Что позволяет вертолетам летать? Семь основных вертолётных схем.

За последнее время в мире вертолетной техники произошло несколько значимых событий. Американская компания Kaman Aerospace объявила о намерении возобновить производство синхроптеров, Airbus Helicopters пообещала разработать первый гражданский вертолет с электродистанционным управлением, а немецкая e-volo - испытать 18-роторный двухместный мультикоптер. Чтобы не запутаться во всем этом разнообразии, мы решили составить краткий ликбез по основным схемам вертолетной техники.

Впервые идея летательного аппарата с несущим винтом появилась около 400 года нашей эры в Китае, однако дальше создания детской игрушки дело не пошло. Всерьез инженеры взялись за создание вертолета в конце XIX века, а первый вертикальный полет нового типа летательного аппарата состоялся в 1907 году, спустя всего четыре года после первого полета братьев Райт. В 1922 году авиаконструктор Георгий Ботезат испытал вертолет-квадрокоптер, разработанный по заказу Армии США. Это был первый в истории устойчиво управляемый полет техники такого типа. Квадрокоптер Ботезата сумел взлететь на высоту пяти метров и провел в полете несколько минут.

С тех пор вертолетная техника претерпела множество изменений. Появился класс винтокрылых летательных аппаратов, который сегодня делится на пять типов: автожир, вертолет, винтокрыл, конвертоплан и X-крыло. Все они отличаются конструкцией, способом взлета и полета, управлением несущим винтом. В этом материале мы решили рассказать именно о вертолетах и их основных типах. При этом за основу была взята классификация по компоновке и расположению несущих винтов, а не традиционная - по типу компенсации реактивного момента несущего винта.

Вертолет является винтокрылым летательным аппаратом, у которого подъемная и движущая силы создаются одним или несколькими несущими винтами. Такие винты располагаются параллельно земле, а их лопасти устанавливаются под определенным углом к плоскости вращения, причем угол установки может изменяться в достаточно широких пределах - от нуля до 30 градусов. Установка лопастей на ноль градусов называется холостым ходом винта или флюгированием. В этом случае несущий винт не создает подъемной силы.

Во время вращения лопасти захватывают воздух и отбрасывают его в направлении, противоположном движению винта. В результате перед винтом создается зона пониженного давления, а за ним - повышенного. В случае вертолета так возникает подъемная сила, которая очень похожа на образование подъемной силы фиксированным крылом самолета. Чем больше угол установки лопастей, тем большую подъемную силу создает несущий винт.

Характеристики несущего винта определяются двумя основными параметрами - диаметром и шагом. Диаметр винта определяет возможности вертолета по взлету и посадке, а также отчасти величину подъемной силы. Шаг винта - это воображаемое расстояние, которое воздушный винт пройдет в несжимаемой среде при определенном угле установки лопастей за один оборот. Последний параметр влияет на подъемную силу и скорость вращения ротора, которую на большей части полета летчики стараются держать неизменной, меняя только угол установки лопастей.

При полете вертолета вперед и вращении несущего винта по часовой стрелке, набегающий поток воздуха сильнее воздействует на лопасти с левой стороны, из-за чего возрастает и их эффективность. В результате левая половина окружности вращения винта создает большую подъемную силу, чем правая, и возникает кренящий момент. Для его компенсации конструкторы придумали - это особая система, которая уменьшает угол установки лопастей слева и увеличивает его справа, выравнивая таким образом подъемную силу по обе стороны винта.

В целом, вертолет имеет несколько преимуществ и несколько недостатков перед самолетом. К преимуществам относится возможность вертикального взлета и посадки на площадки, диаметр которых в полтора раза превосходит диаметр несущего винта. При этом вертолет может на внешней подвеске перевозить крупногабаритные грузы. Вертолеты отличаются и лучшей маневренностью, поскольку могут висеть вертикально, лететь боком или задом-наперед, поворачиваться на месте.

К недостаткам же относятся большее, чем у самолетов, потребление топлива, большая инфракрасная заметность из-за горячего выхлопа двигателя или двигателей, а также повышенная шумность. Кроме того, вертолетом в целом сложнее управлять из-за ряда особенностей. Например, летчикам вертолетов знакомы явления земного резонанса, флаттера, вихревого кольца, эффекта запирания несущего винта. Эти факторы могут приводить к разрушению или падению машины.

У вертолетной техники любых схем существует режим авторотации. Он относится к аварийным режимам. Это означает, что при отказе, например, двигателя несущий винт или винты при помощи обгонной муфты отсоединяются от трансмиссии и начинают свободно раскручиваться набегающим потоком воздуха, тормозя падение машины с высоты. В режиме авторотации возможна управляемая аварийная посадка вертолета, причем вращающийся несущий винт через редуктор продолжает раскручивать рулевой винт и генератор.

Классическая схема

Из всех типов вертолетных схем сегодня самой распространенной является классическая. При такой схеме машина имеет только один несущий винт, который может приводиться в движение одним, двумя или даже тремя двигателями. К этому типу, например, относятся ударные AH-64E Guardian, AH-1Z Viper, Ми-28Н, транспортно-боевые Ми-24 и Ми-35, транспортные Ми-26, многоцелевые UH-60L Black Hawk и Ми-17, легкие Bell 407 и Robinson R22.

При вращении несущего винта на вертолетах классической схемы возникает реактивный момент, из-за которого корпус машины начинает раскручиваться в сторону, противоположную вращению ротора. Для компенсации момента используют рулевое устройство на хвостовой балке. Как правило им является рулевой винт, но это может быть и фенестрон (винт в кольцевом обтекателе) или несколько воздушных сопел на хвостовой балке.

Особенностью классической схемы являются перекрестные связи в каналах управления, обусловленные тем, что рулевой винт и несущий приводятся одним и тем же двигателем, а также наличием автомата перекоса и множества других подсистем, ответственных за управление силовой установкой и роторами. Перекрестная связь означает, что при изменении какого-либо параметра работы воздушного винта, поменяются и все остальные. Например, при увеличении частоты вращения несущего винта возрастет и частота вращения рулевого.

Управление полетом осуществляется наклоном оси вращения несущего винта: вперед - машина полетит вперед, назад - назад, вбок - вбок. При наклоне оси вращения возникнет движущая сила и уменьшается подъемная. По этой причине для сохранения высоты полета летчику необходимо менять и угол установки лопастей. Направление полета задается изменением шага рулевого винта: чем он меньше, тем меньше компенсируется реактивный момент, и вертолет поворачивает в сторону, противоположную вращению несущего винта. И наоборот.

В современных вертолетах в большинстве случаев управление полетом по горизонтали осуществляется при помощи автомата перекоса. Например, для движения вперед летчик при помощи автомата уменьшает угол установки лопастей для передней половины плоскости вращения крыла и увеличивает - для задней. Таким образом сзади подъемная сила увеличивается, а спереди - уменьшается, благодаря чему изменяется наклон винта и появляется движущая сила. Такая схема управления полетом применяется на всех вертолетах почти всех типов, если на них установлен автомат перекоса.

Соосная схема

Второй по распространенности вертолетной схемой является соосная. В ней рулевой винт отсутствует, зато есть два несущих винта - верхний и нижний. Они располагаются на одной оси и вращаются синхронно в противоположных направлениях. Благодаря такому решению винты компенсируют реактивный момент, а сама машина получается несколько более устойчивой по сравнению с классической схемой. Кроме того, у вертолетов соосной схемы практически отсутствуют перекрестные связи в каналах управления.

Наиболее известным производителем вертолетов соосной схемы является российская компания «Камов». Она выпускает корабельные многоцелевые вертолеты Ка-27, ударные Ка-52 и транспортные Ка-226. Все они имеют по два винта, расположенных на одной оси друг под другом. Машины соосной схемы, в отличие от вертолетов классической схемы, способны, например, делать воронку, то есть выполнять облет цели по кругу, оставаясь на одном и том же расстоянии от нее. При этом носовая часть всегда остается развернутой в сторону цели. Управление рысканием осуществляется подтормаживанием одного из несущих винтов.

В целом управлять вертолетами соосной схемы несколько проще, чем обычными, особенно в режиме висения. Но существуют и свои особенности. Например, при выполнении петли в полете может случиться перехлест лопастей нижнего и верхнего несущего винтов. Кроме того, в проектировании и производстве соосная схема более сложна и дорога, чем классическая схема. В частности из-за редуктора, передающего вращение вала двигателя на винты, а также автомата перекоса, синхронно устанавливающего угол лопастей на винтах.

Продольная и поперечная схемы

Третьей по популярности является продольная схема расположения несущих винтов вертолета. В этом случае винты располагаются параллельно земле на разных осях и разнесены друг от друга - один находится над носовой частью вертолета, а другой - над хвостовой. Типичным представителем машин такой схемы является американский тяжелый транспортный вертолет CH-47G Chinook и его модификации. Если винты располагаются на законцовках крыльев вертолета, то такая схема называется поперечной.

Серийных представителей вертолетов поперечной схемы сегодня не существует. В 1960-1970-х годах конструкторское бюро Миля разрабатывало тяжелый грузовой вертолет В-12 (также известен, как Ми-12, хотя этот индекс неверен) поперечной схемы. В августе 1969 года прототип В-12 установил рекорд грузоподъемности среди вертолетов, подняв на высоту 2,2 тысячи метров груз массой 44,2 тонны. Для сравнения самый грузоподъемный в мире вертолет Ми-26 (классическая схема) может поднимать грузы массой до 20 тонн, а американский CH-47F (продольная схема) - массой до 12,7 тонны.

У вертолетов продольной схемы несущие винты вращаются в противоположных направлениях, однако это компенсирует реактивные моменты лишь отчасти, из-за чего в полете летчикам приходится учитывать возникающую боковую силу, уводящую машину с курса. Движение в стороны задается не только наклоном оси вращения несущих винтов, но и разными углами установки лопастей, а управление рысканием производится за счет изменения частоты вращения роторов. Задний винт у вертолетов продольной схемы всегда располагается чуть выше переднего. Это сделано для исключения взаимного влияния от их воздушных потоков.

Кроме того, на определенных скоростях полета вертолетов продольной схемы иногда могут возникать значительные вибрации. Наконец, вертолеты продольной схемы оснащаются сложной трансмиссией. По этой причине такая схема расположения винтов распространена мало. Зато вертолеты продольной схемы меньше других машин подвержены возникновению вихревого кольца. В этом случае во время снижения воздушные потоки, создаваемые винтом, отражаются от земли вверх, затягиваются винтом и снова направляются вниз. При этом подъемная сила несущего винта резко снижается, а изменение частоты вращения ротора или увеличение угла установки лопастей эффекта практически не оказывает.

Синхроптер

Сегодня вертолеты, построенные по схеме синхроптера, можно отнести к самым редким и наиболее интересными с конструктивной точки зрения машинами. Их производством до 2003 года занималась только американская компания Kaman Aerospace. В 2017 году компания планирует возобновить выпуск таких машин под обозначением K-Max. Синхроптеры можно было бы отнести к вертолетам поперечной схемы, поскольку валы двух их винтов расположены по бокам корпуса. Однако оси вращения этих винтов расположены под углом другу к другу, а плоскости вращения - пересекаются.

У синхроптеров, как у вертолетов соосной, продольной и поперечной схем, рулевой винт отсутствует. Несущие же винты вращаются синхронно в противоположные стороны, а их валы связаны друг с другом жесткой механической системой. Это гарантированно предотвращает столкновение лопастей при разных режимах и скоростях полета. Впервые синхроптеры были изобретены немцами во время второй мировой войны, однако серийное производство велось уже в США с 1945 года компанией Kaman.

Направлением полета синхроптера управляют исключительно изменением угла установки лопастей винтов. При этом из-за перекрещивания плоскостей вращения винтов, а значит сложения подъемных сил в местах перекрещивания, возникает момент кабрирования, то есть подъема носовой части. Этот момент компенсируется системой управления. В целом же, считается, что синхроптером проще управлять в режиме висения и на скоростях больше 60 километров в час.

К достоинствам таких вертолетов относится экономия топлива за счет отказа от рулевого винта и возможность более компактного размещения агрегатов. Кроме того, синхроптерам характерна большая часть положительных качеств вертолетов соосной схемы. К недостаткам же относится необычайная сложность механической жесткой связи валов винтов и системы управления автоматами перекоса. В целом это делает вертолет дороже, по сравнению с классической схемой.

Мультикоптер

Разработка мультикоптеров началась практически одновременно с работами над вертолетом. Именно по этой причине первым вертолетом, совершившим управляемый взлет и посадку стал в 1922 году квадрокоптер Ботезата. К мультикоптерам относят машины, как правило имеющие четное количество несущих винтов, причем их должно быть больше двух. В серийных вертолетах сегодня схема мультикоптеров не используется, однако она чрезвычайно популярна у производителей малой беспилотной техники.

Дело в том, что в мультикоптерах используются винты с неизменяемым шагом винта, причем каждый из них приводится в движение своим двигателем. Компенсация реактивного момента производится вращением винтов в разные стороны - половина крутится по часовой стрелке, а другая половина, расположенная по диагонали, - в противоположном направлении. Это позволяет отказаться от автомата перекоса и в целом значительно упростить управление аппаратом.

Для взлета мультикоптера частота вращения всех винтов увеличивается одинаково, для полета в сторону - вращение винтов на одной половине аппарата ускоряется, а на другой - замедляется. Поворот мультикоптера производится замедлением вращения, например, винтов, крутящихся по часовой стрелке или наоборот. Такая простота конструкции и управления и послужила основным толчком к созданию квадрокоптера Ботезата, однако последующее изобретение рулевого винта и автомата перекоса практически затормозило работы над мультикоптерами.

Причиной же, по которой сегодня не существует мультикоптеров, предназначенных для перевозки людей, является безопасность полетов. Дело в том, что в отличие от всех остальных вертолетов, машины с несколькими винтами не могут совершать аварийную посадку в режиме авторотации. При отказе всех двигателей мультикоптер становится неуправляемым. Впрочем, вероятность такого события невысока, однако отсутствие режима авторотации является главным препятствием для прохождении сертификации на безопасность полетов.

Впрочем, в настоящее время немецкая компания e-volo занимается разработкой мультикоптера с 18 роторами. Этот вертолет предназначен для перевозки двух пассажиров. Как ожидается, он совершит первый полет в ближайшие несколько месяцев. По расчетам конструкторов, прототип машины сможет находиться в воздухе не больше получаса, однако этот показатель планируется довести по меньшей мере до 60 минут.

Следует также отметить, что помимо вертолетов с четным количеством винтов существуют и мультикоптерные схемы с тремя и пятью винтами. У них один из двигателей расположен на отклоняемой в стороны платформе. Благодаря этому осуществляется управление направлением полета. Впрочем, в такой схеме становится сложнее гасить реактивный момент, поскольку два винта из трех или три из пяти всегда вращаются в одном направлении. Для нивелирования реактивного момента некоторые из винтов вращаются быстрее, а это создает ненужную боковую силу.

Скоростная схема

Сегодня наиболее перспективной в вертолетной технике считается скоростная схема, позволяющая вертолетам летать на существенно большей скорости, чем могут современные машины. Чаще всего такую схему называют комбинированным вертолетом. Машины этого типа строятся по соосной схеме или с одним винтом, однако имеют небольшое крыло, создающее дополнительную подъемную силу. Кроме того, вертолеты могут быть оснащены толкающим винтом в хвостовой части или двумя тянущими на законцовках крыла.

Ударные вертолеты классической схемы AH-64E способны развивать скорость до 293 километров в час, а соосные Ка-52 - до 315 километров в час. Для сравнения, комбинированный вертолет - демонстратор технологий Airbus Helicopters X3 с двумя тянущими винтами может разгоняться до 472 километров в час, а его американский конкурент с толкающим винтом - Sikorksy X2 - до 460 километров в час. Перспективный разведывательный скоростной вертолет S-97 Raider сможет летать на скоростях до 440 километров в час.

Строго говоря, комбинированные вертолеты относятся скорее не к вертолетам, а к другому типу винтокрылых летательных аппаратов - винтокрылам. Дело в том, что движущая сила у таких машин создается не только и не столько несущими винтами, сколько толкающими или тянущими. Кроме того, за создание подъемной силы отвечают и несущие винты, и крыло. А на больших скоростях полета управляемая обгонная муфта отключает несущие винты от трансмиссии и дальнейший полет идет уже в режиме авторотации, при которой несущие винты работают, фактически, как крыло самолета.

В настоящее время разработкой скоростных вертолетов, которые в перспективе смогут развивать скорость свыше 600 километров в час, занимаются несколько стран мира. Помимо Sikorsky и Airbus Helicopters такие работы ведут российские «Камов» и конструкторское бюро Миля (Ка-90/92 и Ми-X1 соответственно), а также американская Piacesky Aircraft. Новые комбинированные вертолеты смогут совместить в себе скорость полета турбовинтовых самолетов и вертикальные взлет и посадку, присущие обычным вертолетам.

Фотография: Official U.S. Navy Page / flickr.com

Летом прошлого года мне довелось в Ростове-на-Дону наблюдать соревнования спортсменов-вертолетчиков. Кроме привычных одновинтовых машин конструкции М. Миля в соревнованиях участвовали двухвинтовые вертолеты Ка-26 с короткими лопастями. Эти машины, видимо, только начали поступать в аэроклубы. О самом вертолете Ка-26 журнал в прошлом году писал, но о его лопастях почти ничего не было сказано.

Прошу рассказать о конструкции лопастей вертолета Ка-26 и о том, из чего и как они изготовляются.

Ответ:

Действиетельно, многоцелевой сосный двухдвигательный вертолет Ка-26, широко использующийся в народном хозяйстве, недавно начали осваивать и спортсмены ДОСААФ. Впервые эти машины участвовали в соревнованиях вертолетчиков в 1977 году. Особенность конструкции Ка-26, его силовой установки и несущих винтов, расположенных один над другим и вращающихся в противоположных направлениях, позволяли спортсменам без особого напряжения выполнять все упражнения, предусмотренные программами соревнований.

Лопасти несущих винтов вертолета Ка-26, как и других винтокрылых аппаратов, подвергаются в полете сложным переменным нагрузкам. Их конструкция и технология производства существенно влияют на тактико-технические и экономические характеристики всего вертолета, его надежность. Поэтому совершенствованию лопастей и несущей системы в целом уделяется постоянное внимание.

Лопасть несущего винта современного вертолета представляет собой довольно сложную конструкцию (см. рисунок) из специальных материалов, обеспечивающих высокую надежность при относительно малом весе. Основным силовым элементом лопасти Ка-26 является лонжерон из стеклопластика. Ее узел крепления изготовлен из специальной стали, выдерживающей высокие знакопеременные нагрузки. После механической обработки он для повышения надежности подвергается поверхностному упрочнению. К лонжерону узел крепится болтами и особым клеем. Носовая часть лонжерона, в которой расположен и центровочный груз, залитый в латунную око-ву, защищена от абразивного износа светоозоностойкой резиной. Вся лопасть Покрыта несколькими слоями перхлор-виниловой краски.

К задней части лонжерона приклеены хвостовые секции. Каждая секция состоит из тонкой стеклопластиковой обшивки и легкого пенопластового заполнителя.

Лонжерон лопасти прессуется в специальной пресс-форме из многих слоев стеклоткани с заполнением эпоксидными смолами. Затем он «печется» в автоклаве при строгом выдерживании заданных температуры, давления и времени. Кстати сказать в цехе, изготовляющем лопасти, поддерживается не только идеальная чистота, но и определенный микроклимат (температура, влажность). Все работают в белых халатах и перчатках, стремятся, чтобы ничего постороннего, даже пыль, не попала в элементы, входящие в конструкцию лопасти.

Высокая культура изготовления лопастей несущих винтов обеспечивает их надежность при достаточно большом гарантийном сроке эксплуатации. Этот срок установлен после всесторонних испытаний лопастей на специальных стендах, где имитируются нагрузки, которым лопасть подвергается на всех возможных режимах в реальном полете.

Эксплуатация лопастей сверх установленного ресурса не разрешается. Постоянный и бдительный контроль за их состоянием - важное условие безопасности полетов.

Условия работы лопасти несущего винта вертолета во многом отличаются от условий работы крыла самолета. Основная особенность в том, что действующие на нее нагрузки являются переменными во времени. Поэтому при выборе материала элементов лопасти в качестве главных выдвигаются следующие требования:

    Усталостная прочность: трещино стойкость (сопротивление распространению усталостной трещины) и слабая чувствительность к концентраторам напряжений;

    Неизменность механических свойств материала элементов и их соединений от заданного времени эксплуатации, температуры и атмосферных условий окружающей среды;

    Технологические требования: возможности производства по обеспечению заданных форм сечения элементов конструкции; повышение ресурса элементов конструкции методами упрочнения; контроль за качеством соединений и заданными геометрическими

размерами при изготовлении элементов конструкции в процессе сборки лопасти; ремонтопригодность конструкции лопасти в процессе ее эксплуатации.
Кроме перечисленного, необходимо учитывать стоимость материала и технологического процесса изготовления лопасти и стоимость ее эксплуатации.

С учетом вышеизложенных требований выбирают тот материал, а который имеет максимальные удельную прочность - и удельный Е модуль упругости - р.

При формировании лонжерона лопасти из гибридных композиционных материалов стремятся к максимальной их совместимости с материалом матрицы, например, по величине динамического удлинения, степени адгезии, по коэффициенту линейного и объемного расширения, влагоёмкости, времени старения, чувствительности к ударным нагрузкам.

Чувствительность к ударным нагрузкам определяется величиной ударной вязкости. Для волокнистых композитов ударная вязкость характеризуется отношением. Одним из способов повышения ударной вязкости композитов является введение в их состав более прочных и менее жестких волокон, например стеклянных или органических - в углепластики.

В процессе развития вертолетостроения основной силовой элемента лопасти - лонжерон - выполнялся из дерева, легированных сталей, алюминиевых сплавов, нержавеющей стали, титановых сплавов. В настоящее время широко практикуется изготовление лонжерона из композиционных материалов.

Агрегаты каркаса - обшивка, нервюры, хвостовой стрингер, ранее изготовляемые из фанеры, полотна, алюминиевых сплавов, в современных лопастях изготавливаются также из КМ.
Дерево нашло применение в практике Ухтомского вертолетного завода им. Ы.И. Камова в период его становления. Определяющими в выборе этого материала являлись следующие соображения: древесина малочувствительна к концентраторам напряжений, трещино стойкая; она не требует сложного технологического оборудования при изготовлении лонжерона и каркаса лопасти; затраты на изготовление лопасти не велики.

Центральная часть лонжерона выполнялась из дельта- древесины (склеенные тонкие листы древесины), носовая часть профиля состояла из набора склеенных сосновых реек. Хвостовая часть представляла собой каркас из фанерной обшивки, приклеенной к пенопласту. Поверхность лопасти покрывалась полотном и влагостойким лаком.
В процессе эксплуатации выявились существенные недостатки деревянной лопасти:

    Несмотря на влагостойкое покрытие поверхности лопасти элементы конструкции насыщались влагой, что приводило к изменению центра тяжести сечения (смещался назад) и уменьшению критической скорости флаттера лопасти;

    Пропитка антисептиками не устраняла в процессе эксплуатации гнилостного разрушения древесины, при том что ее механические свойства ухудшались.

В практике Московского вертолетного завода им. М.Л. Миля в лопастях НВ применялась смешанная конструкция - лонжерон выполнялся из стальной трубы, а в элементах каркаса использовалось дерево и полотно.

Требования прочности, жесткости и аэродинамики с учетом технологических возможностей привели к необходимости изменения форм сечения лонжерона по радиусу с цилиндрической на эллиптическую. Металлургическая промышленность не располагала оборудованием для формирования данного лонжерона из одной заготовки. Поэтому конструкторы вынуждены были ввести телескопические стыки, соединенные стальными заклепками, с использованием упрочняющей технологии (дорнирование отверстий), плавные переходы жесткости в месте стыка, продольную шлифовку внутренней и внешней поверхностей каждой части лонжерона.

Учитывая характер аэродинамических нагрузок по хорде профиля, переднюю часть профиля лопасти выполняли из фанеры, а заднюю - из полотна в комлевой части лопасти и фанерной обшивки в средней и концевой ее части.

Аэродинамические нагрузки и центробежная сила, действующая на каркас, через нервюры передавались на лонжерон. Передача сил и моментов на лонжерон осуществлялась через фланцы, приклепанные к лонжерону и стенке нервюры.

В процессе эксплуатации выявился ряд недостатков принятой конструктивно-силовой схемы лопасти. Наличие стыков и заклепочных соединений существенно усложнило процесс достижения необходимого ресурса лопасти. Использование в хвостовой части без моментной обшивки (полотна) приводило к тому, что под действием внешних аэродинамических сил и центробежной силы воздуха, находящегося внутри каркаса, существенно искажался профиль лопасти, что ухудшало его аэродинамические характеристики.

Введение дренажного отверстия на нижней поверхности в конце лопасти привело к местным потерям на перетекание воздуха внутри каркаса под действием центробежных сил. Устранение этого недостатка за счет отказа от полотна и переход па фанерную обшивку по всей поверхности лопасти существенно увеличило массу лопасти и сдвигало центр масс лопасти назад. В результате совместной деятельности конструкторов, технологов и металлургов по устранению отмеченных недостатков был создан лонжерон заданного переменного сечения без стыков, а хвостовую часть лопасти стали выполнять из дюралюминевой обшивки, подкрепленной сотовым блоком, не изменяющей форму под действием аэродинамических нагрузок.

Для трубчатого лонжерона применяется обычно труба из высоколегированной стали типа ЗОХГСА или 40ХНМА, закаленной и отпущенной на прочность (с^ = 1100-1300 МПа). После горячей и холодной прокатки, формообразования и закалки наружная и внутренняя поверхности трубы полируются. На внешней и внутренней поверхностях лонжерона создается наклеп виброударным способом, повышающий предел выносливости до а ю = 280-300 МПа mi» при постоянной части нагружения ат= 200-250 МПа.

В конструкции лопасти, основанной на стальной трубе, лонжерон обычно защищен каркасом и не может быть механически поврежден в эксплуатации.

Использование прессованного профиля из дюралюминиевого материала позволило формировать профиль лонжерона с наиболее целесообразным сечением (2.3.1). Применение замкнутого профиля, полученного методом прессования (экструзия), ограничил диапазон использования существующих дюралюминиевых сплавов. В процессе прессования происходит разделение материала на две части, поэтому в формирующем профиль инструменте (фильере) эти две части должны соединяться и свариваться давлением. Чтобы структура материала в местах сварки не ухудшалась, необходимо применять материал с высокой коррозионной стойкостью, Усталостная прочность дюралюминиевого лонжерона может снизиться из- за дефектов, возникающих в процессе прессования профиля и механической обработки.лонжерона. Поэтому необходимо не только наружную, но и внутреннюю поверхности лонжерона упрочнять виброударным способом. Предел выносливости может быть доведен до а = 55-60 МПа при о т= 60 МПа. Для исключения минимальной возможности коррозионного повреждения прессованных лонжеронов в процессе производства и в условиях эксплуатации необходимо применять гальванические покрытия (например, анодирование) после промежуточных операций его обработки.

Процесс прессования не позволяет изменять форму сечения по заданному закону, поэтому требуемую высоту профиля по длине лопасти можно обеспечить только за счет фрезерования внешней поверхности. В результате конструктор имеет возможность разрабатывать конструктивно-силовую схему лопасти только прямоугольной формы в плане (сужение r| = 1).

Контакт поверхности лонжерона с потоком воздуха привел к необходимости защиты этой поверхности от эрозионного повреждения.

Была сделана попытка формирования лонжерона лопасти из многослойного тонкого листа нержавеющей стали, соединенного в монолит при помощи склейки. Предполагалось создание конструкции, обладающей большой стойкостью к распространению усталостной трещины. Органическим недостатком данной конструкции была невозможность обеспечения качественной склейки и устранения выявленных дефектов клеевых поверхностей.

Лопасти с лонжероном замкнутой формы позволяют использовать технические средства постоянного контроля усталостных разрушений материала лонжерона. Система сигнализации повреждения цельнометаллических лонжеронов состоит из сигнализатора давления воздуха и заглушек на концах лонжерона (2.3.2). Внутренняя полость лонжерона заполняется воздухом под давлением, превышающим давление начала срабатывания сигнализатора.

В случае появления в лонжероне трещины давление воздуха в нем падает. Информация о разгерметизации полости лонжерона поступает от сигнализатора давления в виде выдвижения красного колпачка сильфона, установленного в комлевой части каждой лопасти.

Индикация давления воздуха в лонжеронах в кабину экипажа не выводится, т.к. процесс роста трещины до разрушения лонжерона в несколько раз превышает время максимально возможной длительности полета вертолета. Контроль за состоянием лопасти осуществляется при меж полетном осмотре по положению сигнализатора.

Давление воздуха в лонжероне создается с учетом температуры окружающего воздуха и с учетом давления начала срабатывания сигнализатора.

В лопастях вертолета Ми-26 стальные трубчатые лонжероны по наружной поверхности облицованы стеклолентой, за счет чего при возникновении трещины в лонжероне исключается возможность обнаружения повреждения лонжерона с помощью пневматической системы сигнализации. Для обеспечения надежного функционирования системы сигнализации повреждения лонжерона по всей длине его внешней поверхности укладываются двойные фторопластовые шнуры (2.3.3) и после обмотки лентами из стеклоткани производится полимеризация в пресс-форме. Фторопластовые шнуры вытягиваются, образуя воздушные каналы диаметром

2 мм, открытые со стороны внешней поверхности трубы лонжерона. Появление усталостной трещины в зоне воздушных каналов приводит к падению давления в полости лонжерона и срабатыванию сигнализатора. Каналы выполняются двойными по технологическим соображениям - всегда имеется вероятность обрыва фторопластового шнура при его вытягивании из полости длиной 14 м.

Анизотропность композиционных материалов открыла широкие возможности применения их в лопастях НВ. Применение КМ позволяет направленно формировать жесткостные характеристики лопасти (изгибные и крутильные) за счет соответствующей ориентации армирующих волокон композита с учетом сложного характера ее нагружения.

Вертолетостроение является наиболее передовой отраслью авиационной техники, здесь стали смело применять КМ в таком ответственном и сложно нагружаемом агрегате, как лопасть НВ.

Эффективность применения КМ в силовых элементах лопастей определяется рядом преимуществ этих материалов по сравнению с металлами. В частности, аэродинамические и аэроупругие параметры лопастей композитов могут выбираться без учета ограничений, вызываемых технологическими процессами получения катаных, экструдированных (прессованных) или механически обработанных металлических конструктивных элементов.

Композитным конструкциям можно придать сложные аэродинамические формы, а регулируемая анизотропия материала позволяет создавать требуемую жесткость в пределах заданных аэродинамических и аэроупругих параметров. В результате достигается большая аэродинамическая эффективность винтов, определяемая отношением подъемной силы к аэродинамическому сопротивлению.

С помощью КМ, обладающих более высокой удельной прочностью, изготавливают лопасти меньшей массы, чем металлические. Снижение массы лопастей, в свою очередь, оказывает влияние па центробежные силы, инерцию ротора, частотные и другие характеристики.

Регулируемая в широких пределах анизотропия КМ позволяет получать необходимые конструктивные и демпфирующие параметры лопасти.

Частота собственных колебаний лопасти может быть изменена не только перераспределением массы, но и выбором армирующих волокон, имеющих низкий или высокий модуль упругости, включая их гибридизацию (смешивание), степени армирования и ориентации армирующих волокон относительно оси лопасти. Крутильная жесткость лопасти может быть существенно увеличена за счет добавления слоев с ориентацией ± 45° относительно размаха лопасти при незначительном изменении частот продольных колебаний.

Одним из возможных критериев оптимальности панели из КМ, обеспечивающим минимум ее массы, является условие совпадения траектории армирования с траекторией максимального главного напряжения. Как правило, КМ представляет собой совокупность однонаправленных или тканевых слоев с различными толщинами и углами ориентации волокон. Свойства такого материала определяются свойствами отдельных слоев и структурой.

Эффективная реализация достоинств композитов в конструкциях лопастей требует решения комплекса задач, связанных с выбором взаимно согласованных исходных компонентов (волокон и матрицы), определением рациональной структуры материала, соответствующей характеру внешних нагрузок и других воздействий с учетом специфических свойств материала и технологических ограничений при разработке элементов лопасти.

Механическое поведение КМ определяется высокой прочностью армирующих волокон, жесткостью матрицы и прочностью связи на границе «матрица - волокно».

Наибольшее применение получили стеклопластиковые КМ на эпоксидной матрице. Это объясняется в первую очередь низкой стоимостью стеклопластика. Дальнейшее развитие конструкции лопасти из КМ связано с использованием гибридных композиций

Сочетания углеволокна с органоволокном и других подобных вариантов.

Углепластик, обладая высокой прочностью, чувствителен к ударным нагрузкам. Введение менее жесткого материала и защита поверхности лонжерона от каких-либо повреждений предоставляет возможности широкого применения подобных композиций.

Лонжерон с замкнутым коробчатым сечением £)-образной формы может быть изготовлен методом намотки однонаправленной лентой на оправке. Этот метод изготовления лонжеронов лопасти широко применяется при крупном серийном производстве, где целесообразно максимально автоматизировать процесс изготовления. В практике ОКБ Н.И. Камова выбрана технология изготовления лонжерона частями методом выкладки из различных тканей или лент однонаправленного материала на оправках.

Листы материала лонжерона собирают в пакеты и подвергают предварительной опрессовке в автоклаве при невысокой температуре. Листы при этом слипаются, пакеты приобретают необходимые для дальнейшей сборки форму и жесткость, а полимеризации связующего практически не происходит. После опрессовки пакеты представляют собой профиль открытого контура.

Затем пакеты собираются совместно с центровочными грузами, нагревательным элементом и комлевыми пластинами в один блок, внутри которого располагается технологическая резиновая пресс- камера. Блок пакетов с пресс- камерой помещают в специальную пресс-форму, внутренний контур которой соответствует внешнему контуру носовой части лопасти.

В пресс-камеру подается сжатый азот, а пресс-форму нагревают. При этом лонжерон приобретает необходимую форму, связующее полимеризуется и все элементы лонжерона прочно склеиваются между собой. По окончании процесса прессования лонжерон извлекают из пресс-формы, удаляют из него пресс-камеру и обрезают припуски. Такой способ производства позволяет получить лонжерон замкнутого контура из различных армирующих наполнителей на разных связующих, в любом сочетании с неограниченными возможностями по их размещению в конструкции. К сборочному приспособлению для изготовления лонжерона заданного сечения предъявляется ряд требований при назначении режимов давления, нагрева, охлаждения и выдержки при отвердении. Эти требования направлены для исключения остаточных деформаций и коробления за счет температурных напряжений и неравномерности распределения массы материала и толщин в процессе формирования лонжерона.

Тип исходных КМ для лонжеронов выбирается в зависимости от летно-технических данных вертолета. Для малонагруженных лопастей вертолетов используется дешевая стеклоткань сатинового переплетения. Для высоконагруженных лопастей используются гибридные КМ на основе высокопрочной стеклоткани, углеродной ленты и технической ткани на эпоксидном связующем.

Применение гибридных КМ позволяет основной силовой элемент - лонжерон - изготавливать с практически любым заданным распределением масс и жесткостей по длине лопасти.

В силу требований, предъявляемых к лопастям, и учитывая действующие нагрузки, хвостовые секции лопасти должны отвечать следующим требованиям: прочность конструкции, минимальная масса, жесткость конструкции, достаточный ресурс (не менее ресурса лонжерона лопастей), гладкость аэродинамической поверхности, возможность изготовления в серийном производстве, возможность ремонта в полевых условиях и др.

В эксплуатации хорошо зарекомендовали себя хвостовые секции лопасти трёхслойной сотовой конструкции. Такая секция имеет обшивку, торцевые нервюры и стрингеры из технической ткани на основе органических волокон и заполнитель из сот. Применение в конструкции хвостовых секций самого легкого КМ дает возможность снизить массу секций по сравнению со стеклопластиком и увеличить ресурс.

Большой опыт, накопленный при эксплуатации вертолетов «Ка», показал, что лопасти из КМ имеют наилучшие эксплуатационные качества. Важнейшие из них состоят в следующем:

Большой запас прочности при фактически неограниченном по условиям выносливости ресурсе. Практический срок службы лопастей из КМ определяется степенью их естественного износа, зависящего от условий эксплуатации;

Повышение срока службы не только лопастей несущего винта, но и всего вертолета за счет снижения статических и динамических нагрузок в несущей системе, благоприятных частотных характеристик и уменьшения уровня вибраций вертолета. Это обеспечивается технологическим процессом, который позволяет изготавливать лонжерон с переменными по длине формой сечения и толщиной стенки, а также применять совместно разные типы армирующего материала с разной ориентацией. Эти важнейшие качества дают существенные преимущества не только перед металлическими лопастями, но и перед другими конструкциями лопастей из КМ;

Высокая степень ремонтопригодности. Благодаря ценным свойствам КМ - высокой стойкости к концентраторам напряжений и низкой скорости разрушения материала - достигается простота и доступность ремонта даже крупных повреждений лопасти в полевых условиях;

Высокая стойкость лопастей практически ко всем видам агрессивных веществ, топливам, ядохимикатам, маслам и пр.;

Стабильность летно-технических характеристик лопасти в процессе длительной эксплуатации в любых климатических условиях. Длительный опыт эксплуатации вертолетов с лопастями из КМ показал, что изменения механических свойств материала настолько незначительны, что они не влияют ни на летно-технические характеристики, ни на срок службы лопастей.

На характеристики КМ в процессе эксплуатации оказывает влияние влажность.

Кто не мечтал иметь собственный вертолет? Наверное, об этом задумывался каждый ребенок и каждый мужчина. Ведь мужчины это большие дети. О вертолетах ходит много разных историй. Например, девушка, которая везла в метро для мужа коробку с моделью данного аппарата, еще ни разу не получала такого внимания от других мужчин. Естественно, окружающих интересовала вовсе не девушка, а именно эта модель.

Сегодня можно купить практически все что угодно. В широком ассортименте в магазинах предлагаются различные модели самолетов или коптеров. Но купить легко, а самодельный вертолет − это очень интересно. Ведь здесь нужно придумать конструкцию, продумать до мельчайших деталей привод и мотор, сделать систему управления. Это большой труд. Обычно таким занимаются любители техники или инженеры в свободное от работы время. Но существует информация и не только о моделях этой летающей техники. Есть вполне реальные, воплощенные в металле летающие машины.

Сегодня можно встретить даже целые субкультуры людей, которые конструируют, изготавливают и запускают такие самодельные самолеты и вертолеты. Это настоящие энтузиасты в этой области.

Первый вертолет

Прежде чем заниматься изготовлением самодельных аппаратов, нужно разобраться, как же эта штука работает, как она устроена, за счет чего она поднимается в воздух.

Первый геликоптер удалось поднять в воздушное пространство в 1907 году. Для тех, кто не в курсе, это произошло через 4 года после первых полетов величайших изобретателей братьев Райт на их самодельной летающей машине.

Вертолет был создан французскими любителями неба. Братья Бреге дали своему летательному аппарату имя "гироплан". Он весил порядка 578 кг. Бензиновый мотор обладал мощностью в 45 л. с. Аппарат комплектовался четырьмя несущими винтами диаметром 8,1 м. Также на каждом отдельном винте были установлены еще 8 лопастей. Они были соединены между собой попарно. Также геликоптер имел четыре вращающихся крыла бипланового типа. Так, тяга летательной конструкции составляла порядка 600 кг.

Это, можно сказать, самодельный вертолет. Ведь они собирали его из подручных средств. В итоге он смог подняться на 60 см над землей. Аппарат провисел над поверхностью какую-то минуту.

Разница в четыре года между изобретением самолета и вертолета можно объяснить лишь сложностью конструкции геликоптера.

Конструкция

Существуют несколько видов коптеров. Их подразделяют по типам. Это одновинтовые, соосные, а также поперечные и продольные. Особо распространены первые два. Давайте посмотрим, как же работают эти летающие конструкции. Если знать, как устроен аппарат, а также его принцип действия, то собрать самодельный вертолет своими руками не составит особого труда, лишь бы желание было.

Одновинтовая схема

Конструкция состоит из фюзеляжа, впереди которого располагается кабина для размещения пилотов. Остальное место предназначено для размещения пассажиров или же грузов. Справа и слева, рядом с шасси крепятся баки для топлива. Также конструкция включает два газотурбированных двигателя. Каждый из них обладает мощностью в 1500 л. с. Спереди, прямо над кабиной пилотов, расположены воздухозаборники, сзади выхлопная система.

Самая сложная часть в этой конструкции − автомат перекоса и несущий винт, а также хвостовая балка, на которой закреплен рулевой винт.

Соосная схема

Составляющие этой машины мало чем отличаются от предыдущего типа. В промышленных и военных машинах разве что моторы мощней. Также отличием является наличие 2-х несущих винтов. Геликоптеры, построенные по такому принципу, не имеют управляющего винта. Однако комплектуются вертикальным стабилизатором.

Как и почему они летают?

Если вы поставите обычный бытовой вентилятор на колесную базу и запустите его на максимальной мощности, то он вместе с базой будет перемещаться в сторону, которая противоположна потоку воздуха. Это все из-за тяги, которая создается элементом.

Ту же самую функцию выполняет и вертолетный винт. Именно последняя деталь выполняет основные задачи по подъему летательного аппарата. Также винт заставляет машину двигаться в горизонтальной плоскости. Это одна из сложнейших деталей вертолета.

Несущий винт

Этот узел состоит из втулки и лопастей. Лопасти могут быть исполнены в виде цельной конструкции из металла либо же лонжерона, а также обшивки и заполнителей.

В современных лопастях промышленных и военных геликоптеров установлены системы, в которые полностью в автоматическом режиме закачивается воздух, если лонжерон каким-то образом повредится. В 1963 году произошла вертолетная революция, и лопасти машины стали производить на основе стеклопластика. Сегодня такие детали используют на большинстве вертолетов во всем мире. Но, если есть доступ к производству различных элементов из такого материала, самодельный вертолет тоже можно укомплектовать ими.

В большинстве случаев лопасти были закреплены на втулке при помощи шарниров или же различных гибких элементов. В вертолетостроении особо распространена трехшарнирная конструкция. Она имеет шарнир в горизонтальной плоскости, а также вертикальный и осевой элемент.

При полете такой машины лопасти порой совершают самые разные движения. Они могут совершать вращение вокруг горизонтальной оси винта и менять свое положение на каждый оборот.

Лопасти и шарниры

Шарниры располагаются в очень строго определенной последовательности на определенном расстоянии от центра. Вначале идет горизонтальный, далее вертикальный, а в конце осевой шарнир.

К чему все это? А вот к чему. Лопасти винта вращаются вокруг оси по часовой стрелке. При положении 90 градусов скорость, с которой двигаются лопасти в отношении потоков воздуха, является максимальной. Она складывается из той, с которой вращается винт, и непосредственно скорости воздуха, идущего навстречу машине.

На противоположной стороне данное значение минимальное. Оно от воздушного потока. Казалось бы, такая разность скоростей не может способствовать подъему летательного аппарата в воздух. Но нет. Так как лопасти закреплены на втулке посредством гибких элементов, то вместо опрокидывания машины остается лишь сменить угол наклона.

Процесс подъема геликоптера в небо и сам полет происходит вследствие того, что изменяется угол атаки лопастей. Это синхронизируется с тягой двигателя. Чтобы можно было синхронизировать работу лопастей и моторов, был изобретен так называемый автомат управления углом атаки, или элемент перекоса. Данный узел обладает достаточно сложной конструкцией. Поэтому самодельный автомат перекоса вертолета сделать не так уж просто. Хотя чертежи этого узла существуют.

Радиоуправляемые вертолеты своими руками

Еще около пяти лет назад радиоуправляемые модели были в диковинку для многих. Люди сбегались посмотреть на это чудо. Сегодня такая техника предлагается в самых различных комплектациях. Большинство предпочитает полностью готовые комплекты. Но есть и детали для самостоятельного изготовления.

Готовимся к сборке

Если есть желание собрать геликоптер своими силами, то стоит начать с более простых схем. Это в большинстве случаев два несущих винта на одном шасси. Такие модели обладают более высокой стабильностью, нежели их аналоги в классической компоновке. Это идеальный вариант для тех, кто ни разу не летал. Также подобные конструкции являются идеальным вариантом, если придется летать в закрытых пространствах.

Прежде чем собирать самодельный мини-вертолет, следует воспользоваться основными правилами. Для начала нужно придумать либо разработать схему. Затем следует правильно подобрать материалы и необходимый инструмент. Резьбы, а в особенности в металле, лучше посадить на фиксатор резьбы. Это необходимо для безопасности.

Необходимые материалы

Чтобы изготовить такую летающую технику, понадобится пластик, стеклопластик, дерево, карбон и алюминий. Также нужен двигатель, аккумуляторы, лопасти, ротор, редуктор для хвоста. Кроме этого, понадобиться сервоприводы для управления, электронные компоненты, краска, клей и некоторые мелочи.

Самодельный радиоуправляемый вертолет в несколько этапов

Сейчас мы посмотрим, как делать такую модель из того, что есть в гараже у каждого. Сборка будет производиться в несколько шагов. Давайте рассмотрим их.

Рама

Итак, для начала работы нам нужно рама. На ней будут закреплены основные детали и узлы. Этот узел должен иметь высокую жесткость. Чем жестче получится конструкция, тем лучше.

Для хобби-техники будет достаточно пластиковой рамы из двух половин. Между двумя частями будут зажаты подшипники и другие части. Затем половинки нужно стянуть саморезами. Если вам удалось изготовить раму по данному принципу, стянув и скрепив ее правильно, можете считать, что треть всей работы уже выполнена.

Мотор

Если вы не хотите долго рассчитывать при помощи специализированных программ передаточные отношения и мощность двигателя, лучше сделать так, чтобы мотор соответствовал рекомендациям производителя. Мотор крепится к раме. Крутящий момент будет передаваться на сцепление. Для этого дополнительно монтируют резиновую муфту.

Сцепление

На самодельный вертолет своими руками нужно установить систему центробежного сцепления. Оно должно включать в себя маховик и кулачки, а также «колокол». Когда обороты дойдут до нужного уровня, кулачки раздвинутся и войдут в зацепление с ним.

Ротор

Если модель спроектирована по схеме с одним несущим ротором и рулевым винтом, то это очень простая модель для реализации. Как поступать далее? Между мотором и ротором нужно смонтировать обгонную муфту. Она предназначена для того, чтобы механизм мог свободно вращаться по инерции.

Хвостовая балка

Данная деталь может быть изготовлена из алюминия, карбона или углепластика. Здесь важна жесткость. Внутри балки нужно расположить ременную передачу или же вал, через который вращение мотора будет передаваться на ротор на хвосте.

Управление шагом хвостового ротора

Самодельный вертолет предусматривает наличие машинки для управления хвостовым ротором. Так, можно применить длинную тягу через промежуточные качалки.

Шасси

Чтобы аппарат был более устойчивым, его необходимо оснастить шасси. Это позволяет смягчать удары и предотвратить возможные опрокидывания машины. Данный узел можно купить или же сделать самостоятельно из алюминиевой трубы и поперечин из пластика.

Капотная часть

Это больше декоративная деталь, хотя она несет и противоударную функцию. Для изготовления подойдет пластик. Чем он легче, тем лучше.

Электронная система

Без гироскопа, приемника, аккумуляторов и сервоприводов усилия просто обречены на провал. Самодельный вертолет на радиоуправлении не взлетит без вышеперечисленных деталей. Электронику тоже монтируют в корпусе летающей машины. Чтобы обеспечить безопасность, в электронную часть можно добавить выключатель и индикаторы заряда ботовых батарей.

В качестве пульта для управления лучше приобрести готовое устройство. Собрать такое устройство с нуля не каждому под силу. Также нужно помнить, что в конструкции летательного аппарата не должно быть тяжелых моторов или аккумулятора. В противном случае машина не полетит в силу большой снаряженной массы.

Сделать своими руками вертолет − очень увлекательное занятие. Но летать с ним - это настоящее искусство. Полеты самодельных вертолетов − особенное зрелище. Если научиться управлять аппаратом виртуозно, тогда вы определенно вызовите восторг у окружающих.

Лопасти для вертолетов

Все те, кто регулярно летают с такими моделями, знают, как часто ломаются данные элементы. Особенно часто с этим сталкиваются начинающие летчики. Играть с вертолетом хочется, но постоянно приобретать эти детали − совсем не выход. К тому же и цена на них внушительная.

За час времени можно сделать четыре самодельные лопасти для вертолета. Для изготовления понадобятся пластиковые карточки без тиснения, а также целые лопасти. Целые детали будут использованы в качестве шаблона.

Одну из лопастей следует избавить от профиля. Для этого можно прогреть ее на газу, а затем расплющить об стол или любой другой предмет. Главное, делать это не слишком сильно. Затем, нужно обвести по шаблону, например, ножом. Резать необходимо несколько раз без нажима, а затем раз от раза усиливать нажим. Далее, аккуратным движением пластиковая карточка надламывается и дальше прорезается.

Так получилась заготовка. Теперь необходимо сделать ее тоньше. Для этого нужно шкуркой зачистить ее от второй трети ее размера. Затем переходимо к созданию профиля. Здесь необходимо свернуть тряпку в рулон, а нашу заготовку подогреть до мягкости. Нагревать нужно с широкой стороны. Затем, когда она уже достаточно мягкая, можно положить ее на рулон из ткани. Для того чтобы получить нужный профиль, достаточно прижать сверху заготовку заводской лопастью.

Другие самодельные аппараты

Далеко не все предпочитают самодельный вертолет на пульте управления. Некоторые любители техники предпочитают собирать вполне серьезные машины. Они выглядят почти как настоящие геликоптеры, просто изготовлены в большинстве достаточно кустарно. Но это все-таки хобби.

Например, парень из Нигерии, который учится на физическом факультете, увлекается тем, что разбирает на запчасти старую автомобильную технику и собирает из этого настоящий самодельный вертолет. Чертежи парень разрабатывает также сам.

Про очередное свое детище нигерийский физик говорит, что собирал машину порядка восьми месяцев. Этот аппарат поднимался над нигерийскими землями более 6 раз. В качестве материала был использовать алюминиевый лом.

Данный плод инженерной мысли оснащен мотором от автомобиля "Хонда". Двигатель имеет мощность в 133 л. с. В кузове установлены сидения от «Тойоты». Другие комплектующие были от «Боинга», который терпел крушение неподалеку.

Еще один самодельный вертолет из бензопилы стал возможностью для заключенного организовать побег из тюрьмы. Правда, конструкция его была проста до банального. Заключенный приделал к бензопиле деревянный винт. Это дало возможность мужчине без труда преодолеть на таком «хеликоптере» более 100 метров.

А 82-летний житель Рязани, несмотря на свой возраст, увлекается авиацией и вертолетостроением. Токарь, фрезеровщик да и вовсе большой мастер собрал свой первый летательный аппарат в 30-летнем возрасте. Он тогда работал на одном из заводов в Алма-Аты. Там он познакомился с одним летчиком, а тот помог ему сконструировать самодельный одноместный вертолет.

Хоть этому вертолету уже порядка 50 лет, старый специалист все еще продолжает конструировать все новые и новые машины. Сегодня со своим сыном он пытается собрать еще одну модель аппарата. Сборка началась прямо во дворе, затем переехала в гараж.

В Харькове тоже живет один любитель вертолетной техники. Конечно, на его машине нельзя полетать над землей. Его вертолет оснащен автопилотом, а управление осуществляется по радиоканалу. Эта конструкция отличается наличием автопилота. Вертолет может облететь по 200 точек по заранее заданному маршруту, а также вернуться туда, откуда аппарат взлетал ранее.

Заключение

Вот мы и узнали, как сделать самодельный вертолет. Как видите, при должном уровне навыков и информации можно собирать достойные летательные аппараты.