Удельный вес нефти и воды. Плотность нефти и методы определения плотности нефтепродуктов

Удельный вес нефти зависит от нескольких причин: во-пер-вых, от содержания легкокипящих фракций, обладающих низ-кими удельными весами, во-вторых, от содержания смолистых веществ с высокими удельными весами (около 1) и, в-третьих, от типа преобладающих в нефти углеводородов. В количествен-ном отношении влияние легкокипящих компонентов значитель-нее, чем влияние смол, так как разница в удельных весах легко-кипящих компонентов и средних фракций нефти выше, чем раз-ница между плотностями смол и средних фракций. Третья при-чина — характер преобладающих в нефти углеводородов, имеет значение главным образом для сравнения более или менее широ-ких нефтяных фракций с одинаковыми границами кипения.

Удельный вес нефти в среднем колеблется от 0,82 до 0,90, хотя известно много примеров, когда величина удельного веса поднимается почти до 1 или падает до 0,76. Последние случаи относятся к так называемым фильтрованным нефтям, или нефтям газоконденсатного происхождения; в таких нефтях отсутствуют высококипящие фракции, а сами нефти не могут рассматриваться как обладающие нормальными свойствами.

Величина удельного веса нефти и ее продуктов всегда опре-деляется при 20° С и относится к воде при 4° С. Температурный коэффициент расширения нефти довольно значителен и обычно выше для нефтей низкого удельного веса. Поправка, необходимая для приведения удельного веса к стандартной температуре в 20° С, различна для разных фракций нефти. Она может достигать вели-чины в 0,000897 для фракций с удельным весом около 0,70 и до 0,00063 для фракций с удельным весом около 0,90 на 1°. Для ароматических углеводородов эта поправка очень высока: для бензола 0,001067 на один градус и для толуола 0,000916. Если для какого-либо нефтяного продукта найден удельный вес при 14° С, равный 0,8244, то для вычисления удельного веса при 20° С надо вычесть из найденной величины ту, которая соответ-ствует для этого удельного веса поправке на 1°, помноженной на разность температур в градусах. Поправка по табл. 1 соста-вляет 0,000738, поэтому окончательный итог выражается:

8244 — 0,000738 (20—14) = 0,8200 г/мл.

Таблица 1

Температурные поправки удельных весов нефтяных фракций на 1° С

Уд. вес

Поправка

Уд. вес

Поправка

0,700-0,710

0,000897

0,850—0,860

0,000699

0,710-0,720

0,000884

0,860—0,870

0,000686

0,720-0,730

0,000870

0,870-0,880

0,000673

0,730—0,740

0,000857

0,880—0,890

0,000660

0,740-0,750

0,000844

0,890-0,900

0,000647

0,750-0,760

0,000831

0.900-0,910

0,000633

0,760—0,770

0,000818

0,910—0,920

0,000620

0,770—0,780

0,000805

0,920—0 930

0,000607

0,780—0,790

0,000792

0,930— 0,940

0,000594

0,790—0,800

0,000778

0,940—0,950

0,000581

0,800—0,810

0,000765

0,950—0,960

0,000567

0,810—0,820

0,000752

0,960—0,970

0,000554

0,820—0,830

0,000738

0,970—0,980

0,000541

0,830-0,840

0,000725

0,980-0,990

0,000528

0,840—0,850

0,000712

0,990—1,000

0,000515

Для приведения удельного веса, определенного при темпера-туре выше 20° С, поправка прибавляется.

Данные приведенной таблицы имеют приблизительный харак-тер и ими пользуются в технических целях. Для узких нефтяных фракций, состав которых неизвестен, удобнее пользоваться пря-мым определением, так как табличные данные не учитывают химическую природу исследуемой фракции, хотя хорошо изве-стно, что поправка зависит от природы углеводородов.

Очень большое научное значение имеет удельный вес нефти из различных горизонтов одного и того же месторождения, т. е. отнесенный к различным глубинам. В этом отношении нефти можно разбить на три класса: 1) нефти, показывающие падение удельного веса с глубиной нефтяного горизонта; 2) нефти, пока-зывающие повышение удельного веса с глубиной, и 3) нефти, в которых удельный вес то падает, то повышается, т. е. не показывает определенной тенденции к изменению. Давно было подмечено, что во многих случаях удельный вес падает с глубиной. Статистическая обработка по материалам 250 место-рождений, проведенная А. А. Карцевым, показала, что к пер-вому классу из 250 нефтей относится 175 (70%), ко второму всего 30, или 12 %. Остальные относятся к третьему классу.

Таким образом, закономерность падения удельного веса с глу-биной проявляется весьма отчетливо. Причина этого явления усматривалась, в случае нефтей первого класса, в испарении нефтей, близких к поверхности, что должно было привести к уве-личению удельного веса. Наоборот, повышение удельного веса с глубиной рассматривалось как результат насыщения верхних нефтяных горизонтов газами и парами легких углеводородов из нижних горизонтов. Обе эти гипотезы не в состоянии объяс-нить причину перемежающихся удельных весов, хотя таких нефтей третьего класса известно достаточно много. Высказанные гипотезы, возможно, и имеют частичное значение в отдельных случаях, но их трудно распространить на все нефтяные месторо-ждения, так как ни испарение нефти, по существу дела явление вообще довольно сомнительное, ни обогащение ее легкими фрак-циями не могут иметь регионального характера, так как в луч-шем случае зависят от местных геологических условий.

Весь вопрос получил совершенно иное освещение, когда на ряде примеров было установлено, что удельный вес древних нефтей почти всегда ниже, чем у нефтей молодого геологического возраста. В связи с тем, что древние нефти имеют преимуще-ственно метановый тип, высказано было предположение, что на больших глубинах залегает нефть, в большей мере испытавшая метаморфизм под влиянием различных факторов вроде темпера-туры, каталитических влияний вмещающих пород и фактора времени, т. е. продолжительности существования нефти, которое, естественно, должно быть выше в случае древних нефтей.

Такой чисто геологический подход к решению вопроса об удельном весе нефти едва ли соответствует действительности. Известно, например, что нефти Северного Кавказа относятся к метановому типу, хотя возраст их не выше третичного. С другой стороны, известны и такие случаи, когда нефть залегает в очень древних отложениях и тем не менее обладает высоким удельным весом. Наконец, случаи, когда удельный вес по мере углубления то повышается, то понижается, трудно объяснить одними гео-логическими причинами, и в частности, фактом продолжитель-ности существования. Поэтому один геологический возраст сам по себе не может иметь решающего значения и имеет лишь стати-стический характер, так как понятно, что нефти, пролежавшие в недрах громадные промежутки времени, отделяющие наше время от древних геологических периодов, в большей мере могла испытать влияние и других факторов, кроме чисто геологических (в смысле возраста). Факторы превращения нефти могли иметь и случайный характер, но в течение громадных промежутков времени эта случайность неизбежно должна была превратиться в вероятность. В настоящее время уже известны и ближайшие причины падения удельного веса с глубиной: это, прежде всего, накопление легких фракций и появление в нефти возрастающих количеств метановых углеводородов.

Изменение удельного веса нефти в сторону его повышения в некоторых частных случаях можно объяснить осмолением нефти независимо от ее поверхностного испарения. Дело в том, что в нефтяных водах, сопровождающих нефть, могут развиваться особые виды анаэробных микроорганизмов, частично питающихся углеводородами, которые при этом частично превращаются в смо-листые вещества. Поэтому нефти, находящиеся в контакте с во-дами особого солевого состава, иногда показывают повышение удельного веса по глубине или по простиранию месторождения.

Такой механизм осмоления с некоторыми допущениями может быть приемлем для небольших залежей. Однако для крупных залежей, содержащих большие запасы нефти с ограниченной поверхностью водо-нефтяного контакта, трудно допустить бак-териальную переработку всей массы углеводородов.

Сейчас все более становится ясным, что тяжелая нефть на поверхности раздела с водой предохраняет основную массу от воздействия окислительных факторов. Обычно зона тяжелых нефтей в краевых частях залежи имеет очень ограниченное про-тяжение, за пределами которой располагается нефть с меньшим удельным весом.

В тех случаях, когда углеводородный состав не испытывает серьезных изменений от краевых к центральным частям залежи, механизм утяжеления нефти может быть хорошо объяснен грави-тационными причинами. Часть смолистых веществ, находящихся в субколлоидальном состоянии, склонна под действием сил тяго-тения опускаться вниз по падению нефтяного пласта к водо-нефтяному компоненту.

0,899, со степенью окрашивания 7,5 мж и кислотностью 0,640% бО,. 

Традиционно Венесуэла являлась основным поставщиком котельных топлив для США, что обусловило неглубокую переработку нефти на большой части заводов (выход мазута свыше 50% на нефть). Удельный вес деструктивных процессов (термических и каталитического крекинга) на 1 января 1980 г. составлял 10,6%, а всего вторичных процессов - 34,7%. 

Нефть Удельный вес при 15° С Температура застывания , С Температура самовоспламенения, С 

Допустим, что множество X описывает качество нефти (удельный вес), а множество У - качество нефтепродуктов . Элементы множеств Хи У квантифицированы следующим образом  

Выход на нефть, % Удельный вес. Содержание серы без очистки, % Высота некоптящего пламени, мм 

В отношении температуры застывания встречающиеся в природе нефти чрезвычайно разнообразны. Так, например, грозненская парафинистая нефть удельного веса 0,838 застывает уже при тогда как грозненская 

Как известно, испарением называется такой процесс парообразования, который происходит только с поверхности жидкости при любых температурных условиях . При испарении нефтей и нефтепродуктов, как и в случае других сложных смесей, в первую очередь испаряются, конечно, наиболее легкие их части. При этом, однако, в зависимости от условий, в которых происходит испарение, увлекаются также более или менее значительные количества более тяжелых компонентов, хотя бы температура кипения их намного отличалась от температурных условий испарения. Для иллюстрации этого явления интересен следующий опыт (Мэбери) нефть удельного веса 0,815, дававшая при перегонке 42% остатка выше 300°, была оставлена в плоской чашке при сильной струе воздуха через месяц ее удельный вес поднялся до 0,862, остаток же оставлял только 33,3% таким образом , в указанных условиях без всякого подогрева испарилось 8,7% фракций, перегонявшихся выше 300°. 

Для исследования с глубины 1400 м из скважппы № 4 была взята сацхенисская нефть, удельный вес которой при температуре 10°С - 0,792. 

Месторождение Мид-Континента, взятое в целом, по-видимому, еще и в настоящее время можно считать наиболее значительным месторождением нефти в мире . Оно включает в себя Ок.т1ахому, Канзас, Северный, Центральный и Западный Тексас , Северную Луизиану и Мексику. Продуктивные горизонты простираются от ордовикских слоев до миоцена. Мид-континентские нефти более тяжелые и содержат больше сернистых соединений и асфальтовых веществ , чем пенсильванские нефти . Удельный вес их изменяется в пределах 0,810-0,930, содержание серы в среднем составляет около 0,5%. Однако в нефтях Западного Тексаса и Арканзаса содержание серы обычно составляет от 1,0 до 1,5%. Большинство нефтей относится к парафиновым, поэтому они без труда могут быть использованы в качестве сырья для производства смазочных масел, но так как среди нефтей этого месторождения имеются и парафиновые и нафтеновые нефти , то нефти всего месторождения в целом могут характеризоваться как нефти смешанного основания. 

Как правило, удельный вес нефти меньше 1, т. е. нефть легче воды. Удельный вес подавляюш его большинства нефтей находится в интервале 0,750-1,000. Однако имеются нефти, удельный вес которых несколько больше 1. Таковыми нефтями являются некоторые мексиканские нефти с уд. весом 1,060 и наша гурийская нефть (Закавказье) с уд. весом 1,038. Нефти, удельный вес которых больше 0,900, называются тяжелыми нефтями. 

Чрезвычайно интересно изменение удельного веса нефтей одной и той же скважины в связи с ее глубиной. Так, в Бакинском районе в пределах одной и той же площади (Бинагады) имеется легкая нефть уд. веса 0,790 и тяжелая нефть уд. веса 0,930. В Галиции по соседству с нефтями уд. веса 0,750 имеются нефти уд. веса 0,950. В Японии рядом с нефтью уд. веса 0,805 имеются нефти удельного веса 0,988, т. е. близкого к 1, и т. д. 

В каньоне Плацеритра в Южной Калифорнии, в 30 кл1 к северу от Лос-Анжелеса, в долине Санта-Клара, добывалась необыкновенно легкая нефть удельного веса 0,740-0,780 из косослоистых слюдистых кристаллических сланцев. Одна из заложенных здесь скважин давала добычу от 7 до 9 кг в день. Нужно думать, что нефть в кристаллические сланцы попала из залегающих по соседству (в расстоянии 200-400 м) третичных отложений , именно 

Эта таблица показывает, что увеличение удельного веса масляных фракций различных нефтей , выкипающих в одних и тех же пределах, как правило, соответствует увеличению количества ароматических углеводородов . Из этого общего правила имеются исключения, которые зависят от строения тех или иных. углеводородов, составляющих данную фракцию. Например, из данных таблицы следует, что при равном содержании нафтенов во фракциях сураханской и доссорской нефтей и меньшем содержании ароматики во фракции сураханской нефти , удельный вес последней выше, чем у доссорской фракции. Это объясняется тем, что ароматические и нафтеновые углеводороды масляных фракций доссорской нефти содержат более длинные парафиновые боковые цепи , чем соответствующие углеводороды сураханской нефти . Далее, 

Ориентировочно можно принять, что а каждую атмосферу давления при растворении газа в нефти удельный вес ее уменьшается, на 0,0001-0,0002, а объем ув еличквается на 0,1-0,15%. Кривые рис. 103 (Показывают, как изменяется вязкость нефти от Количества растворенного в лей газа. 

Практически эта зависимость может быть установлена с помощью бомбы PVT. Типичная зависимость плотности (удельного веса) от температуры и давления, полученная экспериментальным путем для нефти удельного веса Yh = 0,852 zj M и с газовым фактором Г = 100 представлена на рис. 4. 

Температура па выходе из печп легкого крекинга составляет 475-480°, па выходе из печи глубокого крекинга 515-530°. Ниже приведен примерный режим установки при работе на но-лугудроне туймазинской девонской нефти удельного веса 0,980, составляющем 33-35% на нефть. 

Структуры 1а и Па как содержащие циклобутаповое кольцо маловероятны и потому неприемлемы что же касается остальных структур, то их присутствие в молекулах нефтяных смол и асфальтенов весьма возможно. Как видно из приведенных структур, Хиллмен и Барнетт не включают в свои схемы чисто ароматические конденсированные системы, между тем, как показали наши исследования, такие структуры играют довольно большую роль уже в высокомолекулярной углеводородной части нефтей. Удельный вес конденсированных ароматических ядер, особенно бициклических, значительно повышается в смолах и асфальтенах. Руководствуясь правиль- 

Появление в надсолевых отложениях тяжелых

Нефть представляет собой маслянистую жидкость, имеющую окраску от светло-бурого до почти черного цвета, обладающую характерным запахом (рис. 1). Она залегает в толще земной коры на разных глубинах. Нефть несколько легче воды: плотность нефти равна 0,73 - 0,96 г/см 3 . Не растворяется в воде.

Рис. 1. Нефть. Внешний вид.

Нефть - это сложная смесь различных, в основном жидких углеводородов, (алканов, циклоалканов и аренов), в которых растворены твердые и газообразные углеводороды. Поэтому она не имеет постоянной температуры кипения. Кроме углеводородов нефть содержит органические соединения, включающие кислород, серу, азот. Состав нефти различается в зависимости от месторождения. Например, бакинская нефть богата циклоалканами, грозненская - предельными углеводородами. От того, какие углеводороды входят в состав нефти зависит и её плотность, поэтому существует классификация сырой нефти от величины её плотности (табл.1). В России и странах СНГ плотность нефти измеряется в г/см 3 , а в США - в API (от англ. «AmericanPetroleumInstitute»). Чем выше величина плотности в в г/см 3 , тем ниже в API и наоборот.

Таблица 1. Плотность нефти.

Нефти с низкими значениями плотности характеризуются преобладанием в их составе алканов, низким содержанием смолисто-асфальтеновых компонентов, а во фракционном соотношении - высоким содержанием бензиновых и керосиновых фракций.

В тяжелых нефтях (высокие значения плотности) концентрация содержание смолисто-асфальтеновых компонентов наоборот очень высоком.

Примеры решения задач

ПРИМЕР 1

Задание Во сколько раз масса молекулы воды больше массы молекулы водорода и меньше массы атома неона?
Решение Вычислим молекулярные массы воды, неона и водорода:

M r (H 2) = 2 ×A r (H) = 2 × 1 = 2;

M r (Ne) = A r (Ne) = 20;

M r (H 2 O) = 2 ×A r (H) + A r (O) = 2 × 1 + 16 = 2 + 16 = 18.

Для расчетов, определяющих на сколько или во сколько раз масса молекулы одного вещества больше или меньше массы молекулы другого вещества, проще пользоваться величинами относительных молекулярных масс, которые выполняют роль истинных масс молекул. Все сказанное также справедливо и в отношении относительных атомных масс.

m(H 2 O) / m(H 2) = Mr(H 2 O) / Mr(H 2) = 18 / 2 = 9;

m(H 2 O) / m(Ne) = Mr(H 2 O) / Mr(Ne) = 18 / 20 = 0,9.

Ответ Масса молекулы воды в 9 раз превышает массу молекулы водорода и составляет 0,9 массы атома неона.

Поскольку основу нефти составляют углеводороды, то ее плотность обычно меньше единицы. Плотности нефтепродуктов существенно зависят от фракционного состава и изменяются в следующих пределах:

Под плотностью обычно понимают массу вещества, заключенную в единице объема. Соответственно размерность этой величины - кг/м 3 или г/см 3 .

Для характеристики нефти, как правило, используют величины относительной плотности.

Относительная плотность () - это безразмерная величина, численно равная отношению массы нефтепродукта (m н t ) при температуре определения к массе дистиллированной воды при 4 0 С (m в t) , взятой в том же объеме:

t 4 = m н t / (m в t)

Поскольку плотность воды при 4 0 С равна единице, то численное значение абсолютной плотности и относительной совпадают.

Наряду с плотностью в нефтехимии существует понятие относительного удельного веса (). Относительным удельным весом () называется отношение веса нефтепродукта при температуре определения к весу дистиллированной воды при 4С в том же объеме.

Совершенно очевидно, что при одной и той же температуре плотность и удельный вес численно равны друг другу.

В соответствии с ГОСТом в нашей стране принято определять плотность и удельный вес при температурах 15 и 20 0 С.

Зависимость плотности нефтепродуктов от температуры имеет линейный характер. Зная плотность нефти при температуре t градусов, можно найти ее плотность при 20 0 С:

204 = t4 + t (t - 20)

где t - температурная поправка к плотности на 1 град, находится по таблицам или может быть вычислены по формуле:

t = (18,310 - 13,233204)10-4

В ряде случаев эту формулу приводят в несколько измененном виде и называют формулой Д.И. Менделеева:

t4 = 204 - t (t - 20)

Таким образом, плотность нефтей и нефтепродуктов уменьшается с ростом температуры.

Все нефтепродукты представляют собой смеси углеводородов. Среднюю плотность нефтепродукта определяют по правилу смешения и аддитивности:

1 V 1 + 2 V 2 + … + 3 V 3 m 1 + m 2 + … + m 3

V 1 + V 2 + … + V 3 m 1 / 1 + m 2 / 2 + … + m 3 / 3

Определение плотности проводят с помощью ареометров или нефтеденсиметров, а также гидростатических весов Мора-Вестфаля или пикнометрическим методом. Последний метод определения считается наиболее точным.

Плотность большинства нефтей меньше единицы и колеблется в диапазоне от 0.80 до 0.90. Высоковязкие смолистые нефти имеют плотность близкую к единице. На величину плотности нефти оказывает существенное влияние наличие в ней растворенных газов, количество смолистых веществ и фракционный состав. Плотность фракций нефтей плавно увеличивается по фракциям.

Для углеводородов средних фракций нефти с одинаковым числом углеродных атомов плотность возрастает в следующем ряду:

н.алканы н.алкены изоалканы изоалкены алкилциклопентаны алкилциклогексаны алкилбензолы алкилнафталины

Для бензиновых фракций плотность заметно увеличивается с увеличением количества бензола и его гомологов.

Для нефти и нефтепродуктов плотность является нормируемым показателем качества.

Молекулярный вес нефти и нефтепродуктов имеет лишь усредненное значение и зависит от состава и количественного соотношения компонентов смеси (М ср.) - усред. зн. ММ

Нетрудно определить, что первый представитель жидких углеводородов, входящих в состав нефти, - пентан, имеет молекулярную массу 72. У смолистых веществ она может достигать величины 1.5 - 2.0 тыс. у. е. Для большинства нефтей средняя молекулярная масса находится в пределах 250-300 у. е. По мере увеличения диапазона кипения нефтяных фракций молекулярная масса ср. ) плавно увеличивается от 90 (для фракции 50-100 0 С) до 480 (для 550-600 0 С).

Для упрощенных технологических расчетов существует формула Войнова:

М ср. = а + bt + ct 2 cр. (t ср. - средняя температура кипения)

В частности, для алканов эта формула имеет вид:

Мср. = 60 + 0.3 tср. + 0.001 t2cр.

За рубежом для характеристики молекулярной массы нефтей и нефтепродуктов нередко используют формулу Крега, в которой фигурирует значение плотности при 15 0 С:

Мср. = 44.2915/(1.03 - 15)

Для более точного определения среднего молекулярного веса нефтепродуктов пользуются экспериментальными данными, полученными криоскопическим и эбулеоскопическим методами.

Для технологических расчетов молекулярной массы используют специальные графики зависимости средней молекулярной массы от средней температуры кипения или плотности нефти.

Молекулярные веса отдельных нефтяных фракций обладают свойством аддитивности, поэтому, зная молекулярную массу отдельных компонентов и их содержание в смеси, можно рассчитать средний молекулярный вес нефтепродуктов:

М ср. = M 1 n 1 + M 2 n 2 + M 3 n 3 + …

температура нефть плотность молекулярный

Вязкость (или внутреннее трение) нефти и нефтепродуктов зависит от химического и фракционного состава. Различают динамическую (Ю) и кинематическую () вязкость (из физики = Ю /).

Динамическая вязкость (Ю) или внутреннее трение - это свойство реальных жидкостей оказывать сопротивление сдвигающим касательным усилиям. Это свойство проявляется при движении жидкостей. Единица измерения - н*с/м 2 .

Динамическую вязкость иногда характеризуют как сопротивление, которое оказывает жидкость при относительном перемещении двух слоев.

Кинематическая вязкость () - величина, равная отношению динамической вязкости (Ю) к ее плотности () при той же температуре, т.е. = Ю /

Кинематическая вязкость нефтей различных месторождений изменяется в широких пределах (от 2 до 300 сст - сантистокс при 20 0 С). Однако средняя вязкость большинства нефтей составляет величину от 40 до 60 сст.

Кинематическая вязкость является важнейшей характеристикой нефтяных смазочных масел, поскольку именно от величины вязкости зависит способность смазочного масла обеспечивать необходимый гидродинамический режим смазки. Неслучайно для смазочных масел, предназначенных для определенного вида машин и механизмов, величина вязкости (50 и 100 ) является главной нормирующей составляющей.

Определение кинематической вязкости проводят в стеклянных вискозиметрах, снабженных калиброванными капиллярами.

Для ряда нефтепродуктом нормированным параметром является так называемая условная вязкость, определяемая в металлических вискозиметрах.

Условной вязкостью называется отношение времени истечения из вискозиметра 200 мл нефтепродукта при температуре испытания ко времени истечения 200 мл дистиллированной воды при 20 0 С. Условная вязкость - величина относительная, безразмерная и выражается в условных градусах (0 ВУ).

Между величинами условной и кинематической вязкостью выведена эмпирическая зависимость:

для Ю от 1 до 120 сст t = (7.24 ВУ t - 6.25/ВУ t) или t = (7.31 ВУ t - 6.31/ВУ t)

для Ю > 120 сст t = 7.4 ВУ t .

Для нефтяных фракций по мере увеличения их молекулярного веса и температуры кипения вязкость значительно возрастает. Так, например, вязкость бензинов при 20 0 С приблизительно равна 0.6 сст, а вязкость остаточных масел 300-400 сст.

Следует помнить, что вязкость масел не обладает свойством аддитивности. Поэтому вязкость смеси масел нельзя определить расчетным путем как средневзвешенную величину. Для определения вязкости смесей пользуются специальными номограммами. По этим номограммам (кривым) можно установить в каких соотношениях следует смешать компоненты для получения масел с заданной вязкостью.

Значение вязкости сильно зависит от температуры. При низких температурах вязкость нефтепродуктов значительно повышается и наоборот. Поскольку многие масла и другие нефтепродукты эксплуатируются в широком диапазоне температур, то характер температурной кривой вязкости служит для них важной качественной характеристикой. Чем эта кривая (зависимость) более пологая, тем выше качество масла.

Зависимость вязкости от температуры описывается эмпирической формулой Вальтера:

lg = A - B lgT

где А и В- постоянные величины.

Для оценки вязкостно-температурных свойств нефтяных масел применяют следующие показатели:

отношение вязкости при 50 0 С к вязкости при 100 0 С (50 / 100 );

температурный коэффициент вязкости (ТКВ). Его определяют в диапазоне от 0 до 100 0 С и от 20 до 100 0 С по формулам:

ТКВ 0-100 =(0 - 100 )/ 50 и ТКВ 20-100 =1.25 ( 20 - 100 )/ 50

индекс вязкости - условный показатель, представляющий собой сравнительную характеристику испытуемого и эталонного масла. Обычно рассчитывается по специальным таблицам на основании значения кинематической вязкости при 50 и 100 0 С. В частности, его определяют как отношение значений кинематической вязкости нефтепродукта при 50 и 100 0 С, соответственно.

Дата публикации 09.01.2013 13:37

Современные требования, которые предъявляют к качеству нефти , достаточно высоки. Поэтому ее производство постоянно требует совершенства, чтобы нефтепродукты соответствовали всем стандартам и нормам. Соответствующие организации осуществляют контроль над производством и конечным продуктом.

Система стандартизации, которая разработана государством, является эталоном, на который равняются все производители. Соблюдение ее условий является обязательным для всех.

Нефть и прочие нефтепродукты - это жидкая смесь, имеющая сложный состав углеводородных соединений и близко кипящих углеводородов, а также гетероатомов кислорода, азота, серы, некоторых металлов и кислот.

Одним из качественных показателей является плотность нефти . Это количество покоящейся массы, находящейся в единице объема. Плотность нефтепродуктов и ее определение является необходимым условием для более легкого расчета их массового количества. Это связано с тем, что учет нефти в единицах объема не очень удобен, потому что этот показатель может меняться в зависимости от изменения температуры.

Плотность нефти измеряется в килограммах на один кубический метр. Можно легко определить массу, зная показатели объема и плотности. Масса в отличие от объема не имеет зависимости от температуры продукта.

Обычно применяют такой показатель, как относительная плотность нефти . Она определяется как отношение массы нефти к массе чистой воды, которая берется в том же объеме, имея температуру +4°. Такой температурный уровень выбран не случайно. Вода в этом случае имеет наибольшую плотность, которая равна 1000 килограмм на один кубический метр. Для того чтобы определить относительную плотность нефти, ее температура должна составлять +20°. В этом случае она может равняться от 0,7 до 1,07 килограмм на кубический метр.

Существуют и другие физические свойства нефти.

Удельный вес – это вес, который имеет одна единица объема. По-другому, это сила, с которой притягивается к земле одна единица объема этого вещества. То есть, это плотность, умноженная на ускорение силы тяжести.

Еще одним понятием является относительный удельный вес. Величина этого показателя равна численной величине, которую имеет относительная плотность. Ее и используем для расчета этого показателя.

Удельный вес и плотность нефти могут изменять свои значения при изменении температуры. Поэтому, чтобы рассчитать плотность, найденную при одной температуре на такой же показатель при других температурных данных, надо учитывать поправки на изменения плотности в зависимости от изменения температуры.

Плотность нефти, вычисленная на практике, считается аддитивной величиной. Это связано с тем, что этот показатель может быть получен в виде средней величины для нескольких нефтепродуктов.

Для каждого района добычи нефти характерны свои физические свойства этого продукта. Так, например плотность нефти в Тюменской области в среднем колеблется от 825 до 900 килограмм на кубический метр.

Изучение физических свойств этого продукта необходимо не только для ее рационального применения в хозяйственных целях и для продажи на мировом рынке. Иногда это бывает очень важным при устранении экологических катастроф, возникающих в результате выброса нефтепродуктов в окружающую среду, и позволяет избежать многих ошибок.

Так, при ликвидации аварии предпринимают попытки устранить нефтяное пятно при помощи поджога, не учитывая, что физические характеристики этого продукта могли измениться в результате взаимодействия с окружающей средой. Поэтому эти обстоятельства следует учитывать в случаях очистки водных поверхностей. Это очень важный фактор, который не следует игнорировать.