Скачать calibre русская версия. Calibre — обзор программы

  • Носимая электроника ,
  • DIY или Сделай сам ,
  • Электроника для начинающих
  • Анекдот (вместо эпиграфа). Профессор читает лекцию студентам:… как видите, данное технологическое решение простое, понятное, и очень надёжное. По этим причинам оно и не используется. На практике применяют другую технологию, которую мы с вами будем изучать в течение следующих пары месяцев...

    Этот недешевый в общем-то фонарик принесли в практически идеальном внешне состоянии, что говорит о его явно безвременной кончине. И дважды сдохшим изнутри.


    Первый раз он почил когда сгорела электроника токового драйвера - вполне закономерно для экстремального режима на предельных нагрузках. После чего над ним поработал видимо «умелец», пустив питание кристалла напрямую - в результате выгорел и сам светодиод.

    Изготовители старательно запилили маркировку транзисторов и микросхем, наверное из чувства стыда за неоптимальный выбор компонентов. Но при этом не удосужились облудить медные ободки на плате выключателя (слева, показан красной стрелкой), и на «пятаке» платы драйвера - которые контачат с алюминиевым корпусом. Пришлось сделать это самому, чтоб предотвратить разрушение металлов в образовавшейся гальванопаре. Выгоревший кристалл был демонтирован при помощи промышленного фена. Вместо него запаял свежеприобретенный OS-Star-5W Warm White 3000K 300Lm, рассчитанный на ток 0.7А с падением напряжения 6v на светодиоде. В фонарике он будет использоваться на пониженной мощности, с целью продления ресурса светодиода и времени автономной работы фонаря от АКБ.

    Тестируем новый кристалл. Его теплоотводный «пятак» тоже припаял к подложке для улучшения теплоотдачи, но как оказалось в дальнейшем, на выбранном рабочем токе 0.2А фонарь практически не греется. Вольтметр (слева) показывает падение напряжения на светодиоде, подключенном к лабораторному источнику питания через ограничительный резистор.

    Драйвер восстанавливать заморочно и бессысленно, да и как показано ниже - даже вредно по факторам надежности и КПД в случае применения фонаря для повседневных целей. Поэтому пятак был очищен от радиодеталей, а для ограничения тока светодиода в районе 0.2А на полных батареях использован резистор сопротивлением 10 Ом.

    На фото рядом два резистора по 5.1 Ом, аналогичные тем что упакованы в термоусадку. Там они соединены там последовательно, т.к. резистора на 10 Ом не оказалось под рукой.

    После промывки от флюса и сборки светодиодного узла, фонарик был поставлен на испытания. Аккумуляторы 18650 не «родные», выдранные из батблока отслужившего свой срок ноутбука. Тем не менее какой-то запас емкости в них еще остался. Перед началом прогона они были заряжены до напряжения 4.12v каждый.

    Потребляемый ток замерялся каждый час. Через 7 часов непрерывной работы напряжение аккумуляторов снизилось до 3.6v, что говорит о еще не окончательном их разряде, но уже близко к этому. При этом фонарик достаточно ярко освещает помещение, а на улице хорошо просвечивает более чем на полсотни меторв. Таким образом изделие восстановлено, и соответствует пожеланиям заказчика.

    Расчеты и обоснование

    Получаем (округленно) для режимов:

    • максимальный - 2.05
    • средний - 1.78
    • минимальный - 1.63
    Эти цифры показывают во сколько раз ток потребления от батарей ниже тока, который был бы в схеме с непосредственной запиткой через ограничительный резистор. Т.е. по сути характеризуют экономию питания, получаемую за счет импульсного драйвера питания светодиода.

    На новом установленном светодиоде падение напряжения уже 6v, он конструктивно состоит из двух трехвольтовых секций, включенных последовательно. А значит и количество излучаемого света при одном и том же протекающем токе, у него в два раза больше чем у оригинального трехвольтового.

    Ток потребления схемы с резисторным ограничителем находится в пределах от 0.21 до 0.13 А, в зависимости от степени разряда батарей. Но с учетом удвоения излучаемого света, световой поток даже на разряжающихся акб заметно больше, чем у оригинальной схемы в минимальном (экономичном) режиме. Для резисторного ограничителя ток потребляемый от батарей и ток СД - одинаковы. Но можно посчитать КПД, как отношение мощности подводимой к СД к общей мощности потребляемой всей схемой.

    Итак КПД высоконадежного фонаря с резистором вместо импульсного драйвера, на полностью заряженной батарее - 74% , а на разряжающейся - 81% .

    Для расчета КПД в оригинальной конструкции с импульсной запиткой, примем падение напряжения на СД 3.1v, а ток светодиода не меняется по мере разряда АКБ.

    Получается что на небольшой мощности для повседневных нужд - оптимальнее правильный подбор светодиода, и применение простого и надежного резисторного ограничения тока. Такой подход обеспечивает больший КПД использования энергии батарей, по сравнению с запиткой через импульсный драйвер. А также многолетний ресурс безотказной работы, обусловленный надежностью схемы, и тем что в недогруженном режиме светодиод прослужит во много раз дольше.

    Небольшое пояснение

    Расчет КПД в схеме драйвером произведен без учета увеличения потребляемого тока по мере разряда батарей. Поэтому реальный КПД с импульсником на посаженных батареях окажется чуть меньше значений, указанных в последней таблице.

    С драйвером ток светодиода поддерживается неизменным, и соответственно его яркость. Поэтому по мере разряда батарей, потребляемый от них ток начинает увеличиваться. Батареи будут садиться всё быстрее и быстрее.

    С резистором же ситуация в точности наоборот - ток потребления снижается при разряде батарей, и т.о. позволяет протянуть на одной зарядке раза в полтора… два примерно дольше, чем если б было с драйвером. Конечно это достигается ценой некорого снижения яркости, но в такой ситуации лучше чтоб хоть немного да светило, чем вообще никак.

    Вариант использовать вместо резистора проходной стабилизатор тока на ИМС или полевом транзисторе - рассматривал, но тоже отклонил т.к. сокращается время автономной работы по сравнению с резисторной схемой.

    Выбор резистора был обусловлен разумным компромиссом между минимально необходимой освещенностью при разряде батарей, и стремлением по максимуму продлить время автономной работы фонаря. Что и было достигнуто - на посаженных батареях фонарь позволяет читать книжный текст, и дает вполне приемлимую освещенность для ориентирования на улице, «пробивая» десятки метров.

    Долго пылился на полке старый фонарик - ручка «Duracell». Работал он от двух батареек формата ААА, на лампочку накаливания. Очень удобен был, когда нужно посветить в какую-либо узкую щель в корпусе электронного прибора, но всё удобство от применения перечеркивал «жор» батареек. Можно было бы выкинуть этот раритет и поискать в магазинах что-то современнее, но… Это не наш метод... © Потому на Али была куплена микросхема светодиодного драйвера, которая помогла перевести фонарик на светодиодный свет. Переделка очень простая, которую сможет осилить, даже начинающий радиолюбитель, умеющий держать в руках паяльник… Так что, кому интересно, велком под Кат…

    Микросхема драйвер покупалась давно, больше года назад, и ссылка на магазин уже ведет в «пустоту», потому я нашел аналогичный товар, у другого продавца. Сейчас этот драйвер стоит дешевле, чем я покупал его. Что же это за «клоп» с тремя ножками, давайте рассмотрим подробнее.
    Для начала ссылка на даташит:
    Микросхема представляет собой Led драйвер способный работать от низкого напряжения, к примеру, одной батарейки 1.5В формата ААА. Микросхема драйвера имеет высокую эффективность (КПД) 85% и способна «высосать» батарейку практически полностью, до остаточного напряжения 0,8В.
    Характеристики микросхемы драйвера

    под спойлером


    Схема драйвера очень проста…


    Как вы видите, кроме этой микросхемы «клопа» нужна всего одна деталь - дроссель (индуктор), и именно индуктивностью дросселя задается ток светодиода.
    Для фонарика в место лампочки, я подобрал яркий белый светодиод, потребляющий ток 30мА, соответственно мне нужно было намотать дроссель индуктивностью 10мкГн. Эффективность драйвера составляет 75-92% в диапазоне 0.8-1.5В, что очень неплохо.

    Приводить здесь чертеж печатной платы не буду, т.к нет смысла, плату можно изготовить за пару минут, просто процарапав фольгу в нужных местах.


    Дроссель можно намотать, или взять готовый. Я намотал на гантельке, которая попалась под руку. При самостоятельном изготовлении необходимо контролировать индуктивность при помощи LC метра. В качестве корпуса для платы драйвера был использовать двух кубовый одноразовый шприц, внутри которого вполне достаточно места, что бы разместить все необходимые компоненты. С одной стороны шприца -резиновая пробка с светодиодом и контактной площадкой, с другой стороны вторая контактная площадка. Размер отрезка шприца подбирается по месту и приблизительно равен размеру батарейки ААА (мизиньчиковой, как её называют в народе)


    Собственно собираем фонарик


    И видим, что светодиод ярко светит от одной батарейки…


    Ручка-фонарик в сборе выглядит вот так


    Светит хорошо и вес фонарика стал меньше, потому как используется всего одна батарейка, а не две, как было изначально…

    Вот такой получился коротенький обзор… При помощи микросхемы драйвера, вы можете переделать почти любой раритетный фонарик, на питание от одной батарейки 1.5В. Если есть вопросы спрашивайте…

    Планирую купить +75 Добавить в избранное Обзор понравился +99 +185

    Давно присматривался к этим микросхемам. Очень часто что-нибудь паяю. Решил взять их для творчества. Эти микросхемы куплены ещё в прошлом году. Но до применения их в деле так и не доходило. Но не так давно моя мать дала мне на починку свой фонарик, купленный в офлайне. На нём и потренировался.
    В заказе было 10 микросхем, 10 и пришло.


    Оплатил 17 ноября, получил 19 декабря. Пришли в стандартном пупырчатом пакетике. Внутри ещё пакетик. Шли без трека. Был удивлён, когда обнаружил их в почтовом ящике. Даже на почту идти не пришлось.


    Не ожидал, что они настолько маленькие.

    Микросхемы заказывал для других целей. Планами делиться не буду. Надеюсь, что у меня найдётся время воплотить их в жизнь (планы). Ну а пока немного другая история, приближенная к жизни.
    Моя маман, гуляя по магазинам, увидела фонарик с хорошей скидкой. Что больше ей понравилось фонарик или скидка, история умалчивает. Этот фонарик вскоре стал и моей головной болью. Попользовалась она им не более полугода. Полгода проблемы, то одно, то другое. Я купил ей на место этого штуки три других. Но делать всё равно пришлось.


    Фонарик хоть из недорогих, но имеет ряд существенных достоинств: в руке лежит удобно, достаточно яркий и кнопочка в привычном месте, алюминиевый корпус.
    Ну а теперь о недостатках.
    Питается фонарик от четырёх пальчиковых элементов типа ААА.


    Поставил батарейки все четыре штуки. Измерил ток потребления – более 1А! Схема простая. Элементы питания, кнопка, ограничительный резистор на 1,0 Ом, светодиод. Всё последовательно. Ток ограничивается только сопротивлением 1,0 Ом и внутренним сопротивлением элементов питания.
    Вот, что имеем в итоге.


    Странно, что безымянный светодиод оказался живым.


    Первым, что сделал – изготовил пустышку из старой батарейки.


    Теперь будет питаться от 4,5В, как все китайские фонарики в основной своей массе.
    И самое основное, вместо сопротивления поставлю драйвер AMC7135.
    Вот стандартная схема его подключения.

    Для этой микросхемы требуется минимум обвязки. Из дополнительных компонентов желательно установить пару керамических конденсаторов, что бы не было самовозбуждения микросхемы, особенно если к светодиоду идут длинные провода. В даташите есть вся необходимая информация. В фонарике длинных проводов нет, поэтому конденсаторов я в реальности не ставил, хотя в схеме обозначил. Вот моя схема, переработанная под конкретные задачи.


    В данной схеме через кнопку-выключатель большой ток больше не будет течь в принципе. Через кнопку протекает только ток управления и всё. Ещё одной проблемой меньше.


    Кнопку я тоже перебрал и смазал на всякий случай.

    Вместо сопротивления теперь стоит микросхема с током стабилизации 360мА.


    Всё собрал на место и измерил ток. Подключал и батарейки и аккумуляторы, картина не меняется. Ток стабилизации не меняется.


    Слева – напряжение на светодиоде, справа – ток, через него протекающий.
    Что же я добился в результате всех переделок?
    1. Яркость фонаря практически не меняется при эксплуатации.
    2. Разгрузил кнопку включения-выключения фонаря. Теперь через неё протекает мизерный ток. Порча контактов из-за большого тока исключена.
    3. Защитил светодиод от деградации из-за большого протекающего тока (если с новыми батарейками).
    Вот, в общем, и всё.
    Как правильно распорядиться сведениями из моего обзора каждый решает сам. Я же могу гарантировать правдивость своих измерений. Кому что-то неясно по поводу этого обзора, задавайте вопросы. С остальным – кидайте в личку, обязательно отвечу.
    На этом ВСЁ!
    Удачи!

    И ещё хотел бы обратить внимание на тот факт, что у моего фонарика выключатель стоит на плюсе. У многих китайских фонариков выключатель стоит на минусе, а это будет уже другая схема!

    Планирую купить +60 Добавить в избранное Обзор понравился +58 +118

    Замена драйвера в Yupard копии фонаря MagicShine MJ-810

    В данной статье пойдет речь об особенностиях замены драйвера в довольно популярной копии (клоне) фонаря MagicShine MJ-810 . Популярность копии определяется в первую очередь доступной ценой, простотой конструкции и ремонта.

    Для замены драйвера производим не полную разборку фонаря. Выкручиваем корону. Для этого удобно использовать подходящий по размеру пруток.

    Особенность конструкции данного фонаря - алюминиевый стакан с драйвером часто бывает не зафиксирован и может выкручивать по резьбе, тем самым нарушается цетровка магнитых датичков относительно магнита, который находиться в кольце выбора режима.

    Для того что бы избавиться от этой проблемы закручиваем алюминиевый стакан до упора по часовой стрелке.

    Переводим фонарь в положение OFF (выкл.) и определяем месторасположение магнита в кольце выбора режимов. Это удобно делать с помощью маленького шарообразного магнита.

    Ставим метку маркером на алюминиевом стакане. Теперь мы знаем точку выключения OFF. Эта точка нужна нам для точного и правильного совмещения магнитных датчиков драйвера с магнитом в кольце.

    Выкручиваем алюминиевый стакан с драйвером. Отпаиваем провода от светодиода. Вытаскиваем драйвер. Для замены есть две версии: Вариант 1 стандартынй драйвер - Драйвер c магнитным управлением 5-12 В (три режима яркости, строб и SOS). Для тех кого раздражает режимы мигания Вариант 2 модернизированная версия - Драйвер c магнитным управлением 5-12 В VER.2

    Устанавливаем новый выбранный драйвер в алюминиевый стакан таким образом, что бы совместить точку выкл. OFF драйвера (смотри выше на фото) с синей меткой на алюминиевом стакане. Возможно придется сделать новый пропил в стакане для этого. Совместив точку выкл.OFF драйвера с меткой на стакане мы тем самым совмещаем и расположение магнита в кольце точно напротив точки выкл. OFF драйвера. Теперь при переключении режимов вращая кольцо магнит будет распологаться точно напротив магнитных датчиков.

    При установке драйвера в стакан очень важно обеспечить надежный электрический контакт драйвера и корпуса стакана. Не будет контакта - фонарь работать не будет. Минус питания на драйвер подается через корпус фонаря и корпус алюминиевого стакана. Для надежного контакта нужно очистить посадочное место драйвера в стакане от грязи и окислов установить драйвер и зафикисровать его в стакане обжав или расклепав вержнюю кромку стакана. Далее производим сборку в обратном порядке. Припаиваем провода к светодиоду. Вкручиваем до упора стакан в корпус фонаря. Проверяем совмещение метки на стакане с магнитом в кольце. Далее устанавливаем в фонарь аккумуляторы и проверяем работоспособность фонаря. Убедившись, что фонарь работает исправно - выключаем, вынимаем аккумуляторы и только после этого устанавливаем изолятор между светодиодом и рефлекторм фонаря. Сборку -разборку фонаря нужно проводить без аккумуляторов. Далее правильно устанавливаем стекло с уплотнителем (если его перевернуть не той стороной нарушиться герметичность). Закручиваем корону - замена драйвера и сборка фонаря завершена.

    Перечислим неисправности фонаря которые могут возникать:

    • Неправильная установка драйвера или смещения стакана относительно магнита в кольце выбора режимов
    • Отсутствие контакта между драйвером и алюминиевым стаканом
    • Несправность драйвера (может возникнуть при переполюсовки и неправильной установке аккумуляторов)
    • Неисправность светодиода (или кривая пайка светодиода на подложку). Рекомендуется использовать качественные светодиоды XM-L2 правильно припаянные на подложку star SinkPAD
    • Неисправность аккумуляторов (на свежезаряженных аккумуляторах напряжение 4В на каждом и 8В на двух последовательно соединенных).

    Этот обзор будет интересен в основном любителям доделывать и переделывать китайские фонарики.

    Речь пойдет об однорежимном 15-мм драйвере светодиода на 3 Вт. Вот ссылка на товар в FocalPrice . Для нетерпеливых и знающих сразу скажу, что драйвер нормальный, работает хорошо, по цене получился сравнительно дешевым (я дешевле не нашел, но выбирал из сравнительно небольшого числа магазинов). Ну а подробности - под катом.

    После покупки фонарика Sipik SK58, который питается от батарейки или аккумулятора размера АА, у меня не раз возникала мысль, что светодиод в нем светит не в полную силу. Да еще при этом нагрузка на старенький NiMH аккумулятор выходит за рамки приличий (со свежезаряженным аккумулятором ток порядка 1 А - аккумулятору было уже лет 5, чего его так насиловать). А все дело в том, что для питания светодиода требуется напряжение порядка 3.4 - 3.6 В, в то время как NiMH аккумулятор выдает порядка 1.4 В в свежезаряженном состоянии (мой же и до 1.2 еле дотягивал), а по мере разрядки напряжение может упасть аж до 0.9 В (может и ниже, но тогда и аккумулятор быстро теряет емкость). Поэтому в данном фонарике стоит повышающий драйвер светодиода, т.е. плата, которая преобразует напряжение аккумулятора в те самые 3.4 - 3.6 В. При этом драйвер Sipik"а не пытается регулировать ток через светодиод - он выдает напряжение, какое получится (исходя из напряжения аккумулятора), а там будь что будет. Светодиод же достигает максимальной эффективности только на определенном рабочем токе, например, белый светодиод мощностью 1 Вт - при токе 350 мА. Ток через светодиод в моем случае был меньше.

    Решил я поменять в фонарике драйвер с повышающего на понижающий, а NiMH аккумулятор заменить на литий-ионный типоразмера 14500. У литий-ионных аккумуляторов напряжение порядка 3.6 - 4.2 В, что очень хорошо подходит для питания белых светодиодов. Драйвер в данном случае стабилизирует ток через светодиод.

    Драйвер нашел на FocalPrice, выбирал из нескольких магазинов - при закупке трех плат цена у FP была существенно ниже, чем в других магазинах.

    Плата драйвера содержит три микросхемы AMC7135, каждая из которых обеспечивает ток 350 мА. Суммарный ток, соответственно, равен 1050 мА (микросхемы допускается включать параллельно - так они и соединены на плате). Я решил запитать светодиод током 350 мА (мощность 1 Вт), поскольку точных данных о светодиоде не было, а по косвенным признакам (заявленная яркость фонарика) он должен быть одноваттным. Нужный мне ток обеспечивает и одна микросхема AMC7135, поэтому две из трех микросхем я просто отпаял с платы и использовал в других осветительных устройствах (в частности, в велосипедной фаре, в которой до того вместо драйвера стоял балластный резистор). Плата драйвера отлично встала в фонарик, и светить он стал существенно ярче, чем на аккумуляторе АА и родном драйвере.

    Вот так выглядит драйвер в соответствующем месте разобранного фонарика:

    Выковырять его оттуда обратно я уже не смог - плотненько засел:).

    Вот так выглядит драйвер на 7135 (слева) в сравнении с родным повышающим драйвером Sipik"а (справа).

    И под другим углом - если интересно, можно почитать надписи на микросхемах:

    Видно, что у Sipik"овского драйвера питание с корпуса фонарика берется с той стороны, где микросхемы - там есть кольцевая дорожка по краю платы, а у драйвера на AMC7135 ее нет (но есть на обратной стороне). Поэтому пришлось припаять кусочек медной фольги, завернутой через край платы (его видно вверху справа на самом первом фото). Ну, это работы на полминуты - даже если корпус Вашего фонарика не контактирует с обратной стороной платы, драйвер после такой доработки использовать можно.

    Оставшиеся с заказа две платы я использую как источник микросхем AMC7135, которые оказалось не так просто купить в розницу.

    Если соберетесь покупать этот драйвер, будьте внимательны: в последних комментариях покупателей на FocalPrice есть упоминание, что теперь на плате всего две микросхемы, и ток, соответственно, получится 700 мА, а не 1050 мА. Цена тоже снизилась по сравнению с той, по которой покупал я (у меня bulkrate-цена была $1.61, сейчас $1.07) - возможно, это как раз обусловлено отсутствием одной микросхемы.