Оси вращения вала. Вал: конструктивные особенности, классификация и производство

НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ ВАЛОВ. ВАЛЫ И ОСИ

Вращающиеся детали машин (зубча-тые колеса, шкивы, звездочки и др.) размещают на валах и осях. Валы пред-назначены для передачи вращающего момента вдоль своей оси. Силы, возни-кающие при передаче вращающего мо-мента, вызывают напряжения кручения и изгиба, а иногда напряжения растя-жения или сжатия.

Оси не передают вращающий момент; действующие в них силы вызывают лишь напряжения изгиба (незначительные вращающие моменты от сил трения не учитывают-ся). Валы вращаются в подшипниках . Ocи могут быть вращающиеся или не-подвижные.

По назначению различают валы пе-редач и коренные валы, несущие нагруз-ку не только от деталей передач, но и от рабочих органов машин (дисков, фрез, барабанов и т. д.).

По конструкции валы можно разде-лить на прямолинейные, коленчатые и гибкие (рис. 4.1). Широко применяют прямолинейные валы ступенчатой кон-струкции. Такая форма вала удобна при монтаже, так как позволяет установить деталь с натягом без повреждения со-седних участков и обеспечить ее осевую фиксацию. Уступы валов могут воспри-нимать значительные осевые нагрузки. Однако в местах сопряжения участков разного диаметра возникает концент-рация напряжений, что снижает проч-ность вала.

Чтобы уменьшить массу вала, и обеспечить подачу масла, охлаждающей жидкости или воздуха, применяют полые валы.

К особой группе относятся гибкие валы, используемые для передачи вра-щающего момента между валами, оси вращения которых смещены в пространстве.

В сельскохозяйственных, подъемно-транспортирующих и других машинах часто используют трансмисси-онные валы, длина которых достигает нескольких метров. Их выполняют со-ставными, соединяя с помощью флан-цев или муфт.

Критерии работоспособности вала.

Конструкция, размеры и материал вала существенно зависят от критериев, оп-ределяющих его работоспособность. Работоспособность валов характеризу-ется в основном их прочностью и жест-костью, а в некоторых случаях виброус-тойчивостью и износостойкостью.

Большинство валов передач разру-шаются вследствие низкой усталостной прочности. Поломки валов в зоне кон-центрации напряжений происходят из-за действий переменных напряжений. Для тихоходных валов, работающих с перегрузками, основным критерием ра-ботоспособности служит статическая прочность. Жесткость валов при изгибе и кручении определяется значениями прогибов, углов поворота упругой ли-нии и углов закрутки. Упругие переме-щения валов отрицательно влияют на работу зубчатых и червячных передач, подшипников, муфт и других элемен-тов привода, понижая точность меха-низмов, увеличивая концентрацию на-грузок и износ деталей.


Для быстроходных валов опасно возникновение резонанса — явления, когда частота собственных колебаний совпадает или кратна частоте возмуща-ющих сил. Для предотвращения резо-нанса выполняют расчет на виброустойчивость. При установке валов на подшипниках скольжения размеры цапф вала определяют из условия изно-состойкости опоры скольжения.

Рис. 4.1 Типы валов и осей:

а — прямая ось; б — ступенчатый сплошной вал; в — ступенчатый полый вал; г — коленчатый вал; д — гибкий вал

Конструирование вала выполняют поэтапно.

На первом этапе определяют расчет-ные нагрузки, разрабатывают расчет-ную схему вала, строят эпюры момен-тов. Этому этапу предшествует эскиз-ная компоновка механизма, в процессе которой предварительно определяют основные размеры вала и взаимное по-ложение деталей, участвующих в пере-даче нагрузок.

К действующим нагрузкам, которые передаются на вал со стороны детали (шкива, звездочки, зубчатого колеса и др.) или с вала на деталь, относятся:

Силы в зацеплении зубчатых и червячных передач;

Нагрузки на валы ременных и цепных передач;

Нагрузки, возникающие при установке муфт в результате неточности монтажа и других ошибок.

Определение сил в зацеплении и нагрузок на валы ременных и цепных передач рассмотрено выше.

При установке на концах входных; выходных валов соединительных муфт учитывают радиальную консольную грузку, вызывающую изгиб вала. Эту нагрузку рекомендуется определять по ГОСТ 16162-85.

Для входных и выходных валов одноступенчатых цилиндрических конических редукторов и для быстроходных валов редукторов любого типа консольную нагрузку можно приближенно рассчитать по формуле

; (4.1)

для тихоходных валов двух- и трех - ступенчатых редукторов, а также червячных передач

; (4.2.)

где Т — вращающий момент на валу, Н. м.

Силы и моменты, передаваемые ступицей на деталь, упрощенно принимают сосредоточенными и приложенны-ми в середине ее длины.

При выполнении расчетной схемы вал рассматривают как шарнирно-закрепленную балку. Положение точки опоры вала зависит от типа подшипника (рис. 4.2).

Рис. 4.2. Точки опоры вала:

а — на радиальном подшипнике; б — на радиально-упорном подшипнике;

в — на двух подшипниках в одной опоре; г — на подшипнике скольжения.

Действующие в двух взаимно перпендикулярных плоскостях (вертикальной и горизонтальной) силы переносят в точки на оси вала. Строят эпюры из-гибающих и вращающих моментов в двух плоскостях (рис. 4.3).

Момент от окружной силы изобра-жают на эпюре вращающих моментов, от осевой силы в вертикальной плоско-сти — в виде скачка М′ z на эпюре изги-бающих моментов. Эпюры строят по методике, изложенной в курсе сопротивления материалов.

По эпюрам определяют суммарные изгибающие моменты в любом сечении. Так в сечении 1-1 наибольший суммарный момент

где М z 1 изгибающий момент в опасном сече-нии в плоскости ZY; М х1 — изгибающий момент в опасном сечении в плоскости XY; М к1 — изги-бающий момент в плоскости действия консоль-ной нагрузки. Сравнивая полученные значения, выделяют наиболее опасные сечения вала.

На втором этапе разрабатывают кон-струкцию вала. Предварительно опре-деляют диаметр выходного участка по условному допустимому напряжению кручения [τ], принимая его равным 15-25 МПа.

Диаметр вала, мм,

Если выбрана ступенчатая конструк-ция вала, определяют диаметры и длины его участков, используя расчетную схе-му или эскизную компоновку (см. выше)

Рис. 4.3. Схемы нагружения вала. Эпюры изгиба-ющих и вращающего моментов Принятые размеры рекомендует-ся уточнять по ГОСТ 6636—69*.

Ступенчатая форма вала предпочти-тельна, так, как упрощается сборка со-единений с натягом, предотвращаются повреждения участков с поверхностями повышенной чистоты обработки, форма вала приближается к равнопрочному брусу. Однако в местах сопряжения участков разного диаметра возникает концентрация напряжений, что снижает прочность вала, а при использовании в качестве заготовки прутка или поковки усложняется технология изготовления, увеличивается расход металла. Чтобы снизить концентрацию на-пряжений, а следовательно, повысить усталостную прочность вала, переход-ные участки чаще всего выполняют с галтелями (рис. 4.4). Радиус галтели r и высоту заплечика (уступа) выбирают в зависимости от диаметра вала d, осе-вой силы, размеров R, с 1 и формы уста-навливаемой детали (табл. 4.1).

Рис. 4.4. Переходные участки вала в виде галтелей

Таблица 4.1 Размеры галтелей, мм. (см. рис.4.4.)

Если уступ служит для осевой фик-сации подшипника, то высота h . (табл.4.2) должна быть меньше толщины внутреннего кольца подшипни-ка на величину t, достаточную для раз-мещения лапок съемника при демон-таже.

Канавки для выхода шлифовального круга (рис. 4.5) вызывают более высо-кую концентрацию напряжений, чем галтели. Переходы такими канавками выполняют при значительном запасе прочности вала. Размеры канавок даны в таблице 4.3.

Чтобы исключить осевые зазоры, длину посадочного участка вала следует выполнять несколько меньше длины ступицы насаживаемой детали. Для удобства монтажа участок вала под по-садку с натягом должен иметь скосы и фаски (рис. 4.6, а, б, табл. 4.4).

Рис. 4.5. Канавки для выхода шлифовального круга:

а, б — для шлифования цилиндрической поверхности вала;

в — для шлифования цилиндрической поверхности и торца уступа

Если участок вала не имеет упорных буртиков, то его диаметр рекомендуют принимать на 5 % меньше посадочного диаметра (рис. 4.6, в).

Форма выходного участка вала (рис. 4.7) может быть цилиндрическая (ГОСТ 12080—66*) или коническая (ГОСТ 12081—72*). Конический конец вала выполнить сложнее. Однако кони-ческие соединения обладают большой нагрузочной способностью, их легче собирать и разбирать. Осевое усилие создают, затягивая гайку. Для этого на конце хвостовика предусматривают крепежную резьбу.

Рис. 4.6. Фаски (а), скосы (б) и переходные участки (в)

Рис. 4.7. Выходные участки валов: а - цилиндрический, б - конический

Форма и размеры шпоночных кана-вок на валу зависят от типа шпонки и режущего инструмента. Пазы для приз-матических шпонок, изготовленные дисковой фрезой, вызывают меньшую концентрацию напряжений. Однако фиксация шпонки здесь менее надеж-на, а паз длиннее за счет участков для выхода фрезы (рис. 4.8). При наличии пазов для призматических шпонок следует предусмотреть такие размеры участков ступенчатых валов, чтобы де-монтаж деталей происходил без удале-ния шпонок, так как шпонки устанав-ливают в пазах по прессовой посадке и выемка их нежелательна.

Поэтому ди-аметр d 2 соседнего посадочного участ-ка определяют с учетом высоты h шпонки:

где t 2 — глубина паза в ступице, мм

Рис. 4.8. Шпоночные пазы:

а — изготовленные пальцевой фрезой; б— дисковой фрезой.

Обозначения: l — рабочая длина шпонки; b— ширина шпонки;

lвых — длина участка для выхода фрезы; Dфр — диаметр дисковой фрезы

Если на выходных участках валов это условие невыполнимо, то шпоноч-ный паз фрезеруют «на проход». При установке на валу нескольких шпонок их следует располагать в одной плос-кости и предусматривать для них по возможности одинаковую ширину па-зов при соблюдении условий прочнос-ти шпоночных соединений. Это позво-ляет обрабатывать пазы без изменения положения вала и одним инструмен-том.

Размеры зубьев шлицевых участков выбирают, учитывая диаметры сосед-них посадочных участков вала. Для вы-хода режущего инструмента внутрен-ний диаметр d зубьев шлицевого участ-ка, расположенного между подшипни-ками, должен быть больше посадочного диаметра подшипника. В противном случае для выхода фрезы предусматри-вают участок длиной l вых (рис. 4.9, табл. 4.5).

По такому же принципу конструи-руют резьбовые участки валов под круг-лые шлицевые гайки. На участках пре-дусматривают канавки для выхода резь-бонарезного инструмента (рис.4.10, табл.4.6) и под язычок стопорной многолапчатой шайбы.

Рис. 4.9. Шлицевые участки валов

Таблица 4.5. Диаметр фрезы для прямобочных шлицев (см. рис.4.9)

Таблица 4.6. Размеры канавок разных типов, мм (см. рис. 4.11.)

Примечание. У канавок типа I радиус скоса r 1 = 0,5 мм.

При изготовлении вала за одно це-лое с шестерней (рис. 4.11) материал вала и способ термообработки выбира-ют по условиям прочности зубьев шес-терни.

Для изготовления валов применяют углеродистые конструкционные стали 40, 45, 50 и легированную сталь 40Х твердостью НВ≤ 300. Легированные стали 40ХН, 30ХГСА, 30ХГТ и других марок с последующей закалкой ТВЧ применяют для высоконагруженных валов. Быстроходные валы, вращающи-еся в подшипниках скольжения, для повышения износостойкости цапф из-готовляют из цементуемых сталей 20Х, 12ХНЗА, 18ХГТ или азотируемой стали 38Х2МЮА. Если размеры вала опреде-ляются условиями жесткости, то можно

использовать стали Ст. 5, Ст. 6. Это до-пускается при отсутствии на валу изна-шиваемых поверхностей (цапф, шли-цев и др.), требующих прочных, терми-чески обработанных сталей. Фасонные валы (например, коленчатые) изготов-ляют из высокопрочных и модифици-рованных чугунов.

Механические характеристики валов указаны в таблице 4.7.

На третьем этапе конструирования выполняют проверочный расчет вала, определяя эквивалентное напряжение или запас прочности в наиболее опас-ных сечениях.

Для валов, работающих в режиме кратковременных перегрузок, в целях предупреждения пластических дефор-маций выполняют проверочный рас-чет н а статическую проч-ность. Эквивалентное напряжение в опасном сечении, МПа,

; (4.6)

где d — диаметр вала, мм; М — наибольший из-гибающий момент, Н. м; Т — наибольший вра-щающий момент, Н. м.

Допустимое напряжение, МПа,

где σ т — предел текучести, МПа; S T — запас проч-ности по пределу текучести: S T = 1,2-1,8.

Проверочный расчет осей выполня-ют по формуле (4.6) при T = 0.

При длительно действующих на-грузках выполняют проверочный расчет н а сопротивление усталости. Коэффициент запаса усталостной прочности

; (4.8)

где S σ ; Sτ — коэффициенты запаса прочности со-ответственно по напряжениям изгиба и круче-ния; [S] — допустимый коэффициент запаса прочности: [S] = 2-2,5.

Коэффициент запаса прочности по напряжениям изгиба

; (4.9)

Рис. 4.11. Конструкция вала — шестерни.

Обозначения: da1 — диаметр шестерни; dB — диаметр вала;

dП — посадочный диаметр вала под подшипник по напряжениям кручения

; (4.10)

где σ -1,-1 — пределы выносливости материала вала соответственно при изгибе и кручении с симметричным знакопеременным циклом, МПа (см.табл. 4.7); К σ D , K D — коэффициенты кон-центрации напряжений, учитывающие влияние всех факторов на сопротивление усталости; σ а, D — переменные составляющие цикла измене-ния напряжений (амплитуды), МПа; ψ σ ψ — ко-эффициенты, характеризующие чувствитель-ность материала к асимметрии цикла напряже-ний (см. табл. 4.7); σ m ; m — постоянные состав-ляющие цикла изменения напряжений, МПа.

Составляющие цикла изменения на-пряжений изгиба:

; (4.11)

где M Σ — суммарный изгибающий момент, Н. м; W o — момент сопротивления сечения вала изги-бу) мм 3 ; F а — осевое усилие. Н; А — площадь се-чения вала, мм 2: А = nd 2 /4.

Валы предназначены для закрепления на них деталей (зубчатых колес, червяков, звездочек, шкивов, полумуфт и т.д.) и передачи вращающих моментов. Оси служат только для поддержания вращающихся деталей механизмов и в отличие от валов не передают вращающих моментов. Оси могут быть вращающиеся и неподвижные.

По виду геометрической оси валы делятся на прямые, коленчатые и гибкие. Наибольшее применение имеют прямые валы (рис. 4.68, а в). Коленчатые валы (рис. 4.68, г) применяют только в поршневых машинах для преобразования вращательного движения в поступательное и наоборот (двигатели внутреннего сгорания, насосы, компрессоры). Гибкие валы с произвольной формой геометрической оси применяют для передачи вращения в механизмах, узлы которых меняют свое положение в процессе работы, например приборы дистанционного управления, зубоврачебные бормашины и др. Коленчатые и гибкие валы относятся к деталям специального назначения и в курсе "Детали машин" не рассматриваются.

Прямые валы по форме внешней поверхности делятся на гладкие (см. рис. 4.68, а) и ступенчатые или фасонные (см. рис. 4.68, б, о). Гладкие валы по всей длине имеют один поминальный размер, а соответствующие посадки различных деталей обеспечиваются предельными отклонениями. В силовых механизмах гладкие валы имеют ограниченное применение. В основном они используются в трансмиссиях для передачи только вращающего момента. Большее примене-

Рис. 4.68

мне оми получили в ненагруженных малоразмерных кинематических механизмах.

Ступенчатые валы менее технологичны в изготовлении, но более удобны при сборке, особенно сложных многоступенчатых механизмов. Каждая деталь свободно проходит на свое место, и с одной стороны обеспечивается ее осевая фиксация. Кроме того, ступенчатый вал имеет меньшую массу, так как по форме приближается к балке равного сопротивления изгибу. Полые валы (см. рис. 4.68, в) дороже в изготовлении, чем сплошные, и их применяют при жестких требованиях к массе конструкции (например, механизмы авиационной и космической техники). При отношении внутреннего диаметра вала к наружному d/D = 0,6÷0,7 масса его снижается на 40–50%, а момент сопротивления сечения изгибу W – всего на 15–25%, что не вызывает резкого снижения прочности. Обычно принимают d/D < 0,75, что связано с необходимостью выполнения шпоночных пазов, шлицев, резьбы. Применяют полые валы также тогда, когда через вал пропускают другую деталь, подводят смазочный материал и пр.

Конструкция ступенчатого вала определяется количеством и конструкцией деталей, которые на нем размещаются, расположением опор, условиями сборки. На валу можно выделить отдельные элементы: концевые участки; переходные участки между соседними ступенями разных диаметров; места посадки подшипников, уплотнений и деталей, передающих вращающий момент.

Входной и выходной валы передаточных механизмов должны иметь консольные участки для установки шкивов, звездочек, зубчатых колес, полумуфт. Концевые участки выполняют цилиндрическими, реже коническими, форма и размеры которых определяются стандартами. Цилиндрические проще в изготовлении, а конические (с конусностью 1:10) обеспечивают высокую точность базирования и центрирования сопряженных деталей, легкость сборки и разборки.

В местах изменения диаметра вала выполняют плавный переход – галтель постоянного радиуса (рис. 4.69, а). Для уменьшения концентрации напряжений разность между диаметрами ступеней вала должна быть минимальной, а радиус галтели – максимальным. Отношение r/d принимают не менее 0,1. Для того чтобы обеспечить упор сопряженной с валом детали по плоскости заплечика, радиус галтели должен быть меньше катета фаски детали /, а высота заплечика t > 2/. При передаче больших осевых усилий высота уступа выбирается из условия прочности торцевой поверхности на смятие, а толщина буртика – из условия обеспечения прочности на срез. Высота буртика (или уступа) для упора внутреннего кольца подшипника должна позволять съем подшипника при демонтаже. Если на концевом участке вала шпонка имеет с валом плотное соединение, высота заплечика t должна быть больше выступающей из вала высоты шпонки, чтобы подшипник можно было установить на свое место без съема шпонки. Допуски на биение упорных буртиков валов назначаются в пределах 0,01–0,06 мм.

Один из способов повышения усталостной прочности вала – перекрытие галтели (рис. 4.69, б), которое применяют при установке деталей, имеющих небольшой радиус закругления или фаску на входе. Осевая фиксация детали осуществляется с помощью промежуточного кольца 1, что позволяет увеличить радиус галтели r. Иногда для увеличения радиуса применяют галтель с поднутрением (рис. 4.69, в), при этом уменьшается длина цилиндрической части вала.

При необходимости шлифования посадочных мест на валу, примыкающих к уступу, предусматривают канавки для выхода шлифовального круга (рис. 4.69, г). Для валов малого диаметра такие канавки снижают сопротивление изгибу и кручению, поэтому шлифование посадочных поверхностей таких валов возможно только при высоких значениях запасов прочности п > 2,0÷2,5.

Рис. 4.69

Посадочные поверхности осей и валов выполняют в основном цилиндрическими. Конструкция этих участков палов зависит от вида насаживаемой детали и способа передачи вращающего момента. Длину участковпринимают на мм меньше, чем длину ступицы, для обеспечения осевой фиксации детали. Шероховатость поверхностей () назначается в зависимости от характера сопряжения, квалитета, типа насаживаемой детали и др.

На концах валов или промежуточных участков выполняются заходные фаски для облегчения сборки, предотвращения скола кромок и пореза рук сборщика. Размеры фаски с назначают в зависимости от диаметра вала мм при мм; мм при мм и мм при мм.

Опорные поверхности вала под подшипники при восприятии радиальной нагрузки называются цапфами или шейками для промежуточных опор. Эти участки имеют цилиндрическую форму для подшипников качения, но могут быть конические или сферические цапфы для подшипников скольжения. Посадочные диаметры под подшипники качения выбирают из стандартного ряда диаметров отверстий подшипников качения. При восприятии осевых нагрузок эти участки валов называются пятами . Шероховатость опорных поверхностей под подшипники назначают в зависимости от характера сопряжения подшипника с валом, диаметра цапфы и класса точности подшипника. Для подшипников нулевого класса точности шероховатость посадочных мест мкм, торцов заплечиковмкм; для подшипников повышенных классов точности Ra равно 0,63 и 1,25 мкм соответственно. Отклонения от круглости и цилиндричности мест посадки не должны превышать 0,5 допуска на диаметр, а для подшипников классов точности 5,4 и 2 – не более 0,003–0,018 мм.

Материалом валов и осей являются углеродистые и легированные стали, обладающие высокой прочностью, способностью к поверхностному и объемному упрочнению (для повышения усталостной прочности и износостойкости) и хорошей обрабатываемостью. Материал валов выбирают с учетом условий работы механизма. В малонагруженных механизмах валы, не подвергающиеся термообработке, изготавливают из углеродистых сталей 20, 45А, 50 и др. Для средне- и тяжелонагруженных валов применяют легированные стали 40Х, 40X11,40X112MА, 30ХГСА и др. Валы из легированных сталей подвергаются улучшению, закалке с высоким отпуском; для повышения износостойкости отдельные участки валов подвергаются поверхностной закалке ТВЧ. Цапфы налов и осей под подшипники скольжения механизмов с большим ресурсом для повышения износостойкости цементируют. Выбор вида термообработки осуществляется в соответствии с маркой стали (цементируемой или позволяющей азотирование). Для повышения износостойкости применяют хромоникелевые стали или хромируют шейки валов, при этом ресурс увеличивается в 3–5 раз.

Посадочные места высоконагруженных валов и осей после токарной обработки шлифуют. При знакопеременном нагружении неровности поверхности являются микроконцентраторами напряжений. Шлифование и полирование снижают величину неровностей и увеличивают долговечность вала. Высоконапряженные валы шлифуют по всей поверхности.

Расчет валов проводится в три этапа.

При отсутствии данных о линейных размерах вала и соответственно об изгибающих моментах на первом этапе определяют приближенное значение диаметра вала в наиболее нагруженном сечении. Из условия прочности вала на кручение имеем

где Т – вращающий момент, передаваемый валом, Н мм; [τ] – допускаемое напряжение на кручение, МПа (для стальных валов принимают [τ] = 12÷20 МПа).

На втором этапе в соответствии с полученным диаметром валу придается конструктивная форма, отвечающая кинематической схеме и отражающая требования технологичности и сборки. В результате устанавливаются все размеры вала.

На третьем этапе выполняется проверочный расчет вала. Основным критерием вращающихся валов и осей является циклическая прочность, так как постоянные по значению и направлению силы вызывают в них переменные напряжения. На статическую прочность рассчитывают неподвижные оси и некоторые валы при действии больших пусковых моментов. Недостаточная жесткость валов отрицательно влияет на работу связанных с ним соединений, подшипников, зубчатых колес и других деталей; увеличивает износ; снижает сопротивление усталости деталей и соединений; уменьшает точность механизмов и т.п. Расчет вала на жесткость выполняется в тех случаях, когда эти влияния оказываются существенными и требуют обязательного учета.

Расчет на сопротивление усталости. В расчете вала можно выделить следующие этапы: составление расчетной схемы; определение расчетных нагрузок и построение эпюр нормальных сил, изгибающих и крутящих моментов; расчет напряжений и запасов прочности в опасных сечениях вала.

Для расчета вращающиеся валы и оси представляют в виде балки на шарнирных опорах. Место расположения опор зависит от вида подшипника. При установке вала в радиальных шариковых или роликовых подшипниках качения точками опор считают середину ширины каждого подшипника (рис. 4.70, а, б). При установке вала в радиально-упорных подшипниках опоры располагаются со смещением от торца на величину а в зависимости от угла контакта. Для шариковых подшипников (рис. 4.70, в), а для конических роликовых (рис. 4.70, г), где– коэффициент осевого нагружения, зависящий от угла контакта (табл. 4.16). При установке в опоре двух подшипников условную опору располагают на расстоянии одной трети от середины внутреннего подшипника (рис. 4.70, ∂). У валов, вращающихся в подшипниках скольжения, условную

Рис. 4.70

шарнирную опору располагают на расстоянии (0,254-0,3)/ от торца подшипника (рис. 4.70, е).

Нагрузки, действующие на вал, передаются от сопряженных с ним деталей, таких, как зубчатые и червячные колеса,

Таблица 4.16

подшипника

контакта, α°

Однорядные

подшипники

Двухрядные

подшипники

Шариковые радиальные

Шариковые радиально-упорные

Роликовые

конические

шкивы, звездочки и др. Они определяются по соответствующим зависимостям расчета передач или экспериментально. В расчетах валов эти нагрузки, распределенные по поверхности контакта, заменяются сосредоточенными эквивалентными силами и прикладываются в середине ступицы детали. Найденные нагрузки переносятся на ось вала, строятся соответствующие эпюры.

При расчете на усталость расчетными являются сечения с концентраторами напряжений: галтельные переходы, шлицы, шпоночные канавки, поперечные отверстия, резьба, в которых действуют высокие изгибающий и крутящий моменты. В сложных по конструкции валах иногда трудно выделить одно опасное сечение и тогда расчет ведется для нескольких сечений. Для каждого из расчетных сечений определяют коэффициенты запасов прочности и сравнивают их с допускаемым значением. Для обеспечения надежной работы должно быть. Прочность оценивают по формуле

гдеи– запасы прочности по нормальным и касательным напряжениям:

гдеи– пределы выносливости стандартного образца при симметричном цикле изменений напряжений;и амплитудные напряжения циклов нормальных и касательных напряжений;и– средние напряжения циклов; коэффициенты снижения пределов выносливости детали; и– коэффициенты чувствительности материала к асимметрии цикла напряжений.

Для углеродистых статейдля легированных сталей. Коэффициент снижения предела выносливости детали:

При расчете на изгиб

При расчете на кручение

где и – эффективные коэффициенты концентрации напряжений (зависят от вида концентратора напряжений); и – коэффициенты влияния размеров детали; – коэффициент, учитывающий повышение предела выносливости при поверхностном упрочнении; и – коэффициенты влияния шероховатости.

Эффективные коэффициенты и концентрации напряжений для стали при изгибе и кручении валов в месте кольцевой канавки находят по табл. 4.17; в ступенчатом переходе с галтелью – по табл. 4.18; при изгибе и кручении валов со шлицами, шпоночной канавкой, с резьбой и поперечным отверстием – но табл. 4.19.

Коэффициенты – и приведены в табл. 4.20; коэффициент –в табл. 4.21.

Значения в зависимости от параметров шероховатости Ra и Rz приведены на рис.4.71. Величина определяется из соотношения

Таблица 4.17

Эффск- тивные коффи- циенты концентрации

Рис. 4.71

Таблица 4.18

Эффек- тивные коффи – циенты концентрации



Зубчатые колеса, шкивы, звездочки и другие вращающиеся детали машин устанавливаются на валах и осях. Между этими двумя элементами механизмов имеется существенное различие, заключающееся в функциональном назначении и некоторым другим признакам.

Вал предназначен для передачи вращающего момента вдоль своей оси, а также для поддержания расположенных на нем деталей и восприятия всех действующих на эти детали внешних нагрузок.
В отличие от вала, ось только поддерживает установленные на ней детали и воспринимает действующие на них нагрузки, кроме вращающего момента, т. е. не испытывает деформацию кручения. Оси могут быть неподвижными (например, неподвижная ось в виде цапфы автомобильного колеса на управляемом мосту) или подвижными, т. е. вращаться вместе с размещенными на них деталями (ось колесной пары железнодорожного вагона).
Классификация валов более обширная – они могут различаться по нескольким признакам.

Классификация валов

По назначению валы делят на коренные , передаточные , трансмиссионные , гибкие и торсионные .

Коренные валы несут основные рабочие узлы машины (коленчатый вал двигателя, ротор турбины и т. п.).

Передаточные валы несут детали передач (зубчатые колеса, шкивы, звездочки и т. п.). В отличие от коренного вала передаточные служат для выполнения промежуточной функции в агрегатах машины при передаче крутящего момента. Так, передаточными валами являются первичный и вторичный валы КПП, валы главной передачи, раздаточной коробки и т. п.

Трансмиссионные валы служат для передачи вращающего момента между отдельными агрегатами и рабочими узлами машины. Примеры трансмиссионных валов: карданная передача, полуоси, ведущие валы с шарнирами равных угловых скоростей в легковых автомобилях с передними ведущими колесами и т. п.

Гибкие (гибкие проволочные) валы допускают передачу вращающего момента при значительных перегибах оси. Такие валы встречаются, например, в контрольно-измерительных приборах (трос спидометра), механизированном инструменте (вал бормашины стоматолога).

Торсионные валы (торсионы) – валы малых диаметров, служащие для передачи вращающих моментов. Такие валы допускают закручивание относительно оси на значительные углы.

По форме геометрической оси валы подразделяют на прямые и непрямые – коленчатые и эксцентриковые. Примером эксцентрикового вала может служить вал газораспределительного механизма двигателя внутреннего сгорания.
Оси, как правило, изготавливают прямыми. По конструкции прямые валы и оси мало отличаются друг от друга.
Прямые валы и оси могут быть гладкими или ступенчатыми. Ступенчатая форма способствует равномерной напряженности вала по длине, а также упрощает монтаж деталей, расположенных на нем.

По форме поперечного сечения валы и оси бывают сплошные и полые (с осевыми отверстиями). Полые валы применяют для уменьшения массы или для размещения внутри них других деталей или элементов конструкции, а также для подвода масла смазочной системы.

По внешнему очертанию поперечного сечения валы разделяют на шлицевые и шпоночные, имеющие на некоторой длине шлицевой профиль или профиль со шпоночным пазом.

Конструктивные элементы осей и валов

Отдельные элементы валов и осей имеют специфические названия. В частности, опорные части валов и осей, т. е. участки, которыми вал или ось опирается на подшипник, принято называть цапфами . При этом различают следующие виды цапф – шипы, шейки и пяты .


Шипом называют цапфу, расположенную на конце вала или оси и передающую преимущественно радиальную силу.

Шейкой называют промежуточную цапфу вала или оси. Как и шип, шейка передает, преимущественно, радиальную силу. Опорами для шипов и шеек служат подшипники скольжения или качения. Шипы и шейки по форме могут быть цилиндрическими, коническими или сферическими. В большинстве случаев применяют цилиндрические цапфы.

Пятой называют цапфу, передающую осевую силу. Опорами для пят служат подпятники. Пяты по форме бывают кольцевыми, сплошными и гребенчатыми. Гребенчатые пяты применяются редко.

Посадочные поверхности валов и осей под ступицы насаживаемых деталей выполняют цилиндрическими или коническими. Конические концы валов чаще всего изготавливают с конусностью 1:10. Конусные поверхности валов применяют для облегчения монтажа устанавливаемых на вал тяжелых деталей, быстрой их смены, для повышения точности центрирования деталей и обеспечения требуемого натяга при сборке.

Переходные участки ступенчатых валов и осей между двумя ступенями разных диаметров выполняют с канавкой со скруглением шириной 3…5 мм и глубиной 0,25…0,5 мм, с галтелью постоянного максимально возможного радиуса или с галтелью переменного радиуса (галтель – поверхность плавного перехода от ступени меньшего сечения к большему). Назначение переходных участков валов и осей – уменьшение концентрации напряжений в местах изменения формы сечения этих деталей. Для повышения несущей способности валов и осей часто выполняют деформационное упрочнение галтелей наклепом.



Критерии работоспособности валов и осей

Основными критериями работоспособности валов и осей являются прочность и жесткость. Валы и вращающиеся оси при работе испытывают циклически изменяющиеся напряжения. Прочность оценивают коэффициентом запаса прочности при расчете валов и осей на сопротивление усталости, а жесткость – прогибом, углами поворота или закручивания сечений в местах установки деталей.
Практикой установлено, что разрушение валов и осей быстроходных машин в большинстве случаев носит усталостный характер, поэтому основным является расчет на сопротивление усталости.

Основными расчетными силовыми факторами являются вращающие Т и изгибающие М моменты. Влияние растягивающих и сжимающих сил на прочность незначительно, и их в большинстве случаев не учитывают.

Проектировочный и проверочный расчеты валов и осей

При проектировании валов и осей выполняют проектировочный расчет на статическую прочность с целью ориентировочного определения диаметров ступеней. При проектировочном расчете валов редуктора обычно определяют диаметры концевых сечений входного и выходного валов, а для промежуточных валов – диаметр в месте посадки колес.
Диаметр расчетного сечения вала определяют по формуле, известной из курса сопротивления материалов:

d 3 ≥ 10 3 (Мк/0,2[τ] к) ,

где Мк = Т – крутящий момент, действующий в расчетном сечении, Нм ;
[τ]к – допускаемое напряжение при кручении для материала вала, МПа .

Полученный расчетный диаметр вала округляют до ближайшего диаметра стандартного ряда по ГОСТ.
Проектировочный расчет осей чаще всего выполняют аналогично расчету балок с шарнирными опорами обычными методами сопротивления материалов.

Проверочный расчет валов и осей проводят на сопротивление усталости и на жесткость. Проверочный расчет выполняют после окончательной разработки конструкции вала или оси на основе проектировочного расчета. Проверку на сопротивление усталости производят по коэффициенту запаса прочности по максимальной длительно действующей нагрузке без учета кратковременных пиковых нагрузок (например, в период пуска).

Расчет валов на жесткость выполняют в случае, когда деформации (линейные или угловые) неблагоприятно влияют на работу сопряженных с валом деталей (зубчатых колес, подшипников и т. п.). Различают изгибную и крутильную жесткость вала. Изгибная жесткость оценивается прогибом вала, крутильная – углом закручивания.
Проверочный расчет осей на сопротивление усталости и изгибную жесткость выполняют аналогично расчету валов, с учетом того, что для осей Мк = 0 .

При разработке конструкции валов или осей рекомендуется детали, располагаемые на них, размещать по возможности ближе к опорам для уменьшения изгибающих моментов.
С целью уменьшения мест концентрации напряжений следует избегать излишних ступеней, отверстий и шпоночных пазов, а также других отклонений формы поперечного сечения вала или оси. Переходные участки следует выполнять в виде галтелей или канавок со скруглениями.



Прежде чем разбираться, чем отличаются между собой вал и ось, следует иметь четкое представление о том, что, собственно, представляют собой эти детали, для чего и где они используются и какие функции выполняют. Итак, как известно, валы и оси предназначены для удержания на них вращающихся деталей.

Определение

Вал - это деталь механизма, имеющая форму стержня и служащая для передачи на другие детали этого механизма крутящего момента, тем самым создавая общее вращательное движение всех расположенных на нем (на валу) деталей: шкивов, эксцентриков, колес и др.

Ось - это деталь механизма, предназначенная для соединения и скрепления между собой деталей данного механизма. Ось воспринимает только поперечные нагрузки (напряжение изгиба). Оси бывают неподвижные и вращающиеся.


Ось

Сравнение

Основное отличие оси от вала состоит в том, что ось не осуществляет передачу крутящего момента на другие детали. На нее оказывают воздействие только поперечные нагрузки, и она не испытывают сил кручения.

Вал, в отличие от оси, передает полезный крутящий момент деталям, которые на нем закреплены. Кроме того, оси бывают как вращающимися, так и неподвижными. Вал же вращается всегда. Большинство валов можно разделить по геометрической форме оси на прямые, кривошипные (эксцентриковые) и гибкие. Также бывают валы коленчатые или непрямые, которые служат для преобразования возвратно-поступательных движений во вращательные. Оси же по своей геометрической форме бывают только прямыми.

Выводы сайт

  1. Ось несет вращающиеся части механизма, не передавая им никакого крутящего момента. Вал передает другим деталям механизма полезный крутящий момент, так называемое вращающееся усилие.
  2. Ось может быть как вращающейся, так и неподвижной. Вал бывает только вращающимся.
  3. Ось имеет только прямую форму. Вал по форме может быть прямым, непрямым (коленчатым), эксцентриковым и гибким.

Ранее речь шла о передачах, как едином целом механизме, а также рассматривались элементы, непосредственно участвующие в передаче движения от одного звена механизма к другому. В данной теме будут представлены элементы, предназначенные для крепления частей механизма, непосредственно участвующих в передаче движения (шкивы, звёздочки, зубчатые и червячные колёса и т.п.). В конечном итоге, качество механизма, его КПД, работоспособность и долговечность в значительной мере зависят и от тех деталей, о которых будет идти речь в дальнейшем. Первыми из таких элементов механизма рассмотрим валы и оси.

Вал (рис. 17) – деталь машины или механизма предназначенная для передачи вращающего или крутящего момента вдоль своей осевой линии. Большинство валов – это вращающиеся (подвижные) детали механизмов, на них обычно закрепляются детали, непосредственно участвующие в передаче вращающего момента (зубчатые колёса, шкивы, звёздочки цепных передач и т.п.).

Ось (рис. 18) – деталь машины или механизма, предназначенная для поддержания вращающихся частей и не участвующая в передаче вращающего или крутящего момента. Ось может быть подвижной (вращающейся, рис. 18, а) или неподвижной (рис. 18, б).

Классификация валов и осей:

1. По форме продольной геометрической оси:

1.1.прямые (продольная геометрическая ось – прямая линия), например, валы редукторов, валы коробок передач гусеничных и колёсных машин;

1.2. коленчатые (продольная геометрическая ось разделена на несколько отрезков, параллельных между собой смещённых друг относительно друга в радиальном направлении), например, коленвал двигателя внутреннего сгорания;

1.3. гибкие (продольная геометрическая ось является линией переменной кривизны, которая может меняться в процессе работы механизма или при монтажно-демонтажных мероприятиях), часто используются в приводе спидометра автомобилей.

2. По функциональному назначению:

2.1. валы передач , они несут на себе элементы, передающие вращающий момент (зубчатые или червячные колёса, шкивы, звёздочки, муфты и т.п.) и в большинстве своём снабжены концевыми частями, выступающими за габариты корпуса механизма;

2.2. трансмиссионные валы предназначены, как правило, для распределения мощности одного источника к нескольким потребителям;

2.3. коренные валы - валы, несущие на себе рабочие органы исполнительных механизмов (коренные валы станков, несущие на себе обрабатываемую деталь или инструмент называют шпинделями ).

3. Прямые валы по форме исполнения и наружной поверхности:

3.1. гладкие валы имеют одинаковый диаметр по всей длине;

3.2. ступенчатые валы отличаются наличием участков отличающихся друг от друга диаметрами;

3.3. полые валы снабжены сквозным или глухим отверстием, соосным наружной поверхности вала и простирающимся на большую часть длины вала;

3.4. шлицевые валы по внешней цилиндрической поверхности имеют продольные выступы – шлицы, равномерно расположенные по окружности и предназначенные для передачи моментной нагрузки от или к деталям, непосредственно участвующим в передаче вращающего момента;

3.5. валы, совмещённые с элементами, непосредственно участвующими в передаче вращающего момента (вал-шестерня, вал-червяк).

Конструктивные элементы валов представлены на рис. 19.

Опорные части валов и осей, через которые действующие на них нагрузки передаются корпусным деталям, называются цапфами . Цапфу, расположенную в средней части вала, обычно называют шейкой . Концевую цапфу вала, передающую корпусным деталям только радиальную нагрузку или радиальную и осевую одновременно, называют шипом , а концевую цапфу, передающую только осевую нагрузку, называют пятой . С цапфами вала взаимодействуют элементы корпусных деталей, обеспечивающие возможность вращения вала, удерживающие его в необходимом для нормальной работы положении и воспринимающие нагрузку со стороны вала. Соответственно элементы, воспринимающие радиальную нагрузку (а часто вместе с радиальной и осевую) называют подшипниками , а элементы, предназначенные для восприятия только осевой нагрузки – подпятниками .

Кольцевое утолщение вала малой протяжённости, составляющее с ним одно целое и предназначенное для ограничения осевого перемещения самого вала или насаженных на него деталей, называют буртиком .

Переходная поверхность от меньшего диаметра вала к большему, служащая для опирания насаженных на вал деталей, называется заплечиком .

Переходная поверхность от цилиндрической части вала к заплечику, выполненная без удаления материала с цилиндрической и торцевой поверхности (рис. 20. б, в), называется галтелью . Галтель предназначается для снижения концентрации напряжений в переходной зоне, что в свою очередь ведёт к увеличению усталостной прочности вала. Чаще всего галтель выполняют в форме радиусной поверхности (рис. 20. б), однако в отдельных случаях галтель может быть выполнена в форме поверхности переменной двойной кривизны (рис. 20. в). Последняя форма галтели обеспечивает максимальное уменьшение концентрации напряжений, однако требует выполнения специальной фаски в отверстии насаживаемой детали.

Углубление малой протяжённости на цилиндрической поверхности вала, выполненное по радиусу к оси вала, называют канавкой (рис. 20, а, г, е). Канавка, также как и галтель, очень часто используется для оформления перехода от цилиндрической поверхности вала к торцевой поверхности его заплечика. Наличие канавки в этом случае обеспечивает благоприятные условия для формирования цилиндрических посадочных поверхностей, так как канавка является пространством для выхода инструмента, формирующего цилиндрическую поверхность при механической обработке (резец, шлифовальный круг). Однако канавка не исключает возможности образования ступеньки на торцевой поверхности заплечика.

Углубление малой протяжённости на торцевой поверхности заплечика вала, выполненное вдоль оси вала, называют поднутрением (рис. 20, д). Поднутрение обеспечивает благоприятные условия для формирования торцевой опорной поверхности заплечика, так как является пространством для выхода инструмента, формирующего эту поверхность при механической обработке (резец, шлифовальный круг), но не исключает возможности образования ступеньки на цилиндрической поверхности вала при её окончательной обработке.

Обе указанные проблемы решает введение в конструкцию вала наклонной канавки (рис. 20, е), которая совмещает достоинства, как цилиндрической канавки, так и поднутрения.

Рис. 21. Разновидности конфигурации цапф

Цапфы валов могут иметь форму различных тел вращения (рис. 21): цилиндрическую , коническую или сферическую . Шейки и шипы чаще всего выполняют в форме цилиндра (рис. 21, а, б). Цапфы такой формы достаточно технологичны при изготовлении и ремонте и широко применяются как с подшипниками скольжения, так и с подшипниками качения. В форме конуса выполняют концевые цапфы (шипы, рис. 21, в) валов, работающие, как правило, с подшипниками скольжения, с целью обеспечения возможности регулировки зазора и фиксации осевого положения вала. Конические шипы обеспечивают более точную фиксацию валов в радиальном направлении, что позволяет уменьшить биения вала при высоких частотах вращения. Недостатком конических шипов является склонность к заклиниванию при температурном расширении (увеличении длины) вала.

Сферические цапфы (рис. 21, г) хорошо компенсируют несоосности подшипников, а также снижают влияние изгиба валов под действием рабочих нагрузок на работу подшипников. Основным недостатком сферических цапф является повышенная сложность конструкции подшипников, что увеличивает стоимость изготовления и ремонта вала и его подшипника.

Пяты (рис. 22) по форме и числу поверхностей трения можно разделить на сплошные , кольцевые , гребенчатые и сегментные .

Сплошная пята (рис. 22, а) наиболее проста в изготовлении, но характеризуется значительной неравномерностью распределения давления по опорной площади пяты, затруднительным выносом продуктов износа смазочными жидкостями и существенно неравномерным износом.

Кольцевая пята (рис. 22, б) с этой точки зрения более благоприятна, хотя и несколько сложнее в изготовлении. При подаче смазки в приосевую область её поток движется по поверхности трения в радиальном направлении, то есть перпендикулярно направлению скольжения, и таким образом отжимает трущиеся поверхности одна от другой, создавая благоприятные условия для относительного проскальзывания поверхностей.

Рис. 22. Некоторые формы пят.

Сегментная пята может быть получена из кольцевой посредством нанесения на рабочую поверхность последней нескольких неглубоких радиальных канавок, симметрично расположенных по кругу. Условия трения в такой пяте ещё более благоприятные по сравнению с вышеописанными. Наличие радиальных канавок способствует образованию жидкостного клина между трущимися поверхностями, что ведёт к их разделению при пониженных скоростях скольжения.

Гребенчатая пята (рис. 22, в) имеет несколько опорных поясков и предназначена для восприятия осевых нагрузок значительной величины, но в этой конструкции достаточно трудно обеспечить равномерность распределения нагрузки между гребнями (требуется высокая точность изготовления, как самой пяты, так и подпятника). Сборка узлов с такими подпятниками тоже достаточно сложна.

Выходные концы валов (рис. 923) обычно имеют цилиндрическую или коническую форму и снабжаются шпоночными пазами или шлицами для передачи вращающего момента.

Цилиндрические концы валов проще в изготовлении и особенно предпочтительны для нарезания шлицов. Конические концы лучше центрируют насаженные на них детали и в связи с этим более предпочтительны для высокоскоростных валов.