов) на промышленную установку УВНК-8, серийное производство которой поручено РПО «Электромеханика». При обсуждении проекта установки УВНК-8 с заводскими работниками было предложено снабдить установку дополнительной шлюзовой камерой для повышения ее производительности. Шлюзовая камера была спроектирована на РПО «Электромеханика», а установка стала называться УВНК-8П. В это время в ВИАМ по заданию ММПО им. В.В. Чернышева для двигателя РД-33 на установке В-1790 отлито три тысячи лопаток, из которых изготовлено три комплекта деталей для государственных испытаний. Успешное испытание лопаток в составе изделия инициировало серийное изготовление установок УВНК-8П и оснащение ими моторостроительных заводов отрасли. В зависимости от требуемой производительности создавались участки, оборудованные установками УВНК-8П: от 2 (на опытных заводах) до 12 (на серийных предприятиях). Одновременно в ВИАМ проводились работы по созданию сплавов для направленной кристаллизации. Разработаны и впоследствии внедрены в промышленность сплавы ЖС26, ЖС26У, ЖС32, ЖС36 (безуглеродистый) и ЖС40, длительная прочность которых существенно превышает аналогичные показатели сплава ЖС6У, применявшегося ранее. Первый участок в России из восьми установок создан на ММПО им. В.В. Чернышева, основным направлением работ на котором было повышение выхода годного при литье лопаток и коэффициента загрузки оборудования. За первые три года работы участка выход годного увеличен с 30 до 60% (табл. 1).

Таблица 1

Выход годного за первые три года серийного производства лопаток первой ступени

для изделия «88» на ММПО им. В.В. Чернышева на установках УВНК-8П

Продолжение

Сентябрь

Примечание

Залито, шт.

Предъявлено, шт.

Сдано, шт./%

Залито, шт.

Предъявлено, шт.

Сдано, шт./%

Залито, шт.

Предъявлено, шт.

Сдано, шт./%

Таким образом, комплексный подход (разработка технологии, создание специальных сплавов и промышленного оборудования для направленной кристаллизации) к решению проблемы получения монокристаллических лопаток в короткие сроки дал положительные результаты и помог решить важнейшую государственную задачу по повышению ресурса двигателей РД-33 и АЛ-31,применяемых всовременных истребителях.

В дальнейшем комплексный подход к решению сложных проблем, объединяющий усилия технологов, разработчиков сплавов, оборудования и конструкторов, неоднократно давал положительные результаты. Так, с привлечением сотрудников ВИАМ, ЦИАМ им. П.И. Баранова, ОКБ ПАО «НПО «Сатурн» была решена проблема получения эвтектических сплавов.

Формирование композиционной структуры в эвтектических сплавах

ВКЛС-10, ВКЛС-20, ВКЛС-20Р при получении лопаток ГТД

Эвтектические сплавы системы γ/γʹ-МеС, к которым относятся сплавы ВКЛС-10, ВКЛС-20 и ВКЛС-20Р, получаемые методом направленной кристаллизации, считались перспективными материалами для лопаток ГТД. Высокий уровень жаропрочности и сопротивления усталости эвтектических сплавов с композиционной структурой обеспечивается путем одновременного действия двух основных механизмов упрочнения: дисперсионного (как в обычных жаропрочных сплавах типа ЖС) и композиционного (благодаря армированию матрицы сплава нитевидными кристаллами NbC, выращиваемыми в процессе направленной кристаллизации).

Эвтектическое превращение характеризуется одновременным диффузионным разделением жидкости на две кристаллизующиеся фазы при постоянной температуре.

Известно, что необходимым условием формирования композиционной структуры эвтектик является создание и поддержание в процессе всего цикла кристаллизации микроскопически плоской поверхности раздела между жидкой и твердой фазами. По аналогии с критерием концентрационного переохлаждения (G /R ≥ΔT /D ) для однофазных сплавов , если используя диаграмму состояния заменить DТ эквивалентными величинами, то получают уравнения сохранения устойчивости плоского фронта при кристаллизации двухкомпонентных доэвтектических и заэвтектических сплавов:

где m - наклон линии ликвидус; k - коэффициент распределения легирующего элемента в твердой и жидкой фазах; G - температурный градиент в жидкости на фронте кристаллизации; R - скорость кристаллизации;C - состав сплава; C e - состав эвтектики; D - коэффициент диффузии элементов в жидкости.

Для каждого сплава существует определенное критическое значение соотношения G /R , выше которого плоский фронт кристаллизации является стабильным, а ниже его - становится ячеистым или дендритным, получение композиционной структуры при котором становится невозможно .

Химические составы разработанных в ВИАМ высокожаропрочных эвтектических сплавов ВКЛС-10, ВКЛС-20 и ВКЛС-20Р (а. с. 1111500, 1358425) и некоторых зарубежных аналогов представлены в табл. 2 .

Таблица 2

Химический состав эвтектических сплавов

Длительная прочность

Источник

При направленной кристаллизации с плоским фронтом роста в сплавах типа ВКЛС формируется структура естественного композита (рис. 5), состоящая из γ/γ `-матрицы, армированной каркасом из высокопрочных волокон карбида ниобия. Содержание волокон NbC составляет 4-6% (объемн.), поперечное сечение волокна - в среднем 2×2 мкм. Между кристаллической решеткой γ/γ` -матрицы и волокнами существует определенное кристаллографическое соответствие. Устойчивое формирование регулярной композиционной структуры сплава, отливаемого в алундовых тиглях с внутренним диаметром 16-18 мм и толщиной стенок 2 мм, происходило при скорости погружения тигля 6-7 мм/ч и температурном градиенте 100-150°С/см. Такой градиент достигался при температуре верхней поверхности теплового экрана >1345°С, что соответствовало температуре в средней части цилиндрического нагревателя (1750°С) и стенок тигля (1680°С).

Рис. 5. Распределение температур (а ) в однозонной печи сопротивления при получении эвтектических сплавов в алундовых тиглях, макро- (б ) и микроструктуры (в ) слитков (б , в - продольное и поперечное сечение соответственно, ×100; г - поперечное сечение, ×10000)

В связи с технологическими трудностями получения лопаток из композиционных сплавов (высокие градиенты температур на фронте роста, низкие скорости роста, высокие температуры нагревателей и формы) рассмотрены и практически реализованы несколько путей производства деталей:

Получение слитков большого диаметра, из которых методами последующей механической обработки предполагалось изготавливать неохлаждаемые лопатки малоразмерных двигателей;

Изготовление методами направленной кристаллизации раздельных заготовок лопаток (отдельно спинки, отдельно корыто), соединение которых осуществляется пайкой по входной и выходной кромкам;

Изготовление цельнолитых охлаждаемых лопаток со сложной внутренней полостью.

При использовании двухзонного нагревателя, жидкометаллического охлаждения и экранов, на установке В-1790 отработана технология получения различных по конструкции лопаток из сплавов ВКЛС-10, ВКЛС-20 и ВКЛС-20Р. Во всех лопатках имелись три структурные зоны (как и на образцах): стартовая зона протяженностью 20-40 мм с крупными равноосными карбидами; композиционная зона с регулярными волокнами карбидов ниобия; зона с дендритной морфологией карбидов в верхней части отливок. Размер стартовой зоны выбирали так, чтобы в рабочую часть лопатки прорастала только композиционная структура. Установлено, что композиционная структура легче прорастает из замкового (толстого) сечения в тонкое, чем из тонкого пера в замок (на модельных лопатках). Таким образом, с помощью конструкторско-технологических приемов удалось снизить рабочую температуру нагревателей с 1750 до 1550°С. Такая температура на нагревателе не влияет на устойчивость керамических форм и стержней. Кроме того, резко увеличилась работоспособность нагревателей. Стабильная работа нагревателей наряду с эффективным экранированием позволили получить образцы и лопатки с необходимой (годной) композиционной структурой.

На основании анализа критерия устойчивости плоского фронта роста при кристаллизации эвтектик и большого количества проведенных экспериментов установлено, что жаропрочные сплавы типа ВКЛС имеют композиционную структуру в отливках толщиной до 10-15 мм при минимальном значении G /R =100-120°С·ч/см 2 .

Показано, что стартовая зона, в микроструктуре которой наблюдается большое количество неориентированных карбидов, содержит ³1% (по массе) С; композиционная зона на большой длине содержит 0,4-0,5% (по массе) С; дендритная зона в головной части отливки содержит £0,3% (по массе) С при исходной концентрации углерода в сплаве 0,38-0,55% (по массе).

Изучены механизмы образования поверхностных карбидов, ростовых дефектов различной морфологии при получении деталей из эвтектических сплавов типа ВКЛС.

При исследовании влияния термообработки на характеристики паяных соединений сплава ВКЛС-10 обнаружено явление эвтектоидного превращения карбидов с ориентированным выстраиванием их в поперечном к паяному шву направлении, что положительно сказывается на свойствах паяных соединений.

Разработана технология получения образцов с композиционной структурой и проведена паспортизация сплавов ВКЛС-10, ВКЛС-20 и ВКЛС-20Р .

Впервые по разработанной технологии получены лопатки с композиционной структурой в пере и замке следующих наименований:

Опытные лопатки Д-30 с простой геометрической формой внутренней полости;

Лопатки ТС-2-09 со сложной внутренней полостью, оформляемой стержнем;

Составные лопатки для изделия «79» с внутренним оребрением, оформленным керамикой формы;

Составные лопатки для изделия «20»;

Цельнолитые лопатки ВТ-60-02-047 с простой геометрической формой внутренней полости;

Цельнолитые охлаждаемые лопатки для изделия «99» и изделия «20» со сложной геометрической формой полости.

Впервые в заводских условиях на установке УВНК-8П с модернизированным приводом вертикального перемещения форм получены лопатки из сплава ВКЛС-20 с композиционной структурой пера и дендритно-композиционной структурой замка. Подтверждена пригодность установки УВНК-8П для получения лопаток ГТД из эвтектических сплавов типа ВКЛС.

Аналогичным образом решалась и проблема интерметаллидных сплавов.

Исследования в области взаимодействия металлов между собой и с другими элементами Периодической системы Д.И. Менделеева привели к открытию большого числа химических соединений, обладающих уникальными свойствами .

Металлиды (интерметаллиды) - химические соединения двух или нескольких металлов, образующиеся при взаимодействии компонентов в процессе нагрева, в результате обменных реакций, при распаде пересыщенных растворов одного металла в другом и т. д.

В кристаллической решетке металлидов атомы каждого из металлов занимают строго определенное положение, создавая как бы несколько вставленных одна в другую подрешеток. Интерметаллиды, как правило, существуют в определенной области концентраций компонентов (так называемой области гомогенности). Состав интерметаллидов обычно не отвечает формальной валентности компонентов. Диаграмма «состав-свойство» в области гомогенности может иметь сингулярную точку, соответствующую постоянному отношению атомов компонентов (дальтониды) или не иметь ее (бертоллиды) .

К наиболее важным химическим свойствам металлидов относятся стойкость к окислению и коррозионная стойкость в агрессивных средах. Стойкость к окислению объясняется высокой прочностью химической связи, малой диффузионной подвижностью атомов в их решетке, а также тем, что на их поверхности образуются стойкие оксидные пленки.

В ВИАМ разработана серия сплавов типа ВКНА на основе интерметаллида Ni 3 Al: ВКНА-4, ВКНА-4У, ВКНА-1В, ВКНА-25, ВИН2, ВИН3, ВИН4 . Все они паспортизованы и прошли промышленное опробование. Температурный уровень их работоспособности представлен графически на рис. 6, а .

Применение Ta, Re, Ru - элементов, которые ранее не применялись в системе легирования сплавов типа ЖС, привело к существенному повышению свойств сплавов и отодвинуло эвтектические сплавы типа ВКЛС на задний план. К этому времени в ВИАМ был разработан компьютерный метод конструирования жаропрочных сплавов, который заменил традиционный трудоемкий способ легирования методом «проб и ошибок» . С использованием метода компьютерного конструирования создано новое поколение жаропрочных никелевых сплавов (ЖНС), механические свойства которых представлены в табл. 3.

Тем не менее применение сплавов на никелевой основе не обеспечивает существенного повышения рабочих температур, необходимого для создания современных двигателей следующего поколения. В связи с этим проводятся исследовательские работы по поиску иной основы жаропрочных сплавов. В ВИАМ в этом направлении активно проводятся работы по созданию сплавов на основе системы Nb-Si (рис. 6, б ) .

Помимо повышения жаропрочности сплавов, позволяющего увеличить температуру газов перед турбиной, гораздо больший эффект в настоящее время обеспечивают системы внутреннего охлаждения материала лопаток.

Рис. 6. Температурный уровень работоспособности литейных интерметаллидных сплавов (а ) и жаропрочных сплавов (б )

Стремление к созданию высокотемпературных двигателей диктуется природой тепловых машин. При рассмотрении цикла Карно, лежащего в основе создания тепловых машин, в частности ГТД, видно, что коэффициент полезного действия (КПД) машины определяется только интервалом температур, в котором совершается работа:

где η - КПД тепловой машины; Т 1 - температура горячего источника, от которого рабочее тело (газ для ГТД) получает тепло для совершения работы; Т 2 - температура охлаждающей среды (для ГТД: Т 2 =Т атмосферы =300 К).

Следовательно η→1 при Т 1 →∞, т. е. высокотемпературные циклы обладают значительно более высоким КПД.

Цикл Карно является основным термодинамическим циклом. Он устанавливает предел превращения теплоты в работу при заданном температурном перепаде. Реальный КПД двигателя естественно будет меньше КПД цикла Карно при равных температурных перепадах.

Повышение КПД - это еще и рост экономических показателей двигателей, которые оцениваются удельным расходом топлива. Первые ГТД имели удельный расход топлива при работе на земле 1,3-1,5 кг топлива на 1 кг тяги в час, современные ТРД 0,7-0,9 кг топлива на 1 кг тяги в час, а ТРДД 0,5-0,7 кг топлива на 1 кг тяги в час.

Между конструкторами всего мира развернулась жесткая конкуренция по освоению предельно высоких температур газа перед турбиной, по снижению весовых характеристик машин, повышению их ресурса и надежности, технологичности конструкций и снижению при этом стоимости.

Таблица 3

Механические свойства литейных жаропрочных сплавов

d , кг/м 3

МнЦУ: , МПа (при N =2·10 7 циклов)

Продолжение

Область применения

Рабочие и сопловые

лопатки с равноосной структурой

Рабочие и сопловые

лопатки с направленной и монокристаллической структурой

Рабочие лопатки с

монокристаллической структурой

Рабочие лопатки с направленной и монокристаллической структурой для стационарной ГТУ длительного ресурса

Экономический фактор, ранее не считавшийся главным при создании военной авиационной техники, теперь является доминирующим. Так, стоимость одного самолета-истребителя превысила 10 млн долларов, создание стратегического бомбардировщика оценивается суммой более 21 млн долларов, один самолет Е-3А с системой AWACS стоит 111 млн долларов.

Освоение высоких температур газа перед турбиной идет в двух направлениях: конструктивные проработки систем внутреннего охлаждения лопаток и применение новых жаропрочных сплавов. Отсюда следует, что применение неохлаждаемых лопаток возможно лишь на малогабаритных или вспомогательных силовых установках или на установках наземного базирования. Авиационные перспективные двигатели будут иметь все более сложные системы охлаждения внутренних полостей лопаток вследствие высоких температур газа перед турбиной, уже сейчас превышающих температуру плавления сплава лопаток. Развитие систем охлаждения лопаток наглядно представлено на рис. 7, приведены поколения авиационных двигателей и соответствующие им температуры газов перед турбиной, внешний вид и сечения лопаток, рост температуры газов вследствие проведения конструктивных мероприятий и благодаря повышению работоспособности материалов лопаток .

Рис. 7. Развитие систем охлаждения лопаток (рост температуры газа перед турбиной и усложнение систем внутреннего охлаждения лопаток): 1 - температура газа; 2 - температура металла

На смену неохлаждаемым лопаткам, эксплуатирующимся при температурах ниже 1000°С, пришли лопатки с воздушным охлаждением, воздух для которых отбирается из последних ступеней компрессора. Эффективность охлаждения наглядно показана на рис. 8. При одинаковой температуре на входной кромке лопаток (950°С) температура газа перед турбиной в случае охлаждаемой лопатки повышена на 350°С.

Внутренние полости первых охлаждаемых лопаток были сформированы кварцевыми трубками подходящего диаметра. Затем появились лопатки с вставным дефлектором. В дальнейших разработках внутренние охлаждаемые полости лопаток формировались керамическими стержнями очень сложной геометрической формы. Внешний вид стержней, используемых для формирования охлаждаемых полостей, показан на рис. 9. Усложнение внутренних полостей лопаток позволяло снижать температуру материала лопаток и повышать температуру газов перед турбиной. Рост температуры газов перед турбиной при усложнении внутренних полостей охлаждения показан на рис. 7.

Рис. 8. Охлаждаемая (а ) и неохлаждаемая (б ) лопатки турбины

Рис. 9. Внешний вид керамических стержней для формирования внутренних полостей охлаждаемых лопаток

Рассмотрим более подробно технологию получения лопаток с проникающим (транспирационным) охлаждением, поскольку в ней сконцентрированы лучшие достижения в области создания керамических стержней особо сложной конструкции, разработки сплавов и технологии получения монокристаллов, а также в конструктивных особенностях самих лопаток. Для решения всего комплекса проблем потребовалось привлечение специалистов из многих лабораторий ВИАМ и ЦИАМ им. П.И. Баранова, а также заводских работников.

Формирование монокристаллической структуры в лопатках газовых турбин,

изготовленных из безуглеродистых жаропрочных сплавов,

Известно несколько схем проникающего (транспирационного) охлаждения: Lamilloy (фирма Allison Transmission, США), Transplay (фирма Rolls-Royce, Великобритания), Supercooling (фирма Pratt & Whitney, США).

Использование жаропрочных материалов с проникающей (транспирационной) системой охлаждения для изготовления деталей горячего тракта ГТД и ГТУ позволит создать стехиометрический двигатель, в котором температура газа в камере сгорания достигнет теоретической температуры горения топлива, а на входе в турбину 2200-2300 К. При одинаковой рабочей температуре для работы деталей с проникающей системой охлаждения (в силу ее эффективности) требуется меньшее (на 30-50%) количество охлаждающего воздуха, чем для работы деталей с традиционными видами охлаждения. Если же для охлаждения использовать одинаковое количество охлаждающего воздуха, то детали с проникающей системой охлаждения будут работать при более низкой температуре, что позволит увеличить (в 2-4 раза) их ресурс по сравнению с ресурсом деталей с другими системами охлаждения.

Разработаны деформируемые и литые жаропрочные материалы с проникающей системой охлаждения. Из деформируемых жаропрочных материалов изготовляют камеры сгорания и жаровые трубы, а из литых - сопловые и рабочие лопатки. По мнению зарубежных экспертов, именно материалы с проникающей системой охлаждения будут определять облик ГТД нового поколения.

В настоящее время существуют разнообразные конструкции систем проникающего охлаждения. Первая система, получившая название «Ламеллой», была разработана фирмой Allison Transmission и запатентована. Сначала материал с системой охлаждения «Ламеллой» изготавливали в виде листов (деформированный вариант), а в конце 1980-х гг. фирма разработала вариант литого монокристаллического материала с такой же системой охлаждения.

Необходимо отметить, что в новом литом материале с проникающей системой охлаждения успешно используются последние достижения в области:

Разработки конструкций эффективной проникающей системы охлаждения;

Создания сверхжаропрочных литейных сплавов;

Разработки технологии монокристаллического литья.

В ВИАМ работы по созданию материалов и деталей с проникающей системой охлаждения начаты в 1993 г. Первая оригинальная разработка была выполнена совместно с МГТУ им. Н.Э. Бауманаи получила название «Вихрепор» .

Для отработки технологии изготовления каналов и отверстий в тонких стенках с криволинейными поверхностями в ВИАМ и ЦИАМ им. П.И. Баранова создана конструкция имитационного трубчатого образца с системой аксиальных каналов прямоугольного сечения, а также входных и выходных отверстий (рис. 10).

Рис. 10. Имитационные трубчатые образцы с проникающей системой охлаждения:

а , б - образцы после литья и после механической обработки соответственно; в - закладной керамический элемент

Толщина стенок трубчатого образца переменная и изменяется в тех же пределах, что и в модельной лопатке газогенератора ВТ-68 конструкции ЦИАМ им. П.И. Баранова (от 3 (в корневом сечении) до 1,5 мм (в верхней части)). Разработана технология отливки такого образца с применением закладных керамических элементов, для изготовления которых, а также для модели трубчатого образца, спроектированы и изготовлены соответствующие пресс-формы.

Испытания образцов, проведенные в ЦИАМ им. П.И. Баранова, подтвердили эффективность проникающего охлаждения и перспективность его применения в лопатках двигателей следующего поколения.

Проникающая система охлаждения предполагает наличие в пере лопатки системы двух взаимосвязанных полостей:

Центральной - имеющей относительно простую форму;

Периферийной - представляющей собой разветвленные охлаждающие каналы в стенках лопатки, которые сообщаются с внутренней (центральной) полостью и имеют выход за пределы тела лопатки.

Для формирования каналов в стенках лопатки необходимы тонкие сложнопрофильные керамические стержни, изготовленные с высокой точностью. Использование такого стержня при литье лопаток должно обеспечить проникающую систему охлаждения лопатки - движение охлаждающего воздуха из центральной внутренней полости лопатки через отверстия в разветвленные, насыщенные штырьками каналы в стенках лопатки и далее через отверстия за пределы лопатки.

Требования, предъявляемые к конструкции лопатки:

Средняя толщина стенки

Диаметр отверстий подвода и выпуска воздуха 0,4-0,6 мм (шаг отверстий 4-6 мм);

Диаметр штырьков 0,6-0,8 мм (шаг штырьков 4-6 мм).

На основании этих данных можно сформулировать требования к керамическому стержню:

Толщина стержня 0,4-0,8 мм;

Диаметр штырьков 0,4-0,6 мм (формируют отверстия подвода и выпуска воздуха), шаг штырьков 4-6 мм;

Диаметр отверстий 0,6-0,8 мм (формируют штырьки), шаг отверстий 4-6 мм;

Длина стержня 50-100 мм;

Стержень должен быть химически инертным к металлическому расплаву.

Требования к прочности стержня, качеству поверхности, величине усадки, допусков и степени коробления такие же, как и для стандартных стержней.

Из ряда возможных схем охлаждения выбрана комбинированная схема, сочетающая струйный и проникающий способы охлаждения. Сущность предложенной схемы заключается в том, что охлаждающий воздух подается во внутреннюю полость лопатки и поступает в радиальные отверстия, соединенные с аксиальными каналами в профильной стенке лопатки. Столкновение воздушных струй с внутренней поверхностью горячей стенки обеспечивает струйное охлаждение. Затем воздух проникает через выходные отверстия на внешнюю горячую поверхность стенки, образуя защитную воздушную пленку (проникающее охлаждение). Струйное охлаждение зависит от скорости воздушных струй: чем выше скорость, тем эффективнее теплопередача между горячей стенкой и охлаждающим воздухом. Напротив, проникающее охлаждение тем эффективнее, чем ниже скорость просачивания воздуха через выходные отверстия. Эффективность проникающего охлаждения зависит от перепада давления воздуха и является функцией отношения суммарных площадей входных и выходных отверстий. По этой причине входные отверстия имеют меньший диаметр, чем выходные. Кроме того, чем тоньше горячая стенка, тем эффективнее проникающее охлаждение. Толщина горячей стенки составляет £0,5 мм.

Сочетание струйного и проникающего способов охлаждения является более эффективным по сравнению с применяемым в настоящее время пленочным охлаждением.

Практическая реализация предложенной схемы комбинированного охлаждения зависит от конструкции керамического стержня, оформляющего при литье радиальные входные и выходные отверстия, а также аксиальные каналы.

Предлагаемый составной керамический стержень состоит из основного стержня, оформляющего внутреннюю полость будущего изделия, и соединенных с ним специальным образом мини-стержней. Конструкция основного стержня определяется конструктивными особенностями внутренней полости изделия, а мини-стержни представляют собой керамические рамки прямоугольной или трапецеидальной формы. Внутри каждой рамки расположена тонкая продольная перегородка, которая с обеих сторон соединена перемычками с продольными стенками рамки, при этом оси перемычек смещены относительно друг друга. При кристаллизации изделия перегородка формирует канал в стенке будущего полого изделия, а перемычки - систему отверстий для подвода и выпуска охлаждающего воздуха. Геометрические размеры мини-стержней (диаметр и длина перемычек), расстояние между ними, площадь поперечного сечения центральной перегородки, толщина стенок рамки определяются габаритами отливаемого изделия, прежде всего, толщиной стенки полого изделия.

Экспериментальная рабочая лопатка высокотемпературного газогенератора,

изготовленная из монокристаллических сплавов ЖС32 или ЖС40,

с проникающей системой охлаждения

Экспериментальная рабочая лопатка с проникающим охлаждением разработана применительно к турбине газогенератора ВТ-68. Лопатка относительно небольших размеров: высота пера 46 мм, хорда 32 мм. Конструктивный облик лопатки определялся технологическими возможностями ее изготовления.

Специалистами ВИАМ и ЦИАМ им. П.И. Баранова предложено использовать составной керамический стержень, формирующий сложную систему каналов и отверстий в отливке лопатки после ее направленной кристаллизации. На центральный стержень устанавливают дополнительные стержни (закладные элементы) по количеству радиальных каналов, определяемому тепловым и гидравлическим расчетом. Закладные элементы позволяют получать отливку с радиальными каналами в стенке и отверстиями входа/выхода воздуха в эти каналы. Технология применения закладных элементов отрабатывалась при изготовлении полых цилиндрических образцов. Закладные элементы выполнены минимально возможного размера. При использовании этой технологии удалось расположить в лопатке только 6 радиальных каналов размером 2×0,5 мм и шагом ~5 мм. Рамочная конструкция обеспечивает жесткость и формоустойчивость мини-стержней при обжиге и литье, поэтому сводятся к минимуму такие дефекты, как коробление при обжиге, обламывание тонких перемычек при заливке расплава и его направленной кристаллизации. Таким образом, конструкция составного стержня обеспечивает в процессе литья формирование в стенке лопатки тонких каналов и связанных с ними входных и выходных отверстий для циркуляции воздуха, создавая тем самым высокоэффективную систему охлаждения .

Разработаны технологические режимы, по которым получена опытная партия лопаток (рис. 11).

Рис. 11. Температурные параметры процесса получения лопаток с проникающей системой охлаждения: ─ температура кристаллизатора (Al); ─ температура расплава в тигле; ─ , ─ печь подогрева форм (верх и низ)

Десять полученных лопаток подвергали тепловым испытаниям в ЦИАМ им. П.И. Баранова на установке У-276 . Лопатка спроектирована применительно к турбине высокотемпературного газогенератора ВТ-68. Внешний вид лопатки и часть ее поперечного сечения показаны на рис. 12. Микроструктура данной лопатки представлена на рис. 13.

Характерное значение расстояния между осями дендритов первого порядка составляет 120 мкм. Результаты испытаний показали, что средняя часть лопатки охлаждается очень эффективно. Достигнут коэффициент охлаждения (θ), равный 0,78-0,8. Коэффициент охлаждения связывает температуры газа перед турбиной (Т г), материала лопатки (Т л) и охлаждающего воздуха от компрессора (Т в) .

Рис. 12. Лопатка (спинка и корыто) (а ) и часть ее сечения (б ), на котором видны каналы проникающего охлаждения

Рис. 13. Микроструктура (×100) пера лопатки в поперечном сечении (характерное значение междендритного расстояния между осями первого порядка λ =120 мкм):

а - у входной кромки (верх); б -со стороны спинки (середина); в - у выходной кромки (низ)

Для оценки свойств двустенных лопаток разработаны специальные двустенные образцы, к которым после прожига отверстий (диаметром 0,5 мм) электроискровым способом и механической обработки припаивались захваты, позволяющие провести испытания на термостойкость. Жаропрочный сплав для отливки тонкостенных образцов, имитирующих двойную стенку лопатки с проникающим охлаждением, должен удовлетворять ряду требований:

Обладать высокими физико-механическими свойствами, в частности высоким сопротивлением термической усталости;

Быть склонен к формированию монокристаллической структуры в тонких (0,5 мм) сечениях;

Быть паспортизован и иметь невысокую стоимость.

С учетом этих требований проанализированы три жаропрочных никелевых сплава: ЖС32, ЖС36 и ЖС40, химический состав которых приведен в табл. 3.

В состав сплава ЖС32 входит углерод, который образует монокарбиды Ti, Ta, Nb. Известно, что карбиды являются очагами зарождения трещин, поэтому сплав ЖС32 обладает пониженным сопротивлением усталости, а также является дорогостоящим из-за высокого содержания рения.

Сплав ЖС36 не содержит углерода, хорошо формирует монокристаллическую структуру в тонких сечениях, более дешевый по сравнению со сплавом ЖС32.

Безуглеродистый сплав ЖС40 обладает высоким сопротивлением термоусталостному разрушению, относительно недорогой, однако требует сложной термической обработки.

Исходя из рассмотренных особенностей сплавов, для изготовления образцов выбран сплав ЖС36.

Для отливки двустенных монокристаллических образцов (рис. 14) использовали тугоплавкие затравки с кристаллографической ориентацией . Отливка образцов осуществлена на установках В-1790 и УВНК-9 с компьютерным управлением. В зависимости от установки, на которой проводили направленную кристаллизацию пластин, разработаны различные варианты сборки моделей в литейные блоки. Плоские пластины собирали по 6 шт. в блоке для установки В-1790 и по 9 шт. - для УВНК-9.

Рис. 14. Блоки двустенных монокристаллических образцов, имитирующих стенку лопатки с проникающим охлаждением

Керамический стержень из полученных образцов удаляли в бифториде калия. Растрав внутренней поверхности после операции удаления стержней не превышал
30 мкм.

В ЦИАМ им. П.И. Баранова проведены испытания на термическую усталость охлаждаемых образцов с перфорацией и без нее при следующих параметрах цикла: 1000⇄400°С, при растягивающем напряжении 196,2 и 98,1 МПа соответственно.

Испытания носили сравнительный характер с целью выяснения влияния перфорации образцов, имитирующих двойную стенку лопатки с проникающим охлаждением, на их термоусталостную прочность.

Долговечность двух перфорированных образцов составила 960 и 1157 циклов, тогда как образец без перфорации выдержал 3056 циклов. По расчетам ЦИАМ им. П.И. Баранова циклическая долговечность образца с отверстиями (коэффициент концентрации напряжений равен 2) при данном «жестком» цикле составляет 999 циклов и совпадает с экспериментальными значениями. Расчетная циклическая долговечность образцов без перфорации равна 12000 циклов, что в 4 раза превышает экспериментальные значения. Причина такого расхождения неизвестна.

Установлено, что термоусталостные трещины зарождаются на концентраторах напряжений на внутренней стенке образцов. В перфорированных образцах таковыми являются острые кромки отверстий и шероховатость, образовавшаяся в результате растрава. Кромки отверстий - более сильные концентраторы напряжений, поэтому они являются первичными очагами зарождения микротрещин, тогда как шероховатость внутренней поверхности служит источником множества вторичных очагов. В дальнейшем распространение микротрещин происходит с возрастанием скорости по мере приближения к месту долома. В сплошных образцах происходит многоочаговое зарождение микротрещин на шероховатостях внутренней поверхности, образовавшихся в результате растрава.

Конструктивная и технологическая проработка экспериментальной рабочей лопатки с использованием жестких стержней для организации системы проникающего охлаждения показала, что в лопатке относительно небольшого размера эффективность этого способа охлаждения не реализуется в полной мере, так как поместить нужное количество мини-стержней в объеме лопатки технически невозможно.

Разрабатываемое в ВИАМ второе направление технологии отливки лопаток на базе «гибких» керамических лент позволит качественно улучшить характеристики рабочих лопаток с проникающим охлаждением и является более перспективным.

Составной керамический стержень в случае применения «гибких» керамических лент также состоит из основного стержня, изготовленного по традиционной технологии, и дополнительного стержня в форме тонкой пластины с поверхностным рельефом и системой отверстий, эквидистантно огибающей профиль основного стержня. Основной и дополнительный стержни соединены клеящей суспензией . Процесс изготовления сложного керамического стержня включает следующие операции:

Изготовление основного керамического стержня из смеси огнеупорных порошков (заданного гранулометрического состава) и термопластификатора, прессование расплавленной стержневой массы и обжиг в засыпке адсорбента или керамическом драйере;

Прокатка гладкой ленты из смеси огнеупорных порошков (определенного гранулометрического состава) и полимерного связующего (толщина и ширина ленты зависят от геометрических размеров основного стержня);

Нанесение на поверхность ленты необходимого рельефа методом штамповки или прокатки в фигурных валках. Изготовленная таким образом рельефная лента в необожженном состоянии обладает достаточно хорошей гибкостью благодаря присутствию в ней полимерного связующего. Минимальный радиус кривизны при изгибе ленты без появления трещин и надрывов определяется ее толщиной, плотностью нанесения элементов рельефа, объемным наполнением огнеупорных порошков и типом полимерного связующего. Поскольку при прокатке площадь контакта валков с поверхностью ленты мала, то адгезионное сцепление в этом случае незначительно и можно получить ленту большой длины и ширины без повреждения элементов поверхностного рельефа;

Раскрой рельефной ленты на отдельные заготовки необходимых форм и размеров, которые и используются как дополнительные «гибкие» стержни;

Изготовление промежуточной модели на основном стержне;

Профилирование необожженного дополнительного стержня по контуру промежуточной модели с обеспечением плотного контакта и соединения элементов рельефа с криволинейной поверхностью основного стержня. Эта операция осуществляется в обжимном штампе либо по всей поверхности основного стержня, либо в определенных местах. Во избежание повреждения выступающих элементов рельефа при изгибе дополнительного стержня, предусмотрено изготовление специальных пазов на профильных поверхностях штампа. Этим достигается постоянство зазора (0,5-0,8 мм) между основным и дополнительным стержнем, что гарантирует получение необходимой геометрической формы составного стержня с заданной точностью;

Удаление промежуточной модели;

Совместный высокотемпературный обжиг основного и соединенного с ним дополнительного стержня. В процессе обжига происходит выгорание связующего, спекание порошковых частиц и превращение заготовки в сложный единый стержень. При обжиге происходит спекание дополнительного стержня в местах контакта элементов рельефа с поверхностью основного стержня. Точное соединение возможно только в том случае, если температурные коэффициенты линейного расширения и усадка обоих элементов составного стержня близки. Обжиг составного стержня для обеспечения стабильности размеров следует производить в керамическом драйере.

Для практической отработки технологии получения монокристаллических лопаток с проникающей системой охлаждения с использованием гибких керамических пленок была выбрана лопатка первой ступени энергетической турбины ГТЭ-25.

Основной стержень изготавливали по серийной технологии из смеси огнеупорных порошков Al 2 O 3 . Дополнительный стержень изготавливали в две стадии:

Прокаткой получали гладкую ленту из смеси порошков Аl 2 О 3 заданного гранулометрического состава и полимерного связующего;

Методом прессования наносили двухсторонний рельеф. В данном случае элементы рельефа имели вид штырьков высотой 0,9 мм и диаметром 0,8 мм; толщина ленты
0,7 мм; диаметр отверстий 0,9 мм. Далее вырезали заготовку размером 50×50 мм.

Из-за отсутствия необходимой оснастки разработчики вынуждены были осуществить профилирование и соединение плоской заготовки с основным стержнем вручную. Склеивание основного стержня и заготовки осуществлено с помощью клеящей суспензии на основе ЭТС-40. Профилирование проводили только вокруг входной кромки основного стержня в его верхней части. Далее проводили высокотемпературный обжиг составного стержня при 1300-1350°С.

Прокаленный составной стержень устанавливали в модельную пресс-форму и по стандартной технологии изготавливали восковую модель. Торцы штырьков полностью очищали от модельной массы. Затем по промышленной технологии изготавливали керамическую оболочковую форму, которую после прокалки заливали на установке В-1790 жаропрочным сплавом ЖС40. Плавку, заливку и направленную кристаллизацию жаропрочного сплава проводили по режимам, обеспечивающим заполнение тонких каналов и получение монокристаллической структуры в отливке. Из полученной отливки по заводской технологии в бифториде калия удаляли стержень. Отлита опытная партия лопаток, три лопатки из которой отправлены в соответствии с контрактом №150-96-191-840 на фирму HOWMET. В верхней части со стороны входной кромки лопатки имели двойные стенки (рис. 15). На фирме HOWMET лопатки подробно исследованы визуально, с помощью методов компьютерной томографии и металлографии. Установлено, что лопатки имеют макро- и микроструктуру (рис. 15, в ), типичную для монокристаллов с КГО . Взаимодействие между металлом и формой, а также между металлом и стержнем отсутствует. Отмечен значительный разброс значений толщины стенки, что вызвано применением временной оснастки и ручной сборки составного стержня. В местах контакта дополнительного стержня с основным стержнем заусенцев не обнаружено, т. е. в местах контакта нет трещин. Таким образом, в ВИАМ разработаны и успешно опробованы технологии двойного стержня и монокристаллического литья, несмотря на необходимость дальнейших исследований по достижению равномерной толщины стенок профиля .

Рис. 15. Лопатка ГТЭ-25 с дополнительной охлаждающей полостью в верхней части входной кромки, сформированной по технологии с применением «гибкого» стержня:

а - общий вид; б , в - сечения (×5 и ×32 соответственно)

В ЦИАМ им. П.И. Баранова лопатки с дополнительными полостями охлаждения, сформированными по технологии «гибких» стержней, не испытывали, однако на основании испытаний лопаток с закладными элементами в работе сделан вывод о еще большей перспективности (в смысле улучшения охлаждения) лопаток, получаемых с использованием технологии «гибких» стержней.

Выводы

На основании анализа научных направлений развития авиационных двигателей сделан вывод о перспективности применения лопаток с проникающим (транспирационным) охлаждением, которые определят облик двигателя нового поколения.

Разработаны научные подходы к созданию лопаток с транспирационным охлаждением: организация охлаждения с помощью «закладных» элементов и применения «гибких» стержней.

Создана уникальная опытно-промышленная технологии получения охлаждаемых лопаток принципиально новой конструкции, которая включает достижения трех основных направлений развития высокотемпературных материалов в области:

Создания безуглеродистых ренийсодержащих сплавов;

Технологии монокристаллического литья с заданными кристаллографической ориентацией и размером структурных составляющих;

Создания конструктивных схем охлаждения, обеспечивающих коэффициенты охлаждения ≥0,8.

Отработаны основные температурно-скоростные параметры получения монокристаллических трубчатых, а также полых прямоугольных образцов, лопаток для изделия «88» с закладными элементами, лопаток типа ГТН-25 с «гибкими» стержнями на входной кромке и модельных лопаток с дополнительными охлаждающими полостями на корыте и спинке для перспективных изделий. Получена опытная партия деталей всех вышеперечисленных наименований.

Лопатки с закладными элементами прошли испытания в ЦИАМ им. П.И. Баранова на установке У-276. Достигнута величина коэффициента охлаждения 0,78-0,8, что позволит создать стехиометрическийдвигатель с температурой газа перед турбиной, приближающейся к теоретически возможной температуре сгорания топлива.

Исследованы структура и КГО полученных деталей с транспирационным охлаждением. Отклонение кристаллографической ориентации всех деталей находится в пределах 10 град от КГО . Расстояние между осями дендритов первого порядка в сечении пера составляет 120-150 мкм. Монокристаллическая структура формируется во всех конструктивных элементах лопаток.

Получение монокристаллических лопаток с проникающим (транспирационным) охлаждением является уникальным достижением литейной технологии.

В настоящее время идет бурное развитие высоких технологий, в частности развитие аддитивных технологий производства разнообразных деталей, которое может в корне изменить всю существующую систему производственных отношений.

Аддитивные технологии - комплекс принципиально новых производственных процессов, в которых изготовление изделия происходит путем добавления (англ. Add - добавлять) материала, в отличие от традиционных технологий, где деталь создается методом удаления лишнего.

Аддитивные технологии открывают фантастические возможности для получения лопаток, в том числе с проникающим (транспирационным) охлаждением. При этом не требуется использования керамических форм и ажурных стержней со сложной технологией производства, а также литейного оборудования с высоким энергопотреблением. Академик Е.Н. Каблов в одной из своих статей , затрагивая тему аддитивных технологий, пишет, что хотел бы «напечатать» целый самолет (с помощью 3D-принтера).

В ВИАМ по аддитивной технологии уже изготавливают детали сложной геометрической формы (например, завихритель топлива камеры сгорания современного двигателя).

Применительно к лопаткам ГТД целесообразно использовать часть (например, замок) монокристаллической лопатки и, используя ее как затравку, эпитаксиальным наращиванием слоев жаропрочного сплава (путем нанесения по заданной программе капель или порошков) получать детали с заданными полостями и каналами внутренней полости без использования керамических форм и стержней.

В ВИАМ эта задача еще не решена. Однако в США имеется патент , согласно которому получают лопатки с проникающей системой охлаждения (рис. 16) из интерметаллидного сплава.

Рис. 16. Схема лопатки из интерметаллидного сплава, полученной по аддитивной технологии согласно пат. 5312584 US

Большое количество молодых талантливых специалистов, пришедших работать в ВИАМ, и то внимание, которое уделяется развитию аддитивных технологий, позволяют надеяться на успешное решение задачи получения лопаток ГТД (в том числе с проникающим охлаждением).

Работа выполнена в рамках реализации комплексного научного направления 9.5. «Направленная кристаллизация (с переменным управляемым градиентом) высокотемпературных жаропрочных сплавов» («Стратегические направления развития материалов и технологий их переработки на период до 2030 года») .


ЛИТЕРАТУРА REFERENCE LIST

1. Литые лопатки газотурбинных двигателей: сплавы, технологии, покрытия / под общ. ред. Е.Н. Каблова. 2-е изд. М.: Наука, 2006. 632 с.
2. Каблов Е.Н., Голубовский Е.Р. Жаропрочность никелевых сплавов: учеб. пособие. М.: Машиностроение, 1998. 464 с.
3. Курц В., Зам П.Р. Направленная кристаллизация эвтектических материалов. М.: Металлургия, 1980. С. 91–96.
4. Эвтектический сплав на основе никеля: а. с. 1111500; опубл. 09.06.83.
5. Сплав на основе никеля: а. с. 1358425; опубл. 08.08.87.
6. Кишкин С.Т., Петрушин Н.В., Светлов И.Л. Эвтектические жаропрочные сплавы // Авиационные материалы на рубеже ХХ–ХХI веков: науч.-технич. сб. М.: ВИАМ, 1994. С. 252–258.
7. Bibring H. Conception et etude d eutectiques orientes fortement solicites en temperature et en contraite // Ann. Chim. 1980. V. 5. №2–3. P. 111–138.

9. СР. 1.2.010–84. Сертификат на сплав ВКЛС20. М.: ВИАМ, 1984.
10. Герасимов В.В., Демонис И.М. Формирование композиционной структуры в эвтектических сплавах при получении лопаток ГТД // Труды ВИАМ: электрон. науч.-технич. журн. 2013. №6. Ст. 01. URL: http://www..02.2014).
11. Вестбрук Д. Исследования и перспективы применения интерметаллических соединений // Металловедение и термическая обработка. 1971. №4. С. 74–80.
12. Корнилов И.И. Металлиды – материалы с уникальными свойствами // Вестник АН СССР. 1970. №12. С. 30–33.
13. Химический энциклопедический словарь / под ред. И.Л. Кнунянц. М.: Советская энциклопедия, 1983. 792с.
14. Каблов Е.Н. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года» // Авиационные материалы и технологии. 2015. №1 (34). С. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33
15. Каблов Е.Н., Бунтушкин В.П., Базылева О.А. Литые лопатки из интерметаллидов никеля (Ni3Al) для высокотемпературных газовых турбин // Конверсия в машиностроении. 2004. №4. С. 57–59.
16. Оспенникова О.Г. Стратегия развития жаропрочных сплавов и сталей специального назначения, защитных и теплозащитных покрытий // Авиационные материалы и технологии. 2012. №S. C. 19–36.
17. Герасимов В.В., Петрушин Н.В., Висик Е.М. Усовершенствование состава и технология литья монокристаллических лопаток из жаропрочного интерметаллидного сплава // Труды ВИАМ: электрон. науч.-технич. журн. 2015. №3. Ст. 01. URL: http://www..04.2015). DOI: 10.18577/2307-6046-2015-0-3-1-1.
18. Каблов Е.Н., Ломберг Б.С., Оспенникова О.Г. Создание современных жаропрочных материалов и технологий их производства для авиационного двигателестроения // Крылья Родины. 2012. №3–4. С. 34–38.
19. Каблов Е.Н., Петрушин Н.В. Компьютерный метод конструирования литейных жаропрочных никелевых сплавов // Литейные жаропрочные сплавы. Эффект С.Т. Кишкина. М.: Наука, 2006. С. 56–78.
20. Полая лопатка «Вихрепор»: пат. 2078946 Рос. Федерация; опубл. 13.05.96.

22. Каблов Е.Н., Светлов И.Л., Демонис И.М., Фоломейкин Ю.И. Монокристаллические лопатки с транспирационным охлаждением для высокотемпературных газотурбинных двигателей // Авиационные материалы и технологии: науч.-технич. сб. М.: ВИАМ, 2003. Вып. Высокожаропрочные материалы для современных и перспективных газотурбинных двигателей и прогрессивные технологии их производства. С. 24–33.
23. Скибин В.А., Солонин В.И., Дульнев А.А. Перспективы развития газотурбинных двигателей // Газотурбинные технологии. 2000. №2. С. 4–14.
24. Герасимов В.В., Висик Е.М., Колядов Е.В. О неиспользованных резервах направленной кристаллизации в повышении эксплуатационных характеристик деталей ГТД и ГТУ // Литейное производство. 2013. №9. С. 30–32.
25. Составной керамический стержень: пат. 2094163 Рос. Федерация; опубл. 27.10.97.

27. Каблов Е.Н. Чтобы собрать самолет по атомам // Индустрия. Инженерная газета. 2015. №12. С. 1–2.

1. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytiya / pod obshh. red. E.N. Kablova. 2-e izd. . M.: Nauka, 2006. 632 s.
2. Kablov E.N., Golubovskij E.R. Zharoprochnost nikelevyh splavov: ucheb. posobie . M.: Mashinostroenie, 1998. 464 s.
3. Kurc V., Zam P.R. Napravlennaya kristallizaciya evtekticheskih materialov . M.: Metallurgiya, 1980. S. 91–96.
4. Evtekticheskij splav na osnove nikelya: a. s. 1111500 ; opubl. 09.06.83.
5. Splav na osnove nikelya: a. s. 1358425 ; opubl. 08.08.87.
6. Kishkin S.T., Petrushin N.V., Svetlov I.L. Evtekticheskie zharoprochnye splavy // Aviacionnye materialy na rubezhe XX–XXI vekov: nauch.-tehnich. sb. M.: VIAM, 1994. S. 252–258.
7. Bibring H. Conception et etude d" eutectiques orientes fortement solicites en temperature et en contraite // Ann. Chim. 1980. V. 5. №2–3. P. 111–138.
8. Khan T. Further Assessment and Improvement of High Strength y/y`-NbC. Composites for Advanced Turbine Blades // Proc. Conf. On in Situ Composites III. 1979. P. 378–389.
9. SR. 1.2.010–84. Sertifikat na splav VKLS20 . M.: VIAM, 1984.
10. Gerasimov V.V., Demonis I.M. Formirovanie kompozicionnoj struktury v evtekticheskih splavah pri poluchenii lopatok GTD // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №6. St. 01. Available at: http://www..
11. Vestbruk D. Issledovaniya i perspektivy primeneniya intermetallicheskih soedinenij // Metallovedenie i termicheskaya obrabotka. 1971. №4. S. 74–80.
12. Kornilov I.I. Metallidy – materialy s unikal"nymi svojstvami // Vestnik AN SSSR. 1970. №12. S. 30–33.
13. Himicheskij enciklopedicheskij slovar / pod red. I.L. Knunyanc . M.: Sovetskaya enciklopediya, 1983. 792s.
14. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Kablov E.N., Buntushkin V.P., Bazyleva O.A. Litye lopatki iz intermetallidov nikelya (Ni3Al) dlya vysokotemperaturnyh gazovyh turbin // Konversiya v mashinostroenii. 2004. №4. S. 57–59.
16. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
17. Gerasimov V.V., Petrushin N.V., Visik E.M. Usovershenstvovanie sostava i tehnologiya lit"ya monokristallicheskih lopatok iz zharoprochnogo intermetallidnogo splava // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 01. Available at: http://www.. DOI: 10.18577/2307-6046-2015-0-3-1-1.
18. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya // Krylya Rodiny. 2012. №3–4. S. 34–38.
19. Kablov E.N., Petrushin N.V. Kompyuternyj metod konstruirovaniya litejnyh zharoprochnyh nikelevyh splavov // Litejnye zharoprochnye splavy. Effekt S.T. Kishkina. M.: Nauka, 2006. S. 56–78.
20. Polaya lopatka «Vihrepor»: pat. 2078946 Ros. Federaciya ; opubl. 13.05.96.
21. Single-cast high-temperature, thin wall structure and method of making the same: pat. 5295530 US; publ. 22.03.94.
22. Kablov E.N., Svetlov I.L., Demonis I.M., Folomejkin Yu.I. Monokristallicheskie lopatki s transpiracionnym ohlazhdeniem dlya vysokotemperaturnyh gazoturbinnyh dvigatelej // Aviacionnye materialy i tehnologii: nauch.-tehnich. sb. M.: VIAM, 2003. Vyp. Vysokozharoprochnye materialy dlya sovremennyh i perspektivnyh gazoturbinnyh dvigatelej i progressivnye tehnologii ih proizvodstva. S. 24–33.
23. Skibin V.A., Solonin V.I., Dulnev A.A. Perspektivy razvitiya gazoturbinnyh dvigatelej // Gazoturbinnye tehnologii. 2000. №2. S. 4–14.
24. Gerasimov V.V., Visik E.M., Kolyadov E.V. O neispolzovannyh rezervah napravlennoj kristallizacii v povyshenii ekspluatacionnyh harakteristik detalej GTD i GTU // Litejnoe proizvodstvo. 2013. №9. S. 30–32.
25. Sostavnoj keramicheskij sterzhen: pat. 2094163 Ros. Federaciya ; opubl. 27.10.97.
26. Bouse G.K. and Sikkenga B. Characterization of Double Walled Single Crystal Turbine Blades From Russian VIAM Institute // Technical Report №1058/A. Howmet Corporation. 1997. 11 p.
27. Kablov E.N. Chtoby sobrat samolet po atomam // Industriya. Inzhenernaya gazeta. 2015. №12. S. 1–2.
28. Moldless/coreless single crystal castings of nickel-aluminide: pat. 5312584 US; publ. 17.05.94.
29. Veys J.M., Mevrel R. Influence of Protective Coatings on the Mechanical Properties of CMSX-2 and Cotac 784 // Materials Science and Engineering. 1987. №88. P. 253–260.

Вы можете оставить комментарий к статье. Для этого необходимо зарегистрироваться на сайте.

ПАО «Уфимское моторостроительное производственное объединение» (УМПО) запустило на участке перспективного литья лопаток самую крупную в Европе плавильно-заливочную установку лопаточного литья. Размеры оборудования — 9 метров в ширину, 12 — в длину и 8,5 в высоту. Установка предназначена для изготовления заготовок в ходе производства деталей двигателя перспективного гражданского самолета МС-21. Новое оборудование позволяет плавить от 20 до 150 кг специального сплава, что даёт возможности для заливки большого количества лопаток всего за один цикл.

Новая ПЗУ будет активно задействована в реализации совместного проекта УМПО и Московского института стали и сплавов (НИТУ «МИСиС») по разработке и внедрению ресурсоэффективной технологии изготовления пустотелых литых турбинных лопаток. Она будет применяться в производстве не только авиационных газотурбинных двигателей, но и станций перекачки нефти и газа, — рассказал куратор перспективной программы, заместитель начальника управления технического развития и перевооружения Павел Алинкин.

В начале ноября 2015 года, данный проект выиграл субсидию в конкурсе Министерства образования РФ по Постановлению № 218 Правительства РФ. Грант поможет УМПО сократить сроки внедрения инновации в опытное и серийное производство.

Объединение имеет богатый опыт сотрудничества с вузами России по 218-му Постановлению. В настоящее время предприятие работает над еще двумя технологиями: по производству тонкостенных крупногабаритных титановых отливок (с МИСиС и УГАТУ) и деталей из жаропрочного алюминия (с УГАТУ и другими вузами). Два проекта — также с МИСиС и УГАТУ — успешно завершены, их результаты в настоящее время внедрены в производство. Это технология изготовления опоры турбины вертолетного двигателя ВК-2500 и производство моноколес и блисков методом линейной сварки трением.

Впервые в России удалось отлить (метод называется литье по выплавляемым моделям) из сплава алюминида титана инновационные лопатки, которые вдвое легче, чем их аналоги на основе никеля. Технология изготовления новых лопаток уже запущена в производство на Уфимском моторостроительном производственном объединении (ПАО «УМПО»). Ожидается, что лопатки из интерметаллида титана будут использоваться в новом российском двигателе ПД-14 для российского ближне-среднемагистрального пассажирского самолета МС-21. Снижая массу воздушного судна, новая разработка позволит перевозить больше пассажиров с меньшим расходом топлива.

«Сегодня изготовление изделий из алюминида титана очень востребовано в гражданской авиации. Наша разработка не уступает мировым аналогам из Европы и США. Очень важно, что это полностью отечественная разработка: лопатки могут производиться на отечественном оборудовании и из отечественных материалов», — рассказал в интервью руководитель исследовательской группы, заведующий кафедрой «Технологии литейных процессов и художественной обработки материалов» НИТУ «МИСиС», профессор Владимир Белов. Переход на новую технологию позволит заметно снизить массу двигателя, в результате станет возможным перевозить больше пассажиров или грузов на длительные расстояния. Кроме того, новая технология изготовления лопаток значительно уменьшит действующее центробежное напряжение в компрессоре и турбинах авиадвигателей, снизит инерцию турбин и компрессоров, а тем самым позволит уменьшить расход топлива, выбросы в атмосферу парниковых газов.

Введение

Производство лопаток газотурбинных двигателей занимает особое место в современном машиностроении. Это обусловлено следующими особенностями изготовления лопаток.
1. Ответственным назначением лопаток в двигателе. Лопатки в решающей степени определяют надёжность и безотказность работы газотурбинных двигателей. Ресурс работы двигателя определяется, как правило, работоспособностью лопаток. В связи с этим, технология изготовления и контроля лопаток должна обеспечивать стабильность качества их изготовления и исключать возможность установки в двигателе лопаток с отклонениями по геометрическим размерам, качеству поверхности, с металлургическими и иными дефектами.
2. Сложностью геометрических форм и требованиями высокой точности изготовления лопаток. Перо лопатки представляет собой лопасть переменного сечения, ограниченную поверхностями сложного очертания и точно ориентированную в пространстве по отношению к замку. Точность изготовления пера находится в пределах 0,05ч0,15 мм. Замковую часть, при помощи которой лопатки крепятся к дискам, изготовляют с точностью 0,01-0,02 мм.
3. Массовостью изготовления лопаток. Современный двигатель с осевым компрессором насчитывает до 2000 лопаток. В связи с этим даже при выпуске опытных образцов двигателей изготовление лопаток носит серийный характер.
4. Применение дорогостоящих и дефицитных материалов для изготовления лопаток. В связи с этим технологический процесс производства лопаток должен гарантировать минимальный процент брака.
5. Плохой обрабатываемостью материалов, применяемых для изготовления лопаток. Лопатки турбины изготовляют из сплавов на никелевой основе, имеющих относительно большую твёрдость при высокой вязкости.
Сочетание указанных факторов и определило специфичность производства лопаток.
Производство лопаток совершенствуется и в настоящее время, главным образом, в направлении механизации и автоматизации. Исключение ручного труда позволяет не только сократить трудоемкость, но и повысить качество изготовления лопаток.
Значительные успехи достигнуты за последнее время в области интенсификации режимов обработки жаропрочных и титановых сталей и сплавов, а также в области изготовления керамических лопаток.

1. Назначение и конструкции сопловых лопаток

Направляющие и рабочие лопатки по своему служебному назначению являются основными деталями паровых и как лопаточных двигателей. В совокупности они образуют проточную часть турбины, в которой происходит преобразование тепловой энергии рабочей среды (пара, газа) в механиче¬скую работу вращающегося ротора. Совокупность направляющих и рабочих лопаток называют лопаточным аппаратом турбины.
Лопаточный аппарат является самой дорогой и наиболее ответственной частью турбины. Экономичность турбины — ее к. п. д.—в первую очередь зависит от качества выполнения лопаточного аппарата. Трудоемкость изготовления лопаток современной мощной паровой турбины достигает 42—45% от общей трудоемкости изготовления всех ее деталей.
Лопатки турбин работают в очень тяжелых условиях. Они подвергаются сильному воздействию центробежной силы, изги¬бающему и пульсирующему воздействию рабочей среды, вызывающему вибрации лопаток, в которых легко могут быть возбуждены резонансные колебания. Все это происходит в первых ступенях турбины при высоких температурах рабочей среды, воздействующей на лопатки как химически, так и механически; в последних ступенях имеет место разъедание (эрозия) входных кромок лопаток частицами воды, содержащейся во влажном паре.
Указанные условия требуют особо тщательного подхода к вопросам конструирования лопаток, выбора материалов для них и организации их производства. Особо тщательно следует выполнять все образующие формы лопаток размеры и соблюдать установленные для их изготовления технические требова¬ния. Отклонения от чертежей могут вызвать в лопатках дополнительные напряжения, не предусмотренные расчетами, что, в свою очередь, может привести к серьезной аварии турбин.
Сопловой аппарат первой ступени омывается газом, температура которого с учетом неравномерности после камеры сгорания может на 100 -120 °С превышать среднемассовую перед турбиной. Поэтому в высокотемпературных газовых турбинах его охлаждают весьма интенсивно. Под среднемассовой температурой перед турбиной следует считать средневзвешенную температуру торможения непосредственно перед рабочими лопатками. Это позволяет более свободно расходовать воздух на охлаждение сопловых лопаток первой ступени, однако при этом должны быть обеспечены малые аэродинамические потери в самом сопловом аппарате и максимально равномерный по температуре, давлению и направлению поток непосредственно перед рабочими лопатками этой ступени.
Сопловые лопатки обычно слабо закручены по радиусу и поэтому применяемые системы охлаждения могут быть реализованы практически при всех законах закрутки ступеней.
Сопловой аппарат первой ступени турбины обычно выполняют разборным с двухопорными соплами, так как он воспринимает наибольший перепад давления, но с необходимой свободой термического расширения (рис. 1, а). Все новые имеют охлаждаемые сопловые лопатки с выпуском воздуха большей частью в выходную кромку. Этот воздух, смешиваясь с основным потоком газа, работает в последующих венцах турбины, поэтому его расход не наносит большого ущерба для экономичности турбины. Полые охлаждаемые сопловые лопатки изготовляют точным литьем (по выплавляемым моделям). Первая ступень турбины агрегата ГТК-16 ТМЗ имеет сварно-паяные лопатки.
Для сопловых аппаратов последующих ступеней в стационарной практике применяют консольно- закрепленные лопатки (рис.1, б). На турбомоторном заводе их объединяют в пакеты (сегменты) по три-четыре штуки, а между пакетами оставляют

Конструкции соловых лопаток

а)

б)

в)

а - двухопорная воздухоохлаждаемая сопловая лопатка; б - консольно закрепленная
направляющая лопатка турбины; в - регулируемый сопловой аппарат со сферическими ограничивающими поверхностями.

Рис. 1

Сечения профильной части охлаждаемых сопловых лопаток

а - конвективного охлаждения с дефлектором; б - конвективно-пленочного охлаждения; в - проникающего охлаждения; г - внутристеночного охлаждения;
1 - дефлектор; 2 - литая лопатка; 3 - пористое покрытие; 4 - теплозащитное покрытие.
Рис. 2

Неразборные сопловые аппараты применяют в виде сварных диафрагм. Для них требуются специальные конструктивные мероприятия по обеспечению термоэластичности и для избежания поводок. Предпочтительны полые и тонкостенные диафрагмы без горизонтального разъема.
Неохлаждаемые сопловые лопатки также желательно выполнять полыми для снижения термических напряжений в выходных кромках при внезапных остановах. Во всех случаях необходимо сводить к минимуму теплоотвод от сопловых лопаток к крепящим их деталям статора.
Сопловые аппараты двух и трехвальных требуют жесткого допуска на площадь выходного сечения первой ступени каждой турбины для обеспечения расчетного распределения теплоперепадов между ними. В рабочем состоянии площадь у турбин высокого и низкого давлений увеличивается на разную величину.
Особого внимания в конструкции требуют регулируемые сопловые аппараты. Для уменьшения радиальных зазоров по концам лопаток примыкающие к поворотным направляющим лопаткам меридиональные поверхности должны быть выполнены по сферам, описанным радиусами из центра, расположенного на пересечении оси цапф лопатки с осью турбины (рис. 1, в). Упрощение конструкции достигается при сравнительно небольшом числе широких лопаток, однако при этом сильнее меняется осевой зазор между соп¬ловыми и рабочими лопатками при их повороте. Необходимый рабочий диапазон изменения площади соплового аппарата составляет ±10%.
Среди различных конструкций охлаждаемых сопловых лопаток более других распространены дефлекторные лопатки (рис.2, а). Наружную силовую оболочку изготовляют обычно точным литьем. Встав¬ной тонкостенный дефлектор позволяет организовать хорошее конвективное охлаждение стенок и струйное охлаждение изнутри входной кромки лопатки. Охладитель покидает лопатку чаще всего через выходную кромку, выполняемую полой, или рядом с ней. В таких лопатках осуществлено движение охладителя поперек оси лопатки. В ранних конструкциях охлаждаемых сопловых аппаратов первой сту¬пени использовали продольное течение охладителя без выпуска воздуха в кромку. Сейчас такие конструкции из-за малого охлаждающего эффекта применяют редко и только для второй или третьей ступени.
Преимущества лопатки со вставным дефлектором при попереч¬ном сечении охладителя:
сближение коэффициентов теплоотдачи воздуха и газа, что дает равномерную температуру по сечению лопатки;
возможность реализации дифференцированного охлаждения участ¬ков лопатки по высоте и по сечению за счет расположения и числа от¬верстий в дефлекторе;
возможность регулирования глубины охлаждения лопатки в про¬цессе доводки или увеличения ресурса;
сравнительная простота интенсификации теплообмена со стороны воздуха за счет различных турбулизаторов.
Дефлектор представляет собой тонкостенную штампованную оболочку из двух частей, соединяемых с помощью точечной или роликовой сварки, иногда пайки. Возможно изготовление дефлектора путем деформации и рассверловки тонкостенной трубки. Перфорация дефлектора в определенных местах позволяет интенсифицировать конвективный теплообмен за счет струйного охлаждения. Концентрацию струйного охлаждения в одном месте называют душевым охлаждением.
Сопловые лопатки с конвективно-пленочным охлаждением применяют для более высоких температур газа (Тг > 1200 - 1250 °С), чем при чисто конвективном. При этом тратится больше охлаждающего воздуха, чем без выдува охлаждающей пленки. Однако для сопловых лопаток первой ступени это не имеет решающего значения. Достоинство конвективно-пленочного охлаждения лопаток (рис.2, б) — возможность дополнительного сниже¬ния температуры металла на 100 °С и более. Другое преимущество — возможность устранения местного перегрева лопатки путем создания перед участком с завышенной температурой дополнительной щели выдува. Однако пленка быстро размывается и щели для выдува нужно повторять. Кроме того, воздействие вдуваемой пленки на пограничный слой вызывает увеличение аэродинамических потерь. При пленочном охлаждении обычно имеет место неравномерность температур по сечению лопатки.
В отечественных приводных сопловые лопатки с конвективно-пленочным охлаждением в конце 80-х годов еще не были распрост¬ранены, однако появляются в новых 90-х годов.
Среди разрабатываемых, но не внедренных в практику систем охлаждения сопловых лопаток, упомянем лопатки с проникающим ох¬лаждением и лопатки с внутристеночным охлаждением.
Проникающее охлаждение, при котором воздух проходит через мелкие отверстия (поры) в стенке лопатки, предназначено для очень вы¬соких температур, например Тг = 1600 °С. Именно при этих условиях можно достигнуть значительного снижения расхода охлаждающего воздуха по сравнению с конвективно-пленочным охлаждением. Проникающее охлаждение теснее других способов охлаждения связано с технологией изготовления стенок лопаток. Как правило, сопловые лопатки с проникающим охлаждением являются гильзовыми, т.е. тонкая обо¬лочка покрывает жесткий сердечник лопатки (рис.2, в). Существенными недостатками являются необходимость тщательной очистки охлаждающего воздуха и опасность заноса пор дисперсными частицами, содержащимися в продуктах сгорания.
Другой перспективный вид гильзовых (оболочковых) лопаток - лопатки с внутристеночным охлаждением. Здесь используют продольное течение охладителя (рис.2, г).

2. Материалы, применяемые для изготовления лопаток

Температура металла сопловых лопаток определяется температурой рабочего тела, омывающего лопатки данной ступе¬ни, и системой охлаждения. Напряжения изгиба, возникающие под действием газового потока, составляют 50-80 МПа, а в пер¬спективных высокотемпературных мощных достигают 130 МПа.
Лопатки подвергаются статическому и динамическому воздействию газового потока. При этом возможны температурные пере¬пады типа тепловых ударов до 400 0С, а в перспективных до 600 -700 0С. Для приводных турбин число пусков на ресурс достигает 200, для пиковых - 5000. Лопатки подвергаются также эрозионному и коррозионному воздействию потока продуктов сгорания при скорости его до 700 м/с. Запыленность потока твердыми частицами размером до 100 мкм может достигать концентрации 0,3 мг/м3. При неблаго¬приятных атмосферных условиях эти величины могут кратковре¬менно повышаться соответственно до 250 мкм и 2,5 мг/м3. При наличии воздухоочистных устройств запыленность воздушного по¬тока не должна превышать установленных норм.
Анализ условий, в которых работают лопатки, и изучение типичных аварий лопаточных аппаратов обусловили следующие требования к материалу сопловых лопаток турбин:
А) высокая жаропрочность, т.е. сохранение высоких показателей прочности при высокой рабочей температуре;
Б) высокая пластичность, необходимая для равномерного распределения напряжений по всей площади поперечного сечения лопатки; хорошая сопротивляемость местным напряжениям;
В) высокая усталостная прочность (выносливость);
Г) высокий декремент затухания;
Д) стабильность структуры, обеспечивающая неизменность механических свойств во время эксплуатации турбин;
Е) высокая сопротивляемость окислению и окалинообразованию при высоких температурах;
Ж) благоприятные технологические свойства, позволяющие применять более рациональные методы обработки лопаток (в первую очередь - резанием) и обеспечивающих точное выполнение размера профиля и высокую чистоту обработки. Металл для лопаток должен хорошо коваться, штамповаться, расклёпываться без появления трещин, хорошо гнуться и вальцеваться в холодном состоянии. В случае сварных конструкций от металла лопаток требуется хорошая свариваемость.
З) Высокая сопротивляемость эрозии.
В качестве материала сопловых лопаток первых ступеней используют литейные или деформируемые сплавы на никелевой ос¬нове. При температуре газов до 700 °С ранее применяли аустенитные стали. Для лопаток последних ступеней при температуре газов менее 580 °С возможно также использование легированных хроми¬стых сталей. Для лопаток, работающих при температурах свыше 650 до 8000 С, используются жаропрочные металлические сплавы на никелевой основе. Среди них ЖС6К, ЭИ929ВД, ЭИ893,Н70ВМЮТ, ХН80ТБЮ и др.
При температуре газов 800°С и выше, а при наличии в топливном газе серы и при 720°С необходимо нанесение защитных покрытий на сопловые и рабочие лопатки, имеющие содержание хрома в сплаве менее 20%, путем хромоалитирования, хромосилицирования или хромоалюмосилицирования и т. п. Толщина защитного покрытия-30 - 60 мкм, Применяют также эмалевые покрытия, а для охлаждаемых лопаток—теплозащитные покрытия.


3. Вид заготовки

Для изготовления лопаток применяются следующие виды заготовок: полосовая сталь, листовая сталь, поковки, штамповки, горячекатаные профильные полосы (так называемый светлокатаный профиль) и точное литье по выплавляемым моделям. Наиболее распространенными заготовками для лопаток являются светлокатаный профиль и штамповки.
Вид заготовки оказывает большое влияние на последующий технологический процесс обработки, поэтому при выборе рациональных заготовок следует учитывать все конкретные условия производства и, в частности, форму лопаток, их количество и сроки выполнения заказов.
Основным методом изготовления лопаток соплового аппарата является прецизионное литье по выплавляемым моделям преимущественно из литейных сплавов ЛК4, ЖС6, ЖС6-К и др.
Применение точного литья по выплавляемым моделям позво¬ляет получать заготовки с минимальным припуском по перу. Механическая обработка заготовок таких лопаток заключается главным образом в обработке замков лопаток.
Литье по выплавляемым моделям имеет следующие преимущества по сравнению с другими методами получения заготовок лопаток соплового аппарата;
1) возможность получения заготовок сложной формы, с чистотой поверхности 5— б и точностью в пределах 4-го класса;
2) возможность получения пустотелых лопаток с толщиной стенок до 0,5 мм.
К недостаткам данного метода относятся:
1) необходимость применения для отливки дорогостоящих сплавов и вспомогательных материалов;
2) длительность производственного цикла.
В некоторых двигателях лопатки соплового аппарата начали изготавливать из листового жаропрочного материала методом хо¬лодной штамповки с последующей электросваркой выходной кромки.

4.Основные требования к механической обработке лопаток

Хорошее качество лопаток, как и всех прочих деталей турбины, зависит от правильного выполнения установленных в чертежах конструктивных размеров и чистоты обработки поверхностей. Каждые части лопатки (хвост, рабочая часть и головка) имеют различное назначение. Хвост служит для надежного закрепления лопатки в корпусе турбины. Рабочая часть предназначена для восприятия давления пара, а головка для крепления бандажа. Если у хвоста лопатки в соответствии с его служебным назначением большое значение имеет степень точности, с которой выполнены все посадочные размеры хвоста, то для рабочей части, размеры которой не являются посадочными, большое значение имеет степень чистоты обработки. Хорошо отполированная поверхность рабочей части содействует уменьшению потерь пара на трение о поверхность лопатки, увеличивая в то же самое время антикоррозийную стойкость лопатки.
Все размеры лопаток, по требованиям к их точности, можно разбить на три группы.
Первая: размеры, от которых зависит характер соединения лопаток с другими деталями турбины, т.е. посадочные детали. К ним относятся в первую очередь размеры хвостов и шипов под насадку бандажных лент. Диаметр шипа (при круглом шипе) и ширина, и толщина шипа (при прямоугольном шипе) выполняются по ходовым посадкам 4-го класса.
Вторая: размеры, не являющиеся посадочными, но требующие повышенной точности. К ним относятся размеры сечений рабочих частей; размеры, определяющие установку лопаток и расположение отверстий под скрепляющую проволоку и т.п. Выполняются эти размеры или по третьему и четвёртому классам точности, или по свободным нестандартным допускам в пределах от 0,1 мм до 0,5 мм, в зависимости от размеров лопатки.
Третья: свободные размеры, к которым обычно относятся размеры галтелей, фасок и других менее ответственных элементов лопаток. Точность свободных размеров или совсем не нормируется или ограничивается допусками 7-го класса точности. Однако даже и в том случае, когда на свободные размеры не установлено никаких допусков, они выполняются обычно по допускам, установленным на свободные размеры специальными технологическими инструкциями, выпускаемыми на данном предприятии.
Чистота обработки посадочных поверхностей выдерживается в пределах 6-го класса, рабочих профилей и галтелей у рабочих частей - 8-9-го класса.
Наиболее ответственными являются посадочные размеры хвостовых соединений. Эти размеры, а также и чистота обработки должны быть обеспечены соответствующей точностью станочной обработки и качеством режущего инструмента. Чертёж типовой лопатки соплового аппарата приведён на рис. 3.


Чертёж типовой лопатки соплового аппарата

а)

б)

а - беззамковой конструкции, б-с замком.

Рис. 3

Точность изготовления основных поверхностей лопаток характеризуется следующими данными:
допуск на толщину профиля пера ………………… +0,5 -
0,2;
допуск на толщину кромок ………………………. ±0.2;
непрямолинейность профиля..……………………. 0,8 мм;
непрямолинейность выходной кромки……………. 0,8 мм;
допуск на толщину стенки пустотелых лопаток.....±0,3мм;
чистота поверхности замка ………………………... 4— 5.


5. Типовой процесс механической обработки


Технологический процесс обработки любой новой лопатки может быть легко и быстро разработан технологом при наличии классификатора и типовых технологических операциях.
Сплавы, из которых изготовлены лопатки, плохо обрабатываются резанием (особенно металлическим инструментом). В связи с этим операции по обработке этих лопаток выполняют, как правило, шлифованием.
Для заготовок лопаток соплового аппарата, изготовленных точной отливкой с припуском по перу под шлифование основным видом механической обработки является шлифование замков.
Отделку пера лопаток производят обычно вручную на полировальных бабках. Первоначальную зачистку пера производят абразивными кругами зернистостью 46—60. Маршрутный технологический процесс механической обработки лопаток соплового аппарата (с замками) состоит из следующих операций:


опера-ции

Наименование операции

Оборудование


Контроль заготовки

Шлифование базовых плоскостей

Плоскошлифовальный станок МСЗ

Слесарная зачистка выходной кромки заподлицо с основной поверхностью

Притирка боковых плоскостей замка со стороны корыта

Притирочный станок

Шлифование плоскостей замка

Плоскошлифовальный станок МСЗ

Шлифование литника

Плоскошлифовальный станок МСЗ

Шлифование двух плоскостей замка со стороны спинки

Плоскошлифовальный МСЗ

Электроэрозионная обработка отверстий в замке

Специальная уста­новка

Промывка

Моечная машина

Фрезерование паза на подошве замка

Вертикально-фрезер­ный станок

Слесарная (притупление острых кромок после механической обработки)

Промывка и обдувка

Моечная машина

Окончательный контроль

Цветная дефектоскопия

Специальная уста­новка

Зачистка дефектных участков после цветной дефектоскопии

Полировальная бабка

Травление

Контроль после зачистки дефектных мест

Люминесцентный контроль

Зачистка дефектов после люминесцент­ного контроля

Полировальная бабка

Промывка и протирка

Моечная машина

Маршрутный технологический процесс механической обработки лопаток соплового аппарата беззамковой конструкции состоит из следующих операций:

№ опе­рации

Наименование операции

Оборудование

Заготовка — точное литье без припуска
на механическую обработку по перу

Шлифование торца пера

Плоскошлифовальный станок МСЗ

Фрезерование радиуса со стороны вход ­

ной кромки

Горизонтально-фрезерный станок

Фрезерование радиуса со стороны вход­
ной кромки

Горизонтально-фрезер­ный станок

Слесарная зачистка заусенцев после
фрезерования и притупления острых кромок

Полировальная бабка

Промывка и обдувка

Моечная машина

Окончательный контроль

Цветная дефектоскопия

Специальная уста­новка

Зачистка дефектов после цветной дефектоскопии

Полировальная бабка

Травление

Контроль после зачистки

Люминесцентный контроль

Специальная уста­новка

Зачистка заусенцев после люминесцент­ного контроля

Полировальная бабка

Промывка и протирка

Моечная машина

Далее перо полируют фетровыми кругами с наклеенным абразивом. Полирование осуществляют в три перехода. Зернистость абразива, применяемого при такой обработке, составляет соответственно 60, 180 и 220.


6. Вид станков

В связи с большой трудоемкостью операций ручной подгонки профиля на отдельных заводах были предприняты попытки механизировать эти операции.
На рис. 4 показан модернизированный станок ПСЛ для полирования спинки лопаток соплового аппарата. На этом станке можно обрабатывать несколько деталей одновременно.
Станки МШ-81 и МШ-82 Московского завода шлифовальных станков (рис. 5) предназначены для обработки беззамковых сопловых лопаток, спинка и корыто которых имеют постоянный профиль во всех сечениях. Перо обрабатывают профильным кругом, который правится специальной профильной шарошкой. На рис. 6 показано специальное устройство, примененное на круглошлифовальных станках, для шлифования спинки лопаток соплового аппарата.
Устройство состоит из механизма синхронного вращения шпинделя шлифовального круга и шпинделя передней балки, механизма для правки шлифовального круга и механизма для привода копира.
Шпиндель 3 передней бабки получает вращение от шпинделя шлифовальной головки через систему зубчатых колес для обеспечения синхронности вращения круга и изделия.
От шпинделя изделия вращения с передаточным отношением 2:1 передается объемному копиру 2, который служит для правки шлифовального круга. Круг 9 правится с помощью специального механизма. На валу 10 механизма для правки круга жестко сидит рычаг, несущий профилирующий инструмент 8. На другом конце вала 10 смонтирован ролик 11, связанный с роликом 6, упирающимся в объемный копир 12. Механизм для правки перемещается вдоль оси вращения шлифовального круга. Для предварительного шлифования объемного копира используется эталонная лопатка 6, в которую упирается диск 7, заменяющий шлифовальный круг.
При вращении эталонной лопатки 6 диск 7 получает горизонтальное перемещение, которое через рычаг вала 10 механизма для правки передается механизму шлифовального круга, шлифующему профиль объемного копира.
После шлифования объемного копира вместо шлифовального круга устанавливают ролик 11, диаметр которого равен диаметру круга. Вместо сектора—диска устанавливают алмаз 8, который профилирует шлифовальный круг. После правки шлифовального круга обрабатывают спинку лопатки, установленной вместо эталонной лопатки.
Лопатки соплового аппарата ряда газотурбинных двигателей изготавливают методом точного литья по выплавляемым моделям с припуском по перу под шлифование.
В этом случае технологический процесс обработки лопаток включает в себя (дополнительно к указанным операциям) также и операции по шлифованию профиля пера, выполняемые на стан¬ках ХШ-185В, ХШ-186 и на модернизированных универсально-шлифовальных станках.
Значительное распространение в высокотемпературных газотурбинных двигателях получили лопатки соплового аппарата пустотелой конструкции. Такие лопатки также изготавливают методом точного литья, с керамическими или иными стержнями, образующими внутреннюю полость.
Замки лопаток соплового аппарата обрабатывают на плоскошлифовальных станках. Обрабатываемую лопатку устанавливают в специальную кассету. Базами при этом служат поверхность корыта и кромка пера. Зажим осуществляют по поверхности спинки. Требуемое расположение плоскостей замков достигается поворотом кассеты и установкой ее соответствующими поверхностями рис. 7.
Обработка баз лопаток соплового аппарата может быть произведена на плоскошлифовальном полуавтомате модели БС-200. Станок работает по полуавтоматическому циклу и обеспечивает равномерное распределение припуска между спинкой и корытом. На станке имеется электронное устройство для равномерного распределения припуска по профилю пера, а также приспособле¬ние для безалмазной правки круга. Детали крепятся в специальном приспособлении с быстродействующим зажимом.


7. Закрепление заготовок


В процессе обработки заготовка (деталь) соответственно сориентирована, должна быть неподвижной. Это достигается ее закреплением в приспособлении или на станке.
В отличие от базирования заготовки, когда на нее накладывается различное число связей и она лишается трех, четырех, пяти и шести степеней свободы, во всех случаях закрепления заготовка должна быть лишена шести степеней свободы.
С этой целью применяют разнообразные зажимные устройства (механические, гидравлические, пневматические, магнитные, вакуумные и др.), основанные на использовании сил трения.
Зажимные устройства в приспособлениях должны создать постоян¬ство контакта баз с опорными точками (обеспечивать правильное базирование) и неподвижность заготовки в процессе ее обработки (закрепление заготовки).
Следует отметить, что чем меньше число баз и опорных точек, используемых при базировании заготовок, тем проще, производительнее и дешевле получается конструкция приспособлений. Поэтому при базировании обрабатываемых заготовок необходимо стремиться использовать наименьшее число баз с наименьшим числом опорных точек, при котором может быть обеспечено выполнение заданных чертежом размеров и формы детали.

Полирование спинки пера лопаток соплового аппарата
на модернизированном станке ПСЛ

Общий вид и рабочая зона плоскошлифовального станка
моделей МШ-81 и МШ-82

Рис. 5

Шлифование спинки лопатки соплового аппарата
на модернизированном копировально-шлифовальном станке

1—упоры, 2—копир, 3—шпиндель, 4— оправа для закрепления эталонной лопатки, 5—лопатка, 6—эталонная лопатка, 7—диск, 8—алмаз, 9—шлифовальный круг, 10—валы механизма правки, 11—ролик, 12—диск копира.
Рис. 6

Шлифование плоскостей замков лопатки соплового аппарата

Рис. 7

8. Технический контроль лопаток


Лопатки проверяют как в процессе механической обработки, так и после ее окончания. Контроль лопаток включает в себя:
выявление внешних и внутренних дефектов материала; проверку шероховатости обрабатываемых поверхностей в соответствии с требованиями чертежа; проверку размеров, формы профилей пера (спин¬ки, корыта) и замков и их взаимного расположения; определение массы и частоты собственных колебаний лопаток; выборочные испытания рабочих лопаток турбины и компрессора на усталость. В пустотелых охлаждаемых рабочих лопатках ТНД проверяют расход воды через внутреннюю полость (испытания лопаток на пролив).
Контроль внешних и внутренних дефектов материала лопаток позволяет выявить трещины и волосови¬ны на поверхности, раковины, пористость, расслоения, инородные включения и флокены в материале. Для этой цели применяют трав¬ление, цветную дефектоскопию, люминесцентный, магнитный и ультразвуковой методы контроля.
Магнитопорошковый метод основан на притяжении частиц порошка железа к магнитным полюсам, образующимся у намагниченной детали в местах нарушения сплошности. Магнитопорошковым методом выявляются трещины с шириной раскрытия 0,001 мм и более, глубиной 0,01 мм и более. Относительная простота и довольно высокая надежность этого метода способствовали его широкому внедрению.
Цветной и люминесцентный методы контроля (капиллярные методы дефектоскопии) применяются для выявления дефектов, выходящих на "поверхность детали. Метод цветной дефектоскопии основан на способности специальной красной краски проникать в глубь поверхностных дефектов и белой краски впитывать в себя красную краску из дефекта. Метод обнаруживает трещины шириной от 0,01 мм, по глубине от 0,05 мм и по протяженности от 0,3 мм.
Люминесцентный метод (ЛЮМ-А) основан на способности некоторых жидкостей светиться при облучении ультрафиолетовым светом. Люминесцентный метод ЛЮМ-А надежно выявляет выходящие на поверхность трещины, поры, рыхлоты, окисные пленки, засоры и т.д. Он обнаруживает трещины шириной от 0,01 мм, по глубине от 0,05 мм и по протяженности от 0,2 мм. Чувствительность метода ЛЮМ-А несколько выше метода цветной дефектоскопии. Внутренние дефекты материала лопаток проверяются рентгеновским и ультразвуковым методами.
Рентгеновский метод обнаружения дефектов основан на ослаблении рентгеновского излуче¬ния материалом детали, при котором теневое изображение просвечи¬ваемой детали регистрируется на рентгенографической пленке. Достоинством метода является высокая чувствительность к выявле¬нию в материале детали внутренних пор, раковин, инородных включений и др.
Для просвечивания литых лопаток турбины используются передвижные кабельные рентгеновские аппараты типа РУП-100-10, РУП-150-10-1 и др.
Ультразвуковой метод контроля с использованием поверхностных волн позволяет выявлять поверхностные трещины и металлургические дефекты материала. Данный метод применяется обычно для выявления трещин входной и выходной кромок, реже — на поверхности спинки и корыта, возникающих при изготовлении и эксплуа¬тации лопатки.Метод основан на прозвучивании контролируемого материала кратковременными импульсами ультразвуковых колебаний, распространяющихся по поверхности лопатки, и улавливании их отражений (эхо-сигналов) от дефектов.
Контроль геометрических размеров, формы профилей пера и замка и их взаимного расположения. Операции этого вида технического контроля лопаток наиболее трудоемкие. Приборы, применяемые на этих операциях, можно разделить на две основные группы: бесконтактные — оптико-проекционные и контактные — механические, оптико-механические, пневматические и пневмогидравлические.
Перо лопатки проверяют в расчетных поперечных сечениях бесконтактными и контактными методами. Одним из бесконтактных методов контроля является проверка профиля на проекторах, используемая в единичном производстве. У нас они не нашли применения.
При малом масштабе производства профиль пера лопаток иногда проверяют шаблонами. Отклонение профиля спинки и корыта от шаблона определяют визуально на просвет или с помощью щупа. Контроль пера шаблонами малопроизводителен, субъективен и требует громоздкого шаблонно-измерительного хозяйства.
В серийном производстве использовались механические приборы с индикаторами часового типа, настраиваемые по эталонной лопатке. Они просты и удобны в работе, но малопроизводительны.
Многомерные приборы и измерительные машины производительны. Их можно быстро переналаживать на контроль других лопаток по эталонной лопатке. Базой для крепления лопатки является замок или центровые углубления, два из которых имеются на боковых поверхностях замка и одно — у конца пера. К числу таких приборов относятся универсальные многомерные оптико-механические приборы типа ПОМКЛ для одновременного контроля профиля пера, сме¬щения пера с оси замка, угла закрутки и толщины пера в поперечных сечениях лопатки компрессора.
Основные геометрические параметры замков лопаток турбины и компрессора обычно проверяются механическими приборами с индикаторными часами, настраиваемыми по эталону.
Расход воды через внутреннюю полость пера охлаждаемых лопаток ТНД проверяют на специальной установке. Лопатка устанавливается в приспособление и проливается водой при избыточном давлении в 4±0,05 кгс/см2 (0,3±0,005 МПа) и температуре 20±5 "С в течение 20 с. Проверяют пропускную способность внутреннего канала у всего I комплекта лопаток данной ступени. Сравнивают среднее значение расхода с результатом пролива каждой лопатки в комплекте. Различие по расходу воды у рабочих лопаток в комплекте (разнорасходность) должна составлять не более 13... 15 % от среднего расхода воды в комплекте лопаток
Частоты собственных колебаний рабочих лопаток турбины и компрессора проверяют на электродинамических вибростендах.
Рабочие лопатки турбины и компрессора взвешивают на весах типа ВТК-500 с точностью 0,1 г.


9. Реальное выполнение технологического процесса на УТМЗ

Рассмотрим реальный технологический процесс на примере направляющей лопатки первой ступени ГТН-6У. Вид заготовки - точное литье по выплавляемым моделям, материал заготовки - сплав ХН648МКЮТ - УСЗМИ - ЗУ.
Реальное выполнение технологического процесса на заводе для направляющих лопаток
6-11 ступени турбины ГТ-6-750 представлено в табл. 3.
Таблица 3

№ опе-рации

Наименование и содержание операции

Оборудование

Входной контроль

Фрезерно-центровочная.
Подрезать торцы и центрировать с 2х сторон.

центр. фрезерное
МР-71

Горизонтально-фрезерная.
Фрезеровать плоскости хвоста со стороны внутреннего и наружного профиля в центрах.

Горизонтально-фрезерное
6М82Г

Шлифовальная.
Шлифовать плоскость хвоста со стороны наружного профиля в центрах.

Плоскошлифовальное
3Б-722

Шлифовальная.
Шлифовать плоскость хвоста со стороны внутреннего профиля

Плоскошлифовальное
3Б-722

Горизонтально-фрезерная.
Фрезеровать плоскость хвоста под углом со стороны газовыпуска предварительно за 2 прохода.

Горизонтально-фрезерное
6М83Г

Вертикально-фрезерное.
Фрезеровать плоскость хвоста под углом со стороны газовыпуска чисто.

Вертикально-фрезерное
6М13П

Горизонтально-фрезерная.
Фрезеровать плоскость хвоста со стороны входа предварительно под углом.

Горизонтально-фрезерное
6М82Г

Вертикально-фрезерная.
Фрезеровать плоскость хвоста со стороны входа чисто под углом

Вертикально-фрезерое
6М13П

Токарная.
Точить хвостовик под резьбу.

Токарное П.У.
16К20Ф3

Вертикально-фрезерная.
Фрезеровать бока впуска и выпуска на длине рабочей части.

Вертикально-фрезерое
ФК-300

Горизонтально-фрезерная.
Фрезеровать галтель со стороны газовпуска чисто.

Горизонтально-фрезерное
6М83Г

Горизонтально-фрезерная.
Фрезеровать галтель со стороны газовыпуска чисто.

Горизонтально-фрезерное
6М83Г

Вертикально-фрезерная.
Фрезеровать галтель Внутреннего и наружного профиля под углом 1050’ за 11 строк (кроме 11 ступени) заподлицо с основным профилем.

Вертикально-фрезерое
4ФСЛ-4А

Вертикально-фрезерная.
Фрезеровать галтель внутреннего и наружного профиля по прямой за 11 строк заподлицо с основным профилем.

Вертикально-фрезерое
4ФСЛ-4А

Шлифовальная.
Шлифовать внутренний и наружный профили одновременно в центрах за 400 строчек

Шлифовальное
ЛШ-1А

Контрольная.
Контроль операции 16.

Слесарная.
Запилить радиусы на заплечиках со стороны внутреннего и наружного профиля входа и выхода по шаблонам; снять фаску 1х450

Шлифовальная.
Шлифовать галтель внутреннего и наружного профиля заподлицо с основным профилем; шлифовать входную кромку.

Полировальное

Слесарная.
Опилить кромку выхода.

Окончательный контроль.

Отрезная.
Отрезать базу со стороны торца рабочей части.

Абразивно-отрезное

Шлифовальная.
Полировать наружный и внутренний профиль, входную кромку и галтели.

Полировальное
ДШ-96

Слесарная.
Полировать выходную кромку вручную.

Слесарная.
Маркировать обозначение лопатки.

Контрольная.
Проверить наличие трещин.

Промывка

Окончательный контроль

Контрольная плита

Виброиспытание

10. Предложения по совершенствования технологического процесса


Расширение серийного производства паровых и , вызванное задачами развития энергетики и газовой промышленности страны, содействовало ускоренному техническому прогрессу в турбиностроении.
Особо значительные успехи в этом направлении достигнуты в производстве турбинных лопаток. На всех стадиях технологического процесса, начиная с подготовки основных базовых поверхностей, применяются специальные станки и станки с ЧПУ. Как наиболее важное мероприятие по повышению производительности труда и повышению качества стало внедрение многошпиндельных станков для кругового фрезерования поперечными строчкам внутреннего и наружного профилей рабочих частей длинных лопаток.
Перевод обработки определенной номенклатуры лопаток на станки с программным управлением позволил объединить несколько опера¬ций в одну и тем самым сократить цикл заготовления лопаток, освободить рабочего от выполнения тяжелых ручных работ, повысить точность обработки по размерам а шероховатости за счет исключения переустановок и работы на расчетных режимах резания.
Среди перспективных работ, требуемых научного обоснования и выполнения, следует назвать следующие:
- совершенствование производства штампованных заготовок в точки зрения сокращения припусков на механическую обработку;
- механизация шлифовальных работ по доводке профилей рабо¬чих частей длинных лопаток;
- проведение научно-исследовательских работ по определению научно обоснованных параметров допустимых отклонении от проектных размеров профильных частей соответственно длины и ширины рабочих и направляющих лопаток.
Значительный технический прогресс в турбиностроении будет достигнут путем организации централизованного проектирования а изготовления лопаток на одном специализированном заводе при широкой типизации лопаток и, таким образом, перевода их механической обработки в поточных и автоматически действующих линиях, подготовка к которым практически уже осуществляется в настоящее время на заводе турбинных лопаток (ЛЗТД).
Важным фактором технического прогресса в данном мероприятии явится приближение процесса конструирования лопаток к их производству.
ГТУ -УПИ 2002г.

Прежде чем задать вопрос прочитайте: