Единица измерения твердости. Что такое твердость? Обозначение и определение твердости


Короткий путь http://bibt.ru

Твердость металла. Определение твердости металла. Метод Бринелля, Роквелла.

Твердость — это способность материала сопротивляться вдавливанию в него другого, более твердого тела: режущего инструмента, бойков молота, штампа и т. п.

Твердость характеризует возможность обработки металла на станках, в штампах, ручным инструментом. Определяется она несколькими способами.

Твердость сырых незакаленных сталей, чугуна и цветных металлов определяется на прессе Бринелля. Деталь с небольшой, предварительно зачищенной поверхностью устанавливается на подъемный столик пресса. В эту поверхность с определенным усилием вдавливается стальной закаленный шарик. На образце или детали остается отпечаток. Чем тверже металл, тем меньшими будут глубина и диаметр отпечатка, и наоборот. Разделив величину усилия, с которым вдавливался шарик, на площадь поверхности отпечатка, получим значение твердости по Бринеллю. Она измеряется в килограммсиле на квадратный миллиметр (кгс/мм 2) и обозначается буквами НВ.

Величина усилия и диаметр шарика выбираются в зависимости от толщины и вида испытуемого металла. Для деталей из толстого листового материала или образцов из прочных материалов (сталь, чугун) применяется шарик наибольшего диаметра— 10 мм и максимальная нагрузка — 3000 кгс. Толщина образцов во всех случаях должна быть не меньше 10-кратной глубины отпечатка.

Между пределом прочности при растяжении и твердостью по Бринеллю существуют следующие приблизительные соотношения: для кованой и катаной стали σ в = 0,36 НВ, для серого чугуна , для стального литья σ b =(0,3 — 0,4) НВ. Например, для стали твердостью НВ = 200 предел прочности будет равен: σ b = 200х0,36 = 72 кгс/мм 2 .

Твердость закаленных сталей определять на прессе Бринелля нельзя, так как ввиду малого размера отпечатка его трудно измерить. Если же увеличить нагрузку, то можно раздавить шарик. Поэтому твердость закаленных сталей определяется на приборе Роквелла путем вдавливания в металл алмазного конуса.

Твердость по Роквеллу характеризуется разницей между глубиной вдавливания конуса при двух определенных нагрузках. Глубина вдавливания измеряется автоматически, стрелка на циферблате прибора показывает значение твердости.

Твердость по Роквеллу выражается отвлеченными числами и обозначается буквами HRC. Твердость по Роквеллу можно пересчитать на твердость по Бринеллю.

При повышенных температурах твердость определяется также по методу отпечатка на прессе Бринелля. При этом необходимо учитывать изменение показаний в зависимости от времени испытаний. Чем меньше время, тем выше показатели твердости.

Измерение твердости металлов.

Методы измерения твердости металлов. Одним из широко распространенных видов испытания металлов является определение твердости. Твердость металла можно определять прямыми и косвенными методами.

Прямые методы испытания на твердость состоят в том, что в образец вдавливают специальный твердый наконечник (из закаленной стали, алмаза или твердого сплава) различной формы (шарик, конус, пирамиду). После снятия нагрузки остается отпечаток, величина которого характеризует твердость образца.

При косвенных методах оцениваются свойства металла, пропорциональные его твердости.

Испытания на твердость могут быть статическими и динамическими. К первому виду относятся испытания методом вдавливания, ко второму - методом ударного вдавливания.

В зависимости от характера и способа приложения нагрузки твер­дость косвенно характеризует различные механические свойства метал­лов. Если наконечник вдавливается в образец, то твердость характеризует сопротивление пластической де­формации. Если наконечник цара­пает об-

разец, то твердость характеризует сопротивление разрушению. Твердость, определенная по отскоку наконечника, характеризует упругие свойства металла образца.

По значению твердости металла можно составить представление об уровне его свойств. Например, чем выше твердость, определенная вдав­ливанием наконечника, тем меньше пластичность металла, и наоборот.

Метод измерения твердости имеет ряд преимуществ перед другими методами механических испытаний металла: простота техники и быстрота испытаний, простота формы и небольшие размеры образцов, возможность проводить испытание непосредственно на изделии без его разрушения.

Твердость определяют на специальных приборах - твердомерах.

Твердомеры бывают стационарные и переносные. Принципиальное устройство твердомеров для всех методов испытаний на твердость одина­ково.

Основными узлами твердомеров являются станина, рабочий столик, наконечник (узел, состоящий из оправки и индентора), нагружающее уст­ройство, прибор для измерения величины деформации.

Общая схема испытания такова: деталь или образец помещают на рабочем столике, с помощью нагружающего устройства в образец вдавли­вают индентор и после снятия нагрузки определяют твердость.

В зависимости от цели испытания, свойств испытуемого металла, размеров образца выбирают форму, раз­мер и материал индентора, вели­чину и длительность приложения нагрузки.

Наиболее часто проводят определение твердости следующими ме­тодами: измерение твердости по Бринеллю - по ГОСТ 9012 - 59; измере­ние твердости по Роквеллу - по ГОСТ 9013 - 54; измерение твердости по Виккерсу - по ГОСТ 2999 - 75; изменение твердости методом ударного отпечатка - по ГОСТ 18661 - 73; измерение микротвердости вдавлива­нием алмазных наконечников - по ГОСТ 9450 - 76.

Существуют общие требования к подготовке образцов и проведе­нию испытаний:

1. Изготовление образцов и подготовка поверхности должны осуществляться способами, исключающими изменения свойств металла из-за нагрева или наклепа.

2. Поверхность образца должна быть чистой, без окислых пленок, следов ржавления или окалины, трещин и прочих дефектов.

3. Образцы должны быть определенной толщины. После нанесения отпечатка на обратной стороне образца не должно быть следов деформации.

4. Образец должен лежать на столике жестко и устойчиво. В процессе испытания образец не должен смещаться или прогибаться.

5. Прилагаемая нагрузка должна действовать перпендикулярно к поверхности образца.

6. Нагрузка должна прилагаться и возрастать плавно до заданного значения, а далее поддерживаться постоянной в течение определенного времени.

Измерение твердости по Бринеллю. При определении твердости методом Бринелля в испытуемый образец или изделие вдавливается в течение определенного времени металлический шарик (рис. 5). После снятия нагрузки на поверхности образца остается сферический отпечаток. Величина отпечатка зависит от твердости металла: чем тверже металл, тем меньше будет величина отпечатка. Число твердости по Бринеллю обозначается НВ.

Рис. 5. Схема расположения отпечатка при определении твердости методом Бринелля

Чтобы определить число твердости НВ (МПа или кгс/мм 2), надо величину приложенной нагрузки Р разделить на площадь отпечатка F :

,

где D - диаметр шарика, м (или мм);

d - диаметр отпечатка, м (или мм);

Чтобы не производить каждый раз вычисления, при определении числа твердости пользуются специально cоставленной таблицей (приложение к ГОСТ 9012- 59). Зная нагрузку, диаметры шарика и отпечатка, по этой таблице можно определить число твердости НВ.

Для испытания применяют шарики из закаленной стали или твер­дого сплава диаметром 2,5; 5,0 и 10 мм. Диаметр шарика выбирают в за­висимости от толщины испытуемого образца и его твердости: чем тоньше и тверже образец, тем меньше должен быть диаметр шарика. Обычно ис­пытание проводят на специально подготовленной горизонтальной пло­щадке образца.

Толщина испытуемого образца должна быть не меньше десятикрат­ной глубины отпечатка. Глубину отпечатка определяют пробным испытанием или, если известен уровень твердости, по формуле

где h - глубина отпечатка;

D - диаметр шарика;

НВ - число твердости.

Между временным сопротивлением и числом твердости HB существует следующая зависимость:

Для стали σ в = 0,34 HB;

Для медных сплавов σ в = 0,45 HB;

Для алюминиевых сплавов σ в = 0,35 HB.

Расстояние от центра отпечатка до края образца дол­жно быть не менее 2,5d ,а между центрами двух соседних отпечатков - не менее 4d .Диаметр отпечатка d измеряют при помощи лупы или отсчетного микроскопа (рис. 6) в двух взаимно перпендикулярных направлениях и определяют среднее арифметическое из двух определений.

В зависимости от твердости металла нагрузка на шарик может изменяться от 15,6 до 3000 кгс. Чтобы результаты испытаний были сопоставимы при любом диаметре взятого шарика, между нагрузкой и диаметром шарика должно выдерживаться соотношение: P = 2,5D 2 , Р = 10D 2 , P = = 30D 2 .

Длительность приложения нагрузки должна быть достаточной для прохождения деформации и возрастать с уменьшением твердости испытуемого металла от 10 до 30 и 60 с.

При выборе диаметра шарика D ,нагрузки Р , продолжительности выдержки под нагрузкой t и минимальной толщины образца руководствуются табл. 1.

Запись результатов испытания проводится следующим образом. Если испытание проводится шариком диаметром D = 10 мм под нагрузкой Р = 3000 кгс с выдержкой D = 10 с, то записывается число твердости с cимвoлoм НВ. Например, твердость стали 350 НВ. Если условия испытания иные, то это показывается соответствующими индексами. Например, число твердости 230 и испытание проводилось шариком диаметром D = 5,0 мм при нагрузке 750 кгс с выдержкой под нагрузкой 10 с. В этом случае результаты записываются так: НВ 5/750/10/230.

Рис. 6. Измерение диаметра отпечатка по шкале лупы

Таблица 1

Выбор параметров испытания при определении твердости

методом Бринелля

Материал Интервал твердости в числах Бринелля Минимальная толщина испытуемого образца, мм Соотношение между нагрузкой Р и диаметром шарика Диаметр шарика D, мм Выдержка под нагрузкой, с
Черные металлы 140-150 От 6 до 3 От 4 до 2 <2 P = 30D 2 10,0 5,0 2,5 187,5
<140 >6 От 6 до 3 <3 P = 10D 2 10,0 5,0 2,5 62,5
Цветные металлы >130 От 6 до 3 От 4 до 2 >2 P = 30D 2 10,0 5,0 2,5 187,5
35-130 От 6 до 3 От 6 до 3 <2 P = 10D 2 10,0 5,0 2,5 62,5
8-35 >6 От 6 до 3 <3 P = 2,5D 2 10,0 5,0 2,5 62,5 15,6

Измерение твердости по Роквеллу. При измерении твердости этим методом алмазный конус или стальной шарик вдавливается в испытуемый образец под действием общей нагрузки Р. Причем сначала прилагается предварительная нагрузка Р 0 , а затем основная P 1 , т. е. Р = Р 0 + P 1 . Твердость определяют по глубине отпечатка (рис. 7). За единицу твердости по Роквеллу принята условная величина, соответствующая осевому перемещению наконечника на 0,002 мм. В зависимости от твердо­сти испытуемого образца испытание проводят вдавлива­нием алмазного конуса или шарика при различной величине основной и общей нагрузки. При испытании твердость можно измерять по трем шкалам: А, В и С (табл. 2).

Поверхность для испытания может быть плоской и криволинейной. Радиус кривизны поверхности должен быть не менее 15 мм. Минимальная толщина образца должна быть не меньше восьмикратной глубины внедре­ния индентора после снятия основной нагрузки P 1 .

При измерении твердости расстояние между центрами двух соседних отпечатков или расстояние от центра отпечатка до края образца должно быть не менее 3,0 мм. На каждом образце проводят не менее трех измерений.

Рис. 7. Схема испытания на твердость по методу Роквелла

Таблица 2

Выбор параметров при определении твердости методом Роквелла

Измерение твердости по Виккерсу. При измерении твердости по этому методу в образец вдавливается алмазный наконечник, имеющий форму правильной четырехгранной пирамиды. Нагрузка Р действует в течение определенного времени.

Величина нагрузки может быть следующей: 1,0; 2,0; 5,0; 10,0; 20,0; 30,0; 50,0; 100,0 кгс. Чем больше нагрузка, тем более точным получается результат.

Продолжительность выдержки образца под нагрузкой составляет обычно 10-15 с.

Поверхность испытуемого образца должна быть хорошо подготовлена - шероховатость ее не должна превышать 0,16 мкм. Минимальная толщина стального образца должна быть больше диагонали от­печатка в 1,2 раза, а образцов из цветных металлов в 1,5 раза. Радиус кривизны по­верхности должен быть не менее 5 мм.

Отпечатки ставят так, чтобы расстояние между центром отпе­чатка и краем образца или краем соседнего отпечатка было не ме­нее 2,5 длины диагона­ли отпечатка (рис. 8).

Рис. 8. Схема расположения отпечатка при определении твердости методом

Виккерса

Погрешность при измерении диагоналей должна быть не более ±0,001 мм при длине диагонали до 0,2 мм, а при большей длине не более 0,5%.

Твердость по Виккерсу (HV) вычисляют по формуле:

,

α - угол между противополож­ными гранями пирамиды при вершине, равный 136°;

d - среднее арифметическое значение длин обеих диагоналей отпечатка после снятия на­грузки, мм.

Если испытания прово­дятся в стандартных усло­виях, то, чтобы не прово­дить вычисления, пользуются таблицей (приложение к ГОСТ 2999-75), в которой приведена твердость в зави­симости от длины диагонали отпечатка при различной нагрузке.

При записи результатов испытаний в обычных усло­виях твердость по Виккерсу обозначается символом HV. Обычными условиями испытания считаются нагрузка 300 Н (30 кгс) и время выдержки 10-15 с. В этом случае твердость записывается,например, HV 300. Если условия испытания другие, то это указывается индексами, причем сначала указывается величина нагрузки, потом время выдержки. Например, запись HV 20/40 - 250 значит, что при нагрузке 200 Н (20 кгс) и времени выдержки 40 с твердость по Виккерсу 250.

Твердость характеризует сопротивление материала проникновению в него более твердого тела (например, при вдавливании или царапании). Твердость связана с прочностью материала и в определенной степени характеризует его сопротивление износу.

Твердость обычно характеризуют числом твердости . Для пластичных материалов (металлов и сплавов), тканей зуба число твердости определяется как отношение нагрузки F , действующей на вдавливаемое тело (индентор), к площади S поверхности отпечатка, образовавшегося в материале после снятия нагрузки.

Методы измерения твердости различаются между собой формой индентора и материалом, из которого он сделан. Например, при определении твердости методом Бринелля в образец вдавливается стальной шарик, а методом Виккерса и Кнуппа – алмазная пирамидка.

Обозначения твердости : Н B (или НВ ) – твердость по Бринеллю, Н V (или HV ) – твердость по Виккерсу, Н К (или ) – твердость по Кнуппу.

Метод Бринелля используется в стоматологической практике для определения макротвёрдости металлов и их сплавов. В данном случае в испытуемый образец под действием нагрузки (Р ) в течение определённого времени вдавливается металлический шарик. После снятия нагрузки на поверхности образца остается сферический отпечаток площадью S и диаметром М (рис. 8). Величина отпечатка зависит от твёрдости металла: чем он твёрже, тем меньше величина отпечатка.

Рис. 8 Схематичное представление испытания материала на твердость по методу Бринеля

Число твердости по Бринеллю обозначается НВ и определяется по формуле: или

где D –диаметр шарика; М – диаметр отпечатка;

В случае определения твёрдости НВ шариком с D = 10 мм при нагрузке Р = 3000 кгс и времени выдержки t = 10 с число твёрдости записывают так: НВ 400, НВ 250, НВ 500 и т.д. При использовании других условий испытания индекс НВ дополняют цифрами, указывающими диаметр использованного шарика (мм), нагрузку (кгс) и продолжительность выдержки (с). Например, НВ 5/750/30-350 – это число твёрдости по Бринеллю (350 кгс/мм 2), полученное при вдавливании шарика с D = 5мм нагрузкой Р = 750кгс, в течении t = 30 c.

Основными современными способами определения твёрдости следует считатьметод Виккерса и его усовершенствованный вариант - метод Кнуппа .

При измерении твёрдости по методу Виккерса в поверхность испытуемого образца или изделия вдавливают алмаз в форме пирамиды, в основании которой лежит квадрат с углом между противоположными гранями 136°.

Рис. 9 Схематическое представление испытания на твердость по методу Виккерса

Число твердости по Виккерсу (HV ), вычисляют по формуле:

HV = 1,854 - среднее арифметическое длин обеих диагоналей отпечатка, мм.

При испытаниях применяют нагрузки от 50 до 1000 Н (от 5 до 100 кгс). Обычными условиями испытания считаются: нагрузка 300 Н (30 кгс) и время выдержки 10 – 15с. В этом случае твёрдость по Виккерсу записывается, например HV 400, т.е. она равна 400 кгс/мм 2 . Если условия испытания другие, то это отражается цифрами, причём сначала указывается величина нагрузки, потом – время выдержки. К примеру, запись HV 20/40 – 250 означает, что при нагрузке 200 Н (20 кгс) и времени выдержки 40 с, твёрдость по Виккерсу равна 250 кгс/мм 2 .

Для оценки твёрдости в малых объёмах, например, на зёрнах металла и его структурных составляющих применяют способ измерения микротвердости по Виккерсу , где в качестве индентора используется пирамида Виккерса. Нагрузка на индентор в этом случае невелика 0,05–5Н (0,005 – 0,5кгс), а размер отпечатка 5–30мкм. Ценность данного метода состоит и в том, что при его использовании вследствие малых нагрузок вдавливания удается испытывать очень тонкие и хрупкие образцы, определять твёрдость тонких поверхностных слоев материала и различных фаз, входящих в его состав. Поэтому метод можно использовать также для определения твёрдости структур, форми­рующих зуб. Важно и то, что, в отличие от метода Бринелля, метод Виккерса позволяет определить твёрдость мелких готовых изделий, не разрушая и не портя их вследствие малой величины отпечатка.

При определении твердости по методу Кнуппа используется алмазный индентор в виде ромбической пирамиды. При этом создается отпечаток в виде ромба, в котором одна диагональ в 7 раз длиннее другой.

Число твёрдости, определённое по методу Кнуппа (НК ) определяется по формуле:

HK =12,87 ,

- величина длинной диагонали, мм.

Метод Кнуппа наиболее универсален, так как позволяет измерять твёрдость зубной эмали, дентина, металлических сплавов, золота, фарфора, резины и т.д.

В основе метода Мооса лежит использование шкалы Мооса – десятибалльной шкала твёрдости материалов, предложенной немецким минерологом Ф. Моосом. В этой шкале за эталоны приняты твёрдости следующих 10 материалов, начиная с наиболее мягкого: талька – принята за 1, гипса – 2, кальция – 3, флюорита – 4, апатита – 5, ортоклаза – 6, кварца – 7, топаза – 8, корунда – 9, алмаза – 10. Для определения твёрдости и места в шкале Мооса какого-либо материала его пробуют царапаньем: он будет мягче того минерала, который оставляет на нём царапину и тверже того, на котором он сам оставляет черту.

Твердость измеряется в СИ в H/м 2 = Па или для больших значений в МПа, ГПа (1 Па = 10 –9 ГПа = 10 –6 МПа). Однако на практике часто используют внесистемные единицы, в первую очередь, кгс/мм 2:

1 кгс (килограмм-сила) = 1кг × 9,81 м/с 2 ≈ 10 кг×м/с 2 = 10 Н;

1 кгс/мм 2 ≈ 10 Н/мм 2 = 10 7 Н/м 2 = 10 МПа.

Твёрдость металлов

сопротивление металлов вдавливанию. Т. м. не является физической постоянной, а представляет собой сложное свойство, зависящее как от прочности и пластичности, так и от метода измерения. Т. м. характеризуется числом твёрдости. Наиболее часто для измерения Т. м. пользуются методом вдавливания. При этом величина твёрдости равна нагрузке, отнесённой к поверхности отпечатка, или обратно пропорциональна глубине отпечатка при некоторой фиксированной нагрузке. Отпечаток обычно производят шариком из закалённой стали (методы Бринелля, Роквелла), алмазным конусом (метод Роквелла) или алмазной пирамидой (метод Виккерса, измерение микротвёрдости (См. Микротвёрдость)). Реже пользуются динамическими методами измерения, в которых мерой твёрдости является высота отскакивания стального шарика от поверхности изучаемого металла (например, метод Шора) или время затухания колебания маятника, опорой которого является исследуемый металл (метод Кузнецова - Герберта - Ребиндера). Получает распространение метод измерения Т. м. с помощью ультразвуковых колебаний, в основе которого лежит измерение реакции колебательной системы (изменения её собственной частоты) на твёрдость испытуемого металла. Числа твёрдости указываются в единицах НВ (метод Бринелля), HV (метод Виккерса), HR (метод Роквелла), где Н от английского hardness - твёрдость. Поскольку при определении твёрдости методом Роквелла пользуются как стальным шариком, так и алмазным конусом, часто вводятся дополнительные обозначения - В (шарик), С и А (конус, разные нагрузки). По специальным таблицам или диаграммам можно осуществлять пересчёт чисел твёрдости (например, число твёрдости по Роквеллу можно пересчитать на число твёрдости по Бринеллю). Выбор метода определения твёрдости зависит от исследуемого материала, размеров и формы образца или изделия и др. факторов.

Твёрдость весьма чувствительна к изменению структуры металла. При изменении температуры или после различных термических и механических обработок величина Т. м. и сплавов меняется в том же направлении, что и предел текучести; поэтому часто при контроле изменения механических свойств после различных обработок металл характеризуют твёрдостью, которая измеряется проще и быстрее. Измерениями микротвёрдости пользуются при изучении механических свойств отдельных зёрен, а также структурных составляющих (См. Структурная составляющая) сложных сплавов.

Для относительной оценки жаропрочности металлических материалов иногда пользуются так называемой длительной твёрдостью (или микротвёрдостью), измерение которой производят при повышенной температуре длительное время (минуты, часы).

Лит.: Геллер Ю. А., Рахштадт А. Г., Материаловедение, 4 изд., М., 1975, с. 167- 90.

В. М. Розенберг.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Твёрдость металлов" в других словарях:

    Сопротивление материала вдавливанию или царапанию. Т. не является физической постоянной, а представляет собой сложное свойство, зависящее как от прочности и пластичности материала, так и от метода измерения. Подробнее см. Твёрдость… …

    У этого термина существует и другое значение, см. Твёрдость по Шору. При этом следует понимать, что хотя в другом значении этот метод так же является методом измерения твёрдости, оба метода предложены одним и тем же автором, имеют совпадающие… … Википедия

    У этого термина существуют и другие значения, см. Твёрдость (значения). Твёрдость это способность материала сопротивляться проникновению в него другого, более твёрдого тела индентора во всем диапазоне нагружения: от момента касания с… … Википедия

    Сплавы металлов, металлические сплавы, твёрдые и жидкие системы, образованные главным образом сплавлением двух или более металлов, а также металлов с различными неметаллами. Термин «С.» первоначально относился к материалам с металлическими… … Большая советская энциклопедия

    Металл в термопечи Термическая обработка металлов и сплавов процесс тепловой обработки металлических изделий, целью которого является изменение структуры и свойств в заданном направлении … Википедия

    Твёрдость по Роквеллу - Роквелла метод [по имени американского металлурга С.Роквелла (S.Rockwell), разработавшего этод метод] способ определения твёрдости материалов (главным образом металлов) вдавливанием в испытываемую поверхность алмазного индентора с углом при… … Металлургический словарь - Методы измерения твёрдости по Шору: Твёрдость по Шору (Метод вдавливания) для низкомодульных материалов (полимеров). Твёрдость по Шору (Метод отскока) для высокомодульных материалов (металлов) … Википедия

    Отпуск металлов, вид термической обработки, заключающийся в нагреве закалённого сплава до температуры ниже нижней критической точки, выдержке и последующем охлаждении. Термин «О.» применяют главным образом к сталям. Процессы распада… … Большая советская энциклопедия

Все мы знаем, что каждый материал на земле обладает разными свойствами: физическими, химическими, механическими, технологическими, эксплуатационными и многими другими. Также сюда можно отнести и твердость. Все они вместе позволяют предопределить их применение в той или иной сфере человеческой жизнедеятельности. Но что такое твердость металлов, сплавов или любых других материалов? Среди прочих свойств это наиболее интересно, поскольку нет четкого его определения.

Что представляет собой твердость?

Твердость любого материала является его важной характеристикой, поскольку от этого зависит стойкость и долговечность изготавливаемых конструкций. А так как четкого определения нет, то сам термин можно «расшифровать» так - это свойство материала оказывать сопротивление проникновению в него другого тела (инструмента). Эта характеристика позволяет оценить качество многих объектов:

  • металла (сплавы);
  • керамики;
  • древесины;
  • пластика;
  • камня;
  • графита.

Помимо этого, твердость влияет на степень обработки того или иного материала. То есть чем он тверже, тем труднее с ним работать. Справедливо и обратное. Поэтому с деревом приятно иметь дело при изготовлении различных поделок.

У разных специалистов свое понятие твердости. К примеру, в области минералогии под этим определением понимается сопротивление одного материала к появлению царапин при воздействии другого объекта.

В металлургии несколько иначе понимают, что такое твердость - сопротивляемость пластической деформации. Но основное определение, на которое ссылается большинство специалистов любой профессии, уже приведено в самом начале раздела.

Тем не менее твердость может проявляться по-разному:

  • жесткость;
  • сопротивляемость:
    • царапанию;
    • истиранию;
    • резанию;
  • деформация:
    • изгиб;
    • излом;
    • изменение формы.

Чем выше величина твердости, тем большая степень сопротивляемости у материала. Исходя из такого многообразия проявления такого свойства, существуют разные способы по его измерению.

Способы измерения твердости

Что характерно, испытание на твердость проводится чаще, чем определение всех остальных свойств материалов - прочности, относительного удлинения и прочих. Способов узнать, насколько тверда сталь или любой другой минерал, несколько. Но все они основываются на общем принципе: на испытываемый образец воздействуют другим объектом, прилагая определенное давление. Это может быть шарик, пирамида, пуансон.

Определение твердости производится по глубине внедрения и показателям давления. Минимальные усилия и большая глубина говорят о низких свойствах материала. Равносильно и наоборот, большие усилия и малая глубина - твердость высокая.

При этом испытания могут быть двух основных видов:

  • Статические.
  • Динамические.

Если контакт исследуемого образца и объекта происходит в течение определенного промежутка времени, то испытание носит статичный характер. В ином случае речь идет о динамичном способе определения твердости.

В настоящее время для определения твердости материалов применяют:

  • Метод Виккерса (ГОСТ 2999-75).
  • Метод Бринелля (ГОСТ 9012-59).
  • Метод Роквелла (ГОСТ 9013-59).
  • Метод Шора.
  • Метод Мооса.

Выбор того или иного испытания зависит от специфики применения деталей, необходимой точности результата, а также способности воспроизвести исследования при различных условиях.

Способ Виккерса

Что такое твердость по Виккерсу? Суть данной методики заключается во вдавливании пирамиды, изготовленной из алмаза, в образец. У пирамидального индентора соотношение сторон должно быть строго определенным. В результате проведения испытания на исследуемом образце остается ромбовидный отпечаток, причем иногда он может быть неправильной формы.

Твердость обознается двумя латинскими буквами - HV - и устанавливается в зависимости от значения диагонали полученного ромба. Иногда используется среднее арифметическое значение обеих диагоналей.

Оборудование, с помощью которого измеряется твердость по Виккерсу, относится к статичному типу и может быть стационарным либо переносным. При этом сама процедура выполняется следующим образом:

  • Образец помещается на рабочий стол оборудования исследуемой поверхностью кверху. Затем она вместе со столом поднимается вверх до легкого соприкосновения с рабочим наконечником.
  • При помощи реле времени задается определенный час воздействия, после чего остается опустить рычаг, который приводит в действие нагружающий механизм. По окончании времени испытания нагрузка с детали снимается и наконечник возвращается в прежнее положение.
  • Оборудование оснащено отсчетным микроскопом, поэтому после завершения операции нужно развернуть стол с образцом к нему и измерить диагонали отпечатка.

В некоторых случаях твердость стали или любого другого материала по данной методике указывается со значением нагрузки. К примеру, такое обозначение HV 50 940 говорит о том, что твердость равна 940 единиц при воздействии нагрузки, равной 50 кг.

Достоинствами данного способа испытания являются:

  • Можно измерять детали практически с любой толщиной за счет малой площади поверхности, которую занимает индентор (самое крайнее положение).
  • Высокая точность результата, что обусловлено идеальной степенью твердости алмазного наконечника. Как следствие, сам он не подвержен деформации.
  • Диапазон измерений довольно широкий и способен охватывать как относительно непрочные металлы наподобие алюминия и меди, так и высокопрочные стали, сплавы.
  • Есть возможность определения твердости отдельно взятого слоя металлов. К примеру, образец прошел процесс цементации либо у детали изменен химический состав вследствие поверхностного упрочнения или легирования.

Как показывает практика, диапазон измерений твердости составляет от 145 до 1000 HV. Чтобы измерить твердость большой партии образцов, существует автоматизированное оборудование компании Reicherter из Германии, имеющее гидравлический или электромеханический привод. Расчет результата проводится автоматизировано, после чего выводится на монитор.

Твердость по Бринеллю

Твердость по этому методу обозначается тоже двумя, но уже другими буквами - HB - и тоже является статичным испытанием. Температура при исследовании должна быть в пределе 20±10 °С. Его суть в следующем - образец сдавливается стальным закаленным шариком. Также в комплекте к оборудованию имеется еще один шарик, который изготовлен из вольфрамокобальтового твердого сплава. Это позволяет увеличить диапазон измерения твердости.

Согласно стандарту, определены некоторые условия в отношении того, что такое твердость по Бринеллю:

  • Нагружать образец стоит в пределах от 12,25 до 29420 Н.
  • Размер шариков составляет 1-10 мм.
  • Длительность воздействия не должна превышать 10-15 с.
  • Отпечаток на образце не должен выходит за пределы: 0,2-0,7 D (D - диаметр шарика.)

Процесс измерения проходит так:

  • Образец помещается на стол и закрепляется по упору.
  • На приводе ставится необходимое значение нагрузки, после чего задействуется шпиндель.
  • По окончании процедуры рабочий наконечник принимает первоначальное положение. На экране можно увидеть стрелочный индикатор, который укажет величину диаметра отпечатка. Сама твердость устанавливается с помощью таблицы, расположенной на станине оборудования. Если необходимо поменять нагрузку, то для этого есть комплект переустанавливаемых штырей.

Существуют переносные инструменты, которые хорошо использовать в полевых условиях. Они оснащены струбциной, к которой крепится образец, а нагрузка создается рукояткой.

Рабочий диапазон по измерению твердости сплавов составляет 8-450 HB, что соответствует большинству марок сталей и сплавов, которые используются в производстве разных металлоконструкций. Но стоит только превысить верхний предел измерений, как точность уже не соответствует действительности, что обусловлено деформацией индентора. Не рекомендуется использовать твердосплавные шарики, если ожидаемая твердость 350-450 HB.

Главным преимуществом метода Бринелля можно считать возможность определять твердость горячих образцов. В то же время нельзя определить ее на кромках или краях деталей либо у тонких образцов.

Метод Роквелла

Буквы, обозначающие твердость по Роквеллу, - это HR. При этом методе в образец вдавливается стальной шарик либо алмазный конус.

Испытание проводится при следующих условиях:

  • Предварительно образец нагружается, что позволяет избежать влияния ряда поверхностных факторов: шероховатость, температура, скорость внедрения индентора.
  • Производится основная нагрузка, по которой проводится расчет результата.
  • Процедура завершается снятием нагрузки.

Если данный метод сравнивать с предыдущими способами определения твердости, то здесь фигурируют три шкалы.

  • A - обозначается HRA, индентор - алмазный конус, диапазон измерений: 60-80 HRA. Применима к высокоуглеродистым легированным инструментальным сталям, а также твердым сплавам.
  • B - обозначается HRB, индентор - закаленный шарик, диапазон измерений: 35-100 HRB. Это уже стали средней твердости и сплавы цветных металлов.
  • C - обозначается HRC, индентор - алмазный конус, диапазон измерений: 20-90 HRC. Для сталей средней твердости.

Если речь заходит про специфические условия вычисления твердости, к примеру, холоднокатаная тонколистовая сталь, то используется методика Супер-Роквелла с обозначением твердости HRN и HRT.

Оборудование тоже может быть как стационарным, так и переносным. При этом первый тип управляется при помощи электромеханического либо гидравлического привода.

Измерения по Роквеллу проводить сложнее, поскольку необходимо задавать первичную, а потом вторичную скорость перемещения индентора. К тому же алмазный рабочий наконечник имеет форму конуса, что отражается на получении результата. И определить размеры полученного отпечатка здесь гораздо сложнее.

Твердость по Шору

Метод Шора обладает главной отличительной чертой. Все описанные выше способы определения твердости металлов и прочих материалов обладали общим недостатком - на поверхности исследуемого образца появляется отпечаток. В этом случае при необходимости испытываемую деталь невозможно обратно установить в узел либо конструкцию. Методика Шора полностью исключает такую деформацию.

К тому же замер, к примеру, твердости стали, относится уже к испытанию динамического типа, и его суть сводится к следующему. К поверхности исследуемого образца подводится склероскоп (портативный твердомер), внутри которого находится стальной баек с наконечником из алмаза. Твердость определяется так: чем мягче материал, тем меньшим будет расстояние отскока, вследствие поглощения удара самим материалом. А чем тверже образец, тем большим будет отскок.

Диапазон измерений составляет от 30 до 140 HS. Закаленная высокоуглеродистая сталь соответствует значению 100 HS. А поскольку оборудование не повреждает поверхность изделий, то оно актуально для испытаний тех деталей, которые входят в конструкцию действующего узла или агрегата.

Методика проста в реализации, оценка производится довольно быстро и деталь можно снова установить в узел. Все это можно считать главными преимуществами. Тем не менее есть некоторые ограничения.

Шкала твердости HS не имеет стандарта, но есть таблицы и графики, которые позволяют перевести единицы по ШОРу в значения HV, HR или HB. На расстояние отскока бойка влияет такая характеристика, как модуль Юнга. Поэтому невозможно сопоставить единицы HS разных материалов.

К тому же твердость по ШОРу - это всего лишь сравнительное значение. Вдобавок точность результатов заметно ниже, чем у всех перечисленных выше аналогов.

Шкала Мооса

Немецкий ученый Фридрих Моос еще в далеком 1811 году предложил свой способ определения твердости разных материалов. При этом его шкала содержит значения от 1 до 10, что соответствует самым распространенным минералам, начиная с талька (самый мягкий камень) и заканчивая алмазом (самый твердый).

Сама методика очень проста и основывается на сопротивляемости исследуемого образца царапанию. К примеру, объект B может поцарапать тело C, но никак не воздействует на деталь A. Или, напротив, материал A только слегка царапает деталь B, но может сильно повредить объект C.

Несмотря на то что способ определения твердости по шкале Мооса был предложен чуть более двух веков назад, он успешно применяется по сей день. Только полученный результат дает далеко не полную информацию, поскольку здесь нет абсолютных значений и невозможно определить соотношение по твердости. Иными словами, нельзя сказать, во сколько раз один из материалов тверже либо мягче другого.

Эталоны твердости Мооса

В качестве эталона по определению твердости по методу Мооса берутся эти 10 минералов (далее в скобках будет указан присвоенноезначение):

  1. Тальк.
  2. Гипс.
  3. Кальцит.
  4. Флюорит.
  5. Апатит.
  6. Ортоклаз.
  7. Кварц.
  8. Топаз.
  9. Корунд.
  10. Алмаз.

Что же представляют собой эти минералы? Опишем их все вкратце ниже.

Первая пятерка

Тальк настолько мягок, что можно царапнуть ногтем. Такая же твердость у карандашей (точнее графита). По шкале соответствует единице. Многим людям он хорошо известен, так как из него изготавливается детская присыпка.

Следующий по твердости - это гипс (2), который тоже легко царапается и имеет особенное свойство. Стоит его измельчить в порошок и смешать с водой - получится пластинчатая масса, которой можно придать любую форму. Помимо белого цвета, есть оригинальные варианты желтого оттенка.

На третьем месте кальцит не случайно (3). Ногтем его уже не поцарапать, зато это можно сделать медной монетой. Такая же степень твердости у золота и серебра. Его второе название - биоминерал, и именно из него состоят раковины.

Флюорит по-другому именуется как плавиковый шпат и переводится как «текучий». Ни ногтем, ни монетой он не царапается, чего нельзя сказать про стекло или обычный нож. Его твердость, как можно понять, - 4.

На пятом месте располагается апатит (5), который еще поддается царапанию при помощи ножа или стекла (такой же характеристикой может похвастать лазурит). При помощи этого минерала добывается фосфор либо фосфорная кислота.

Вторая пятерка

Шестым в списке идет ортоклаз, который уже не берет стекло, но напильнику он противостоять не сможет. Для промышленности он ценен как источник для производства электрокерамики и фарфора. Аналогичная твердость у опала, только его нельзя использовать в качестве эталона, поскольку есть много его разновидностей и у всех свои прочностные характеристики.

На седьмом месте в нашем «рейтинге» свойств твердости располагается всем известный кварц, что соответствует его показателю - 7. Многие знают его как обычный песок. Однако он может быть и в прочих формах: в виде горного хрусталя, агата, аметиста.

Среди рассмотренных минералов самым твердым является топаз (8). Он с трудом поддается обработке, и в большинстве случаев для этого используется алмаз. Впервые он был обнаружен на острове Топазиос, что расположен в Красном море. Отсюда и пошло его название.

Корунд вроде бы идентичен по твердости алмазу, тем не менее при помощи других методик были определены его характеристики. И как итог - алмаз гораздо тверже корунда (в 90-180 раз). Рубины и сапфиры тоже приравниваются к этому минералу, а за счет своей твердости он идеально подходит для изготовления абразивных инструментов.

Замыкает всю десятку алмаз, которому из всех существующих минералов нет равных по части прочности, и его показатель по шкале твердости - заслуженная 10!