Плюсы и минусы ядерной энергии таблица. Торий в ядерной энергетике: плюсы, минусы, подводные камни

В одном из разделов "Живого Журнала" инженер - электронщик постоянно пишет про ядерные и термоядерные машины - реакторы, установки, исследовательские лаборатории, ускорители, а так же про . Новая российская ракета, показания во время ежегодного послания Президента, вызвала живейший интерес блогера. И вот что он нашел по этой теме.

Да,исторически разработки крылатых ракет с прямоточным ядерным воздушным двигателем были: это ракета SLAM в США с реактором TORY-II, концепт Avro Z-59 в Великобритании, проработки в СССР.

Современный рендер концепта ракеты Avro Z-59, массой около 20 тонн.

Однако все эти работы шли в 60-х как НИОКР разной степени глубины (дальше всех зашли США, о чем ниже) и продолжения в виде образцов на вооружении не получили. Не получили по той же причине, что и многие другие проработки Atom Age - самолеты, поезда, ракеты с ЯЭУ. Все эти варианты транспортных средств при некоторых плюсах, которые дает бешенная плотность энергии в ядерном топливе, имеют очень серьезные минусы - дороговизна, сложность эксплуатации, требования постоянной охраны, наконец неудовлетворительные результаты разработок, про которые обычно что мало известно (публикуя результаты НИОКР всем сторонам выгоднее выставлять достижения и скрывать неудачи).

В частности, для крылатых ракет гораздо проще создать носитель (подводную лодку или самолет), который "подтащит" множество КР к месту пуска, чем морочиться с небольшим парком (а большой парк освоить невероятно сложно) крылатых ракет, запускаемых со своей территории. Универсальное, дешевое, массовое средство победило в итоге малосерийное, дорогое и с неоднозначными плюсами. Атомные крылатые ракеты не пошли дальше наземных испытаний.

Этот концептуальный тупик 60-х годов КР с ЯЭУ, на мой взгляд, актуален и сейчас, поэтому основной вопрос к показанному "зачем??". Но еще более выпуклым его делают проблемы, которые возникают при разработке, испытаниях и эксплуатации подобного оружия, о чем говорим дальше.

Итак, начнем с реактора. Концепты SLAM и Z-59 были трехмаховым низколетящими ракетами внушительных габаритов и массы (20+ тонн после сброса стартовых ускорителей). Страшно затратный низколетящий сверхзвук позволял по максимуму использовать наличие практически не ограниченного источника энергии на борту, кроме того, важной чертой ядерного воздушного реактивного двигателя является улучшения кпд работы (термодинамического цикла) при росте скорости, т.е. та же идея, но на скоростях в 1000 км/ч имела бы гораздо более тяжелый и габаритный двигатель. Наконец, 3М на высоте в сотню метров в 1965 году означало неуязвимость для ПВО.Получается, что раньше концепция КР с ЯЭУ "завязывалась" на высокой скорости, где преимущества концепции были сильными, а конкуренты с углеводородным топливом ослабевали.Показанная же ракета, на мой взгляд, околозвуковая или слабосверхзвуковая (если, конечно, верить, что на видео именно она). Но при этом габарит реактора уменьшился значительно по сравнению с TORY-II от ракеты SLAM, где он составлял аж 2 метра включая радиальный отражатель нейтронов из графита

Активная зона первого тестового реактора TORY-II-A во время сборки.

Можно ли вообще уложить реактор в диаметр 0,4-0,6 метра?

Начнем с принципиально минимального реактора - болванки из Pu239. Хороший пример реализации такой концепции - космический реактор Kilopower, где, правда, используется U235. Диаметр активной зоны реактора всего 11 сантиметров! Если перейти на плутоний 239 размеры АЗ упадут еще в 1,5-2 раза.Теперь от минимального размера мы начнем шагать к реальном ядерному воздушному реактивному двигателю, вспоминая про сложности.

Самым первым к размеру реактора добавляется размер отражателя - в частности в Kilopower BeO утраивает размеры. Во-вторых мы не можем использовать болванку U или Pu - они элементарно сгорят в потоке воздуха буквально через минуту. Нужна оболочка, например из инкалоя, который противостоит мгновенному окислению до 1000 С, или других никелевых сплавов с возможным покрытием керамикой. Внесение большого количества материала оболочек в АЗ сразу в несколько раз увеличивает необходимое количество ядерного топлива - ведь "непродуктивное" поглощение нейтронов в АЗ теперь резко выросло!

Размер всего ПВРД с ЯЭУ TORY-II

Более того, металлическая форма U или Pu теперь не годится - эти материалы и сами не тугоплавкие (плутоний вообще плавится при 634 С), так еще и взаимодействуют с материалом металлических оболочек. Переводим топливо в классическую форму UO2 или PuO2 - получаем еще одно разбавление материала в АЗ, теперь уже кислородом.

Наконец, вспоминаем предназначение реактора. Нам нужно прокачивать через него много воздуха, которому мы будем отдавать тепло. Примерно 2/3 пространства займут "воздушные трубки".

В итоге минимальный диаметр АЗ вырастает до 40-50 см (для урана), а диаметр реактора с 10-сантиметровым бериллиевым отражателем до 60-70 см. Мои наколеночные прикидки "по подобию" подтверждаются проектом ядерного реактивного двигателя MITEE , предназначенного для полетов в атмосфере Юпитера. Этот совершенно бумажный проект (например температура АЗ предусматривается в 3000 К, а стенки из бериллия, выдерживающего от силы 1200 К) имеет рассчетный по нейтронике диаметр АЗ в 55.4 см, при том, что охлаждение водородом позволяет слегка уменьшить размеры каналов, по которым прокачивается теплоноситель.

На мой взгляд, воздушный ядерный реактивный двигатель можно впихнуть в ракету диаметром около метра, что, впрочем, все же не кардинально больше озвученных 0,6-0,74 м, но все же настораживает.Так или иначе, ЯЭУ будет иметь мощность ~несколько мегаватт, питаемые ~10^16 распадов в секунду. Это означает, что сам реактор будет создавать радиационное поле в несколько десятков тысяч рентген у поверхности, и до тысячи рентген вдоль всей ракеты. Даже установка нескольких сот кг секторной защиты не сильно снизит эти уровни, т.к. нейтронны и гамма-кванты будут отражаться от воздуха и "обходить защиту".

За несколько часов такой реактор наработает ~10^21-10^22 атомов продуктов деления c с активностью в несколько (несколько десятков) петабеккерелей, которые и после остановки создадут фон в несколько тысяч рентген возле реактора.

Конструкция ракеты будет активирована до примерно 10^14 Бк, хотя изотопы будут в основном бета-излучателями и опасны только тормозным рентгеном. Фон от самой конструкции может достигать десятки рентген на расстоянии 10 метров от корпуса ракеты.

Все эти "веселости" дают представление, что и разработка и испытания подобной ракеты - задача на грани возможного. Необходимо создать целый набор радиационно-стойкого навигационного и управляющего оборудования, испытать это все довольно комплексным образом (радиация, температура, вибрации - и все это на статистику). Летные испытания с работающим реактором в любой момент могут превратиться в радиационную катастрофу с выбросом от сотен террабеккерелей до единиц петабеккерелей. Даже без катастрофических ситуаций весьма вероятная разгерметизация отдельных твэлов и выброс радионуклидов.

Конечно, в России до сих пор есть Новоземельский полигон на котором можно проводить такие испытания, однако это будет противоречить духу договора о запрещении испытаний ядерного оружия в трех средах (запрещение вводилось с целью недопущения планомерного загрязнения атмосферы и океана радинуклидами).

Наконец, интересно, кто в РФ мог бы заниматься разработкой подобного реактора. Традиционно изначально высокотемпературными реакторами занимался Курчатовский институт (общее проектирование и расчеты), Обнинский ФЭИ (экспериментальная отработка и топливо), НИИ "Луч" в Подольске (топливо и технологии материалов). Позже к проектированию подобных машин подключился коллектив НИКИЭТ (например реакторы ИГР и ИВГ - прообразы активной зоны ядерного ракетного двигателя РД-0410).

Сегодня НИКИЭТ обладает коллективом конструкторов, которые выполняют работы по проектированию реакторов (высокотемпературный газоохлаждаемый РУГК , быстрые реакторы МБИР , ), а ФЭИ и "Луч" продолжают заниматься сопутствующими расчетами и технологиями соотвественно. Курчатовский институт же в последние десятилетия больше перешел к теории ядерных реакторов.

Резюмируя, хочется сказать, что создание крылатой ракеты с воздушным реактивным двигателеям с ЯЭУ является в целом выполнимой задачей, но одновременно крайне дорогой и сложной, требующей значимой мобилизации людских и финансовых ресурсов, как мне кажется в большей степени, чем все остальные озвученные проекты ("Сармат", "Кинжал", "Статус-6", "Авангард"). Очень странно, что эта мобилизация не оставила ни малейшего следа. А главное, совершенно не понятно, в чем польза от получения подобных образцов вооружений (на фоне имеющихся носителей), и как они могут перевесить многочисленные минусы - вопросы радиционной безопасности, дороговизны, несовместимости с договорами о сокращении стратегических вооружений.

P.S. Впрочем "источники" уже начинают смягчать ситуацию: "Источник, близкий к ВПК, рассказал « Ведомостям », что радиационная безопасность при испытаниях ракеты была обеспечена. Ядерную установку на борту представлял электрический макет, говорит источник.

Финансовая Академия при Правительстве Российской Федерации

Кафедра “ Экономическая география и региональная экономика”

КУРСОВАЯ РАБОТА

“Перспективы развития атомной энергетики в России”

Отлично!

Студента группы НП1_2 Еровиченкова А.С.

Научный руководитель доц. Винокуров А.А.

Москва - 1997

План.

Введение Ситуация в энергетическом комплексе России

    Ограниченность источников энергии

    Важнейшие факторы развития атомной энергетики

    Плюсы и минусы атомной энергетики

    Ядерная топливно-энергетическая база России

    Новые энергоблоки

Заключение Перспективы развития атомной энергетики России

Предпосылки развития атомной энергетики

Россия была, есть и будет одной из ведущих энергетических держав мира. И это не только потому, что в недрах страны находится 12% мировых запасов угля, 13% нефти и 36% мировых запасов природного газа, которых достаточно для полного обеспечения собственных потребностей и для экспорта в сопредельные государства. Россия вошла в число ведущих мировых энергетических держав, прежде всего, благодаря созданию уникального производственного, научно-технического и кадрового потенциала топливно-энергетического комплекса (ТЭК). #1

Но экономический кризис последних лет существенным образом затронул и этот комплекс. Производство первичных энергоресурсов в 1993 г. составило 82% от уровня 1990 и продолжало падать. Уменьшение потребления топлива и энергии, обусловленное общим экономическим спадом, временно облегчило задачу энергообеспечения страны, хотя в ряде регионов пришлось вынужденно ограничивать потребление энергии. Отсутствие необходимых инвестиций не позволило в 90-х годах компенсировать естественное выбытие производственных мощностей и обновлять основные фонды, износ которых в отраслях ТЭК колеблется в пределах 30-80%. В соответствии с нормами безопасности требуют реконструкции и до половины АЭС. #9

Следует заметить, что в 1981-1985 гг. среднегодовой ввод мощностей в электроэнергетике был 6 млн. кВт в год, а в 1995 г. - только 0,3 млн. кВт. В 1995 году в России произведено 860 млрд. кВт\час, а в 1996 г. в связи со снижением спроса и износом установленного на электростанциях оборудования - 840 млрд.. кВт\час.

Производство электроэнергии на электростанциях России (млрд. Квт-ч)

ГЭС и ГАС

Таблица 1 #3

Доля России в объёме мирового производства электроэнергии составляла в 1990 г 8,2%, а в 1995 г сократилась до 7,6%.

В 1993 году по производству электроэнергии на душу населения Россия занимала 13-е место в мире (6297 кВт\ч).

В 1991-1996 гг. электропотребление в России снизилось более чем на 20%, в том числе в 1996 г - на 1%. В 1997 г впервые в 90-е годы ожидается рост производства электроэнергии.

В начале 90-х годов установленные энергетические мощности России превышали 7% мировых. В 1995 г установленная мощность электроэнергетики России составляла 215,3 млн. кВт, в том числе доля мощностей ТЭС - 70%, ГЭС - 20% и АЭС - 10%.

В 1992-1995 гг. было введено 66 млн. кВт генерирующих мощностей. В настоящее время 15 млн. кВт оборудования ТЭС выработали ресурс. В 2000 году таких мощностей будет уже 35 млн. кВт и в 2005 году - 55 млн. кВт. К 2005 году предельного срока эксплуатации достигнут агрегаты ГЭС мощностью 21 млн. кВт (50% мощностей ГЭС России). На АЭС в 2001-2005 гг. будут выведены из эксплуатации 6 энергоблоков общей мощностью 3,8 млн. кВт.

По оценкам экспертов в настоящее время на 40% электростанций России используется устаревшее оборудование.Если не будут приняты меры по обновлению генерирующего оборудования, то динамика его старения к 2010 году будет выглядеть следующим образом: (тыс. млн. кВт)

Таблица 2 #3

В этих условиях для обеспечения прогнозируемого спроса на электрическую энергию и мощность потребуется значительная реконструкция действующих, а затем и строительство новых электростанций. Но какой вид энергии самый экономичный, безопасный и экологически чистый? На развитие какой отрасли направить основные средства? На сегодняшний день при выборе источника электроэнергии нельзя не отметить актуальность такого фактора, как ограниченность источников энергии.

Ограниченность источников энергии.

Современные темпы энергопотребления составляют примерно 0,5 Q в год, однако они растут в геометрической прогрессии. Так, в первой четверти следующего тысячелетия энергопотребление, по прогнозам, составит 1 Q в год. Следовательно, если даже учесть, что темпы роста потребления электроэнергии несколько сократятся из-за совершенствования энергосберегающих технологий, запасов энергетического сырья хватит максимум на 100 лет.

Однако положение усугубляется еще и несоответствием структуры запасов и потребления органического сырья. Так, 80% запасов органического топлива приходится на уголь и лигниты и лишь 20% на нефть и газ, в то время как 8/10 современного энергопотребления приходится на нефть и газ. Следовательно, временные рамки еще более сужаются.

Альтернативой органическому топливу и возобновляемым источником энергии является гидроэнергетика . Однако и здесь источник энергии достаточно сильно ограничен. Это связано с тем, что крупные реки, как правило, сильно удалены от промышленных центров либо их мощности практически полностью использованы. Таким образом, гидроэнергетика, в настоящий момент обеспечивающая около 10% производства энергии в мире, не сможет существенно увеличить эту цифру.

Огромный потенциал энергии Солнца (порядка 10 Q в среднем в сутки) мог бы теоретически обеспечить все мировые потребности энергетики. Но если отнести эту энергию на один квадратный метр поверхности Земли, то средняя тепловая мощность получится не более 200 Вт/м, или около 20 Вт/м электрической мощности при кпд преобразования в электроэнергию 10%. Это, очевидно, ограничивает возможности солнечной энергетики при создании электростанций большой мощности (для станции мощностью 1 млн. кВт площадь солнечных преобразователей должна быть около 100 км). Принципиальные трудности возникают и при анализе возможностей создания генераторов большой мощности, использующих энергию ветра, приливы и отливы в океане, геотермальную энергию, биогаз, растительное топливо и т.д. Все это приводит к выводу об ограниченности возможностей рассмотренных так называемых “воспроизводимых” и относительно экологически чистых ресурсов энергетики, по крайней мере, в относительно близком будущем. Хотя эффект от их использования при решении отдельных частных проблем энергообеспечения может быть уже сейчас весьма впечатляющим, суммарная доля воспроизводимых ресурсов в ближайшие 40 50 лет не превысит 15 20%.

Конечно, существует оптимизм по поводу возможностей термоядерной энергии и других эффективных способов получения энергии, интенсивно исследуемых наукой, но при современных масштабах энергопроизводства, при практическом освоении этих возможных источников потребуется несколько десятков лет из-за высокой капиталоемкости (до 30% всех капитальных затрат в промышленности требует энергетика) и соответствующей инерционности в реализации проектов. Так что в перспективе до середины следующего века можно ориентироваться на существенный вклад в мировую энергетику лишь тех новых источников, для которых уже сегодня решены принципиальные проблемы массового использования и создана техническая база для промышленного освоения. Единственным здесь конкурентом традиционному органическому топливу может быть только ядерная энергетика , обеспечивающая уже сейчас около 20% мирового производства электроэнергии с развитой сырьевой и производственной базой для дальнейшего развития отрасли. #2

Важнейшие факторы развития атомной энергетики

На все более конкурентном и многонациональном глобальном энергетическом рынке ряд важнейших факторов будет влиять не только на выбор вида энергии, но также и на степень и характер использования разных источников энергии. Эти факторы включают в себя:

    оптимальное использование имеющихся ресурсов;

    сокращение суммарных расходов;

    сведение к минимуму экологических последствий;

    убедительную демонстрацию безопасности;

    удовлетворение потребностей национальной и международной политики.

Для ядерной энергии эти пять факторов определяют будущие стратегии в области топливного цикла и реакторов. Цель заключается в том, чтобы оптимизировать эти факторы.

Хотя достижение признания со стороны общественности не всегда включалось в качестве важнейшего фактора, в действительности этот фактор является жизненно важным для ядерной энергии. Необходимо открыто и достоверно ознакомить общественность и лиц, принимающих решения, с реальными выгодами ядерной энергетики. В следующем ниже обсуждении содержатся элементы убедительной аргументации. Растущее нежелание общественности, особенно в промышленно развитых странах, соглашаться с вводом новых промышленных установок сказывается на политике во всем энергетическом секторе и влияет на осуществление всех проектов энергетических установок.

    Максимальное использование ресурсов

Известные и вероятные запасы урана должны обеспечить достаточное снабжение ядерным топливом в краткосрочном и среднесрочном плане, даже если реакторы будут работать главным образом с однократными циклами, предусматривающими захоронение отработавшего топлива. Проблемы в топливообеспечении атомной энергетики могут возникнуть лишь к 2030 году при условии развития и увеличения к этому времени атомных энергомощностей. Для их решения потребуются разведка и освоение новых месторождений урана на территории России, использование накопленных оружеййного и энергетического плутония и урана, развитие атомной энергетики на альтернативных видах ядерного топлива. Одна тонна оружейного плутония по теплотворному эквиваленту органического топлива при “сжигании” в тепловых реакторах в открытом топливном цикле соответствует 2,5 млрд. куб. м. природного газа. Приближенная оценка показывает, что общий энергетический потенциал оружейного сырья, с использованием в парке АЭС также реакторов на быстрых нейтронах, может соответствовать выработке 12-14 трлн. киловатт-часов электроэнергии, т.е 12-14 годовым её выработкам на уровне 1993 года, и сэкономить в электроэнергетике около 3,5 трлн.кубометров природного газа. Однако по мере роста спроса на уран и уменьшения его запасов, обусловленного необходимостью удовлетворять потребности растущих мощностей атомных станций, возникнет экономическая необходимость оптимального использования урана таким образом, чтобы вырабатывалась вся потенциально содержащаяся в нем энергия на единицу количества руды. Существуют разнообразные способы достижения этого в ходе процесса обогащения и на этапе эксплуатации. В долгосрочном плане потребуются повторное использование наработанных делящихся материалов в тепловых реакторах и внедрение быстрых реакторов-размножителей.

2. Достижение максимальной экономической выгоды

Поскольку затраты на топливо относительно низки, для общей экономической жизнеспособности ядерной энергии весьма важно сокращение суммарных расходов за счет снижения затрат на разработку, выбор площадки, сооружение, эксплуатацию и первоначальное финансирование. Устранение неопределенностей и изменчивости требований лицензирования, особенно перед вводом в эксплуатацию, позволило бы осуществить более прогнозируемые стратегии капиталовложений и финансовые стратегии.

Потребности в инвестициях согласно результатам СИАРЭ (млрд. долларов) (СИАРЭ - Совместное исследование альтернатив развития электроэнергетики)

Высокое энергопотребление

Низкое электропотребление

Производство

электроэнергии

Энерго

сбережение

Передача

энергии

Суммарные

потребности

Таблица 3 #1

3. Достижение максимальной экологической выгоды

Хотя ядерная энергия с точки зрения объемов потребляемого топлива, выбросов и образующихся отходов обладает явными преимуществами по сравнению с нынешними системами, использующими ископаемые виды топлива, дальнейшие меры по смягчению соответствующих экологических проблем могут оказать значительное влияние на отношение общественности.

Сравнительные данные по топливу и отходам (тонн в год для электростанции мощностью 1000 МВт)

Атомная станция:

27 (160 т. природного урана в год)

27 высокоактивные

310 среднеактивные

460 низкоактивные

2,600,000

6,000,000 CO 2

44,000 SO 2

22,000 NO n

320,000 золы (включая 400 т. тяжелых токсичных металлов)

Таблица 4 #8

Поскольку общее влияние ядерного топливного цикла на здоровье людей и окружающую среду невелико, внимание будет направлено на улучшенные методы в области радиоактивных отходов. При этом была бы оказана поддержка целям устойчивого развития и в то же время повышена конкурентоспособность по сравнению с другими источниками энергии, для которых также должны надлежащим образом решаться вопросы отходов. В реакторные системы и в топливные циклы могут быть внесены изменения, сводящие к минимуму образование отходов. Будут вводиться проектные требования по уменьшению количеств отходов и такие методы сокращения объемов отходов, как компактирование.

4. Максимальное повышение безопасности реакторов

Ядерная энергетика в целом имеет отличные показатели безопасности: в эксплуатации находится 433 реактора, работающих в среднем более чем по 20 лет. Однако чернобыльская катастрофа показала, что весьма тяжелая ядерная авария может привести к радиоактивному загрязнению в масштабах страны и региона. Хотя вопросы безопасности и экологии становятся важнейшими для всех источников энергии, многие воспринимают ядерную энергетику как особенно и органически небезопасную. Обеспокоенность по поводу безопасности в сочетании с соответствующими регламентационными требованиями будет в ближайшее время по-прежнему оказывать сильное влияние на развитие ядерной энергетики. В целях снижения масштабов реальных и возможных аварий на установках будет осуществлен ряд подходов. Чрезвычайно эффективные барьеры (такие, как двойные защитные оболочки) снизят вероятность значительных радиологических последствий аварий за пределами площадок до крайне низкого уровня, устраняя необходимость в планах аварийных действий. Повышение характеристик целостности корпуса реактора и реакторных систем также позволит снизить вероятность возникновения последствий на площадке. Внутренняя безопасность конструкций и технологических процессов на станциях может быть повышена скорее путем включения пассивных функций безопасности, чем активных систем защиты. В качестве жизнеспособного варианта могут появиться высокотемпературные газоохлаждаемые реакторы, использующие керамическое графитное топливо с высокой теплостойкостью и целостностью, снижающее вероятность выброса радиоактивного материала. #8

Плюсы и минусы атомной энергетики

За 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира с суммарной энергетической модностью около 300 млн. кВт. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания (с этой точки зрения она может рассматриваться как экологически чистая), основными недостатками потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии (типа Чернобыльской или на американской станции Тримайл Айленд) и проблема переработки использованного ядерного топлива.

Остановимся сначала на преимуществах. Рентабельность атомной энергетики складывается из нескольких составляющих. Одна из них независимость от транспортировки топлива. Если для электростанции мощностью 1 млн. кВт требуется в год около 2 млн. т.у.т. (или около 5 млн. низкосортного угля), то для блока ВВЭР-1000 понадобится доставить не более 30 т. обогащенного урана, что практически сводит к нулю расходы на перевозку топлива (на угольных станциях эти расходы составляют до 50% себестоимости). Использование ядерного топлива для производства энергии не требует кислорода и не сопровождается постоянным выбросом продуктов сгорания, что, соответственно, не потребует строительства сооружений для очистки выбросов в атмосферу. Города, находящиеся вблизи атомных станций, являются в основном экологически чистыми зелеными городами во всех странах мира, а если это не так, то это происходит из-за влияния других производств и объектов, расположенных на этой же территории. В этом отношении ТЭС дают совсем иную картину. Анализ экологической ситуации в России показывает, что на долю ТЭС приходится более 25% всех вредных выбросов в атмосферу. Около 60% выбросов ТЭС приходится на европейскую часть и Урал, где экологическая нагрузка существенно превышает предельную. Наиболее тяжелая экологическая ситуация сложилась в Уральском, Центральном и Поволжском районах, где нагрузки, создаваемые выпадением серы и азота, в некоторых местах превышают критические в 2-2,5 раза.

К недостаткам ядерной энергетики следует отнести потенциальную опасность радиоактивного заражения окружающей среды при тяжелых авариях типа Чернобыльской. Сейчас на АЭС, использующих реакторы типа Чернобыльского (РБМК), приняты меры дополнительной безопасности, которые, по заключению МАГАТЭ (Международного агентства по атомной энергии), полностью исключают аварию подобной тяжести: по мере выработки проектного ресурса такие реакторы должны быть заменены реакторами нового поколения повышенной безопасности. Тем не менее в общественном мнении перелом по отношению к безопасному использованию атомной энергии произойдет, по-видимому, не скоро. Проблема утилизации радиоактивных отходов стоит очень остро для всего мирового сообщества. Сейчас уже существуют методы остекловывания, битумирования и цементирования радиоактивных отходов АЭС, но требуются территории для сооружения могильников, куда будут помещаться эти отходы на вечное хранение. Страны с малой территорией и большой плотностью населения испытывают серьезные трудности при решении этой проблемы. #2

Ядерная топливно-энергетическая база России.

Пуск в 1954 году первой атомной электростанции мощностью всего лишь 5000 кВт стал событием мировой важности. Он ознаменовал начало развития атомной энергетики, которая может обеспечить человечество электрической и тепловой энергией на длительный период. Ныне мировая доля электрической энергии, вырабатываемой на АЭС, относительно невелика и составляет около 17 процентов, но в ряде стран она достигает 50-75 процентов. В Советском Союзе была создана мощная ядерно-энергетическая промышленность, которая обеспечивала топливом не только свои АЭС, но и АЭС ряда других стран. В настоящее время на АЭС России, стран СНГ и Восточной Европы эксплуатируются 20 блоков с реакторами ВВЭР-1000, 26 блоков с реакторами ВВЭР-440, 15 блоков с реакторами РБМК и 2 блока с реакторами на быстрых нейтронах. Обеспечение ядерным топливом этих реакторов и определяет объем промышленного производства твэлов и ТВС в России. Они изготавливаются на двух заводах: в г.Электросталь - для реакторов ВВЭР-440, РБМК и реакторов на быстрых нейтронах; в г-Новосибирске - для реакторов ВВЭР-1000.Таблетки для твэлов ВВЭР-1000 и РБМК поставляет завод, находящийся в Казахстане (г.Усть-Каменогорск). #4

В настоящее время из 15 атомных электростанций, построенных в СССР, 9 находятся на территории России; установленная мощность их 29 энергоблоков составляет 21242 мегаватта. Среди действующих энергоблоков 13 имеют корпусные реакторы ВВЭР (водо-водяной энергетический реактор, активная зона которого размещается в металлическом или из предварительно напряженного бетона корпусе, рассчитанном на полное давление теплоносителя), 11 блоков- канальные реакторы РМБК-1000(РМБК - графито-водяной реактор без прочного корпуса. Теплоноситель в этом реакторе протекает через трубы, внутри которых находятся тепловыделяющие элементы), 4 блока- ЭГП (водо-графитовый канальный реактор с кипящим теплоносителем) по 12 мегаватт каждый установлены на Билибинской АТЭС и еще один энергоблок снабжен реактором БН-600 на быстрых нейтронах. Следует заметить, что основной парк корпусных реакторов последнего поколения был размещен на Украине (10 блоков ВВЭР-1000 и 2 блока ВВЭР-440). #9

Новые энергоблоки.

Сооружение нового поколения энергоблоков с корпусными реакторами (с водой под давлением) начинается в этом десятилетии. Первыми из них станут блоки ВВЭР-640, конструкция и параметры которых учитывают отечественный и мировой опыт, а также блоки с усовершенствованным реактором ВВЭР-1000 с существенно повышенными показателями безопасности. Головные энергоблоки ВВЭР-640 размещаются на площадках г. Сосновый Бор Ленинградской области и Кольской АЭС, а на базе ВВЭР-1000 - на площадке Нововоронежской АЭС.

Разработан также проект корпусного реактора ВПБЭР-600 средней мощности с интегральной компоновкой. АЭС с такими реакторами смогут сооружаться несколько позже.

Названные типы оборудования при своевременном выполнении всех научно-исследовательских и опытных работ обеспечат основные потребности атомной энергетики на прогнозируемый 15-20-летний период.

Существуют предложения продолжать работы по графито-водяным канальным реакторам, перейти на электрическую мощность 800 мегаватт и создать реактор, не уступающий реактору ВВЭР по безопасности. Такие реакторы могли бы заменить действующие реакторы РБМК. В перспективе возможно строительство энергоблоков с современными безопасными реакторами БН-800 на быстрых нейтронах. Эти реакторы могут быть использованы и для вовлечения в топливный цикл энергетического и оружейного плутония, для освоения технологий выжигания актиноидов (радиоактивных элементов-металлов, все изотопы которых радиоактивны). #9

Перспективы развития атомной энергетики.

При рассмотрении вопроса о перспективах атомной энергетики в ближайшем (до конца века) и отдаленном будущем необходимо учитывать влияние многих факторов: ограничение запасов природного урана, высокая по сравнению с ТЭС стоимость капитального строительства АЭС, негативное общественное мнение, которое привело к принятию в ряде стран (США, ФРГ, Швеция, Италия) законов, ограничивающих атомную энергетику в праве использовать ряд технологий (например, с использованием Рu и др.), что привело к свертыванию строительства новых мощностей и постепенному выводу отработавших без замены на новые. В то же время наличие большого запаса уже добытого и обогащенного урана, а также высвобождаемого при демонтаже ядерных боеголовок урана и плутония, наличие технологий расширенного воспроизводства (где в выгружаемом из реактора топливе содержится больше делящихся изотопов, чем загружалось) снимают проблему ограничения запасов природного урана, увеличивая возможности атомной энергетики до 200-300 Q. Это превышает ресурсы органического топлива и позволяет сформировать фундамент мировой энергетики на 200-300 лет вперед.

Но технологии расширенного воспроизводства (в частности, реакторы-размножители на быстрых нейтронах) не перешли в стадию серийного производства из-за отставания в области переработки и рецикла (извлечения из отработанного топлива “полезного” урана и плутония). А наиболее распространенные в мире современные реакторы на тепловых нейтронах используют лишь 0,50,6% урана (в основном делящийся изотоп U 238 , концентрация которого в природном уране 0,7%). При такой низкой эффективности использования урана энергетические возможности атомной энергетики оцениваются только в 35 Q. Хотя это может оказаться приемлемым для мирового сообщества на ближайшую перспективу, с учетом уже сложившегося соотношения между атомной и традиционной энергетикой и постановкой темпов роста мощностей АЭС во всем мире. Кроме того, технология расширенного воспроизводства дает значительную дополнительную экологическую нагрузку. .Сегодня специалистам вполне понятно, что ядерная анергия, в принципе, является единственным реальным и существенным источником обеспечения электроэнергией человечества в долгосрочном плане, не вызывающим такие отрицательные для планеты явления, как парниковый эффект, кислотные дожди и т.д. Как известно, сегодня энергетика, базирующаяся на органическом топливе, то есть на сжигании угля, нефти и газа, является основой производства электроэнергии в мире Стремление сохранить органические виды топлива, одновременно являющиеся ценным сырьем, обязательство установить пределы для выбросов СО; или снизить их уровень и ограниченные перспективы широкомасштабного использования возобновляемых источников энергии все это свидетельствует о необходимости увеличения вклада ядерной энергетики.

Учитывая все перечисленное выше, можно сделать вывод, что перспективы развития атомной энергетики в мире будут различны для разных регионов и отдельных стран, исходя из потребностей и электроэнергии, масштабов территории, наличия запасов органического топлива, возможности привлечения финансовых ресурсов для строительства и эксплуатации такой достаточно дорогой технологии, влияния общественного мнения в данной стране и ряда других причин. #2

Отдельно рассмотрим перспективы атомной энергетики в России . Созданный в России замкнутый научно-производственный комплекс технологически связанных предприятий охватывает все сферы, необходимые для функционирования атомной отрасли, включая добычу и переработку руды, металлургию, химию и радиохимию, машино- и приборостроение, строительный потенциал. Уникальным является научный и инженерно-технический потенциал отрасли. Промышленно-сырьевой потенциал отрасли позволяет уже в настоящее время обеспечить работу АЭС России и СНГ на много лет вперед, кроме того, планируются работы по вовлечению в топливный цикл накопленного оружейного урана и плутония. Россия может экспортировать природный и обогащенный уран на мировой рынок, учитывая, что уровень технологии добычи и переработки урана по некоторым направлениям превосходит мировой, что дает возможность в условиях мировой конкуренции удерживать позиции на мировом урановом рынке.

Но дальнейшее развитие отрасли без возврата к ней доверия населения невозможно. Для этого нужно на базе открытости отрасли формировать позитивное общественное мнение и обеспечить возможность безопасного функционирования АЭС под контролем МАГАТЭ. Учитывая экономические трудности России, отрасль сосредоточится в ближайшее время на безопасной эксплуатации существующих мощностей с постепенной заменой отработавших блоков первого поколения наиболее совершенными российскими реакторами (ВВЭР-1000, 500, 600), а небольшой рост мощностей произойдет за счет завершения строительства уже начатых станций. На длительную перспективу в России вероятен рост мощностей в переходом на АЭС новых поколений, уровень безопасности и экономические показатели которых обеспечат устойчивое развитие отрасли на перспективу.

В диалоге сторонников и противников атомной энергетики необходимы полная и точная информация по состоянию дел в отрасли как в отдельной стране, так и в мире, научно обоснованные прогнозы развития и потребности в атомной энергии. Только на пути гласности и информированности могут быть достигнуты приемлемые результаты. Более 400 блоков во всем мире (по данным, содержащимся в Информационной системе МАГАТЭ по энергетическим реакторам на конец 1994 года, в 30 странах эксплуатируется 432 АЭС общей мощностью приблизительно 340 ГВт) обеспечивают весомую долю потребностей общества в энергии. Миллионы людей в мире добывают уран, обогащают его, создают оборудование и строят атомные станции, десятки тысяч ученых работают в отрасли. Это одна из наиболее мощных отраслей современной индустрии, ставшая уже ее неотъемлемой частью. И хотя взлет атомной энергетики сейчас сменяется периодом стабилизации мощностей, учитывая позиции, завоеванные атомной энергетикой за 40 лет, есть надежда, что она сможет сохранить свою долю в мировом производстве электроэнергии на довольно длительную перспективу, пока не будет сформирован единый взгляд в мировом сообществе на необходимость и масштабы использования атомной энергетики в мире.

Список использованной литературы :

# 1 .”Ядерная энергетика в альтернативных энергетических сценариях” Энергия 1997 №4

# 2 .”Некоторые экономические аспекты современного развития атомной энергетики” Вестник МГУ 1997 №1

# 3 .”Положение и перспективы развития электроэнергетики России” БИКИ 1997 №8

# 4 .Международная жизнь 1997 №5,№6

# 5 .ВЕК 1996 №18, №13

# 6 .Независимая газета 30.01.97

# 8 .”Стратегия ядерной энергии” Международная жизнь 1997 №7

# 9 “ О перспективах атомной энергетики в России” июнь 1995

В чем же преимущества АЭС перед другими видами выработки энергии


Главное преимущество - практическая независимость от источников топлива из-за небольшого объёма используемого топлива, например 54 тепловыделяющих сборки общей массой 41 тонна на один энергоблок с реактором ВВЭР-1000 в 1-1,5 года (для сравнения, одна только Троицкая ГРЭС мощностью 2000 МВт сжигает за сутки два железнодорожных состава угля). Расходы на перевозку ядерного топлива, в отличие от традиционного, ничтожны. В России это особенно важно в европейской части, так как доставка угля из Сибири слишком дорога.
Огромным преимуществом АЭС является её относительная экологическая чистота. На ТЭС суммарные годовые выбросы вредных веществ, в которые входят сернистый газ, оксиды азота, оксиды углерода, углеводороды, альдегиды и золовая пыль, на 1000 МВт установленной мощности составляют от примерно 13 000 тонн в год на газовых до 165 000 на пылеугольных ТЭС. Подобные выбросы на АЭС полностью отсутствуют. ТЭС мощностью 1000 МВт потребляет 8 миллионов тонн кислорода в год для окисления топлива, АЭС же не потребляют кислорода вообще. Кроме того, больший удельный (на единицу произведенной электроэнергии) выброс радиоактивных веществ даёт угольная станция. В угле всегда содержатся природные радиоактивные вещества, при сжигании угля они практически полностью попадают во внешнюю среду. При этом удельная активность выбросов ТЭС в несколько раз выше, чем для АЭС. Также некоторые АЭС отводят часть тепла на нужды отопления и горячего водоснабжения городов, что снижает непродуктивные тепловые потери, существуют действующие и перспективные проекты по использованию «лишнего» тепла в энергобиологических комплексах (рыбоводство, выращивание устриц, обогрев теплиц и пр.). Кроме того, в перспективе возможно осуществление проектов комбинирования АЭС с ГТУ, в том числе в качестве «надстроек» на существующих АЭС, которые могут позволить добиться аналогичного с тепловыми станциями КПД.
Для большинства стран, в том числе и России, производство электроэнергии на АЭС не дороже, чем на пылеугольных и тем более газомазутных ТЭС. Особенно заметно преимущество АЭС в стоимости производимой электроэнергии во время так называемых энергетических кризисов, начавшихся с начала 70-х годов. Падение цен на нефть автоматически снижает конкурентоспособность АЭС.
Затраты на строительство АЭС находятся примерно на таком же уровне, как и строительство ТЭС, или несколько выше.



Недостатки АЭС- Единственный фактор, в котором АЭС уступают в экологическом плане традиционным КЭС - тепловое загрязнение , вызванное большими расходами технической воды для охлаждения конденсаторов турбин, которое у АЭС несколько выше из-за более низкого КПД (не более 35 %), этот фактор важен для водных экосистем, а современные АЭС в основном имеют собственные искусственно созданные водохранилища-охладители или вовсе охлаждаются градирнями.

Падение цен на нефть автоматически снижает конкурентоспособность АЭС.

Главный недостаток АЭС - тяжелые последствия аварий, для исключения которых АЭС оборудуются сложнейшими системами безопасности с многократными запасами и резервированием, обеспечивающими исключение расплавления активной зоны даже в случае максимальной проектной аварии (местный полный поперечный разрыв трубопровода циркуляционного контура реактора).
Серьёзной проблемой для АЭС является их ликвидация после выработки ресурса, по оценкам она может составить до 20 % от стоимости их строительства.
По ряду технических причин для АЭС крайне нежелательна работа в манёвренных режимах, то есть покрытие переменной части графика электрической нагрузки.

Муниципальное казённое общеобразовательное учреждение

Климщинская средняя школа

Атомная энергетика: плюсы и минусы

исследовательская работа по физике

Серков Вадим,

обучающийся 10 класса

Руководитель: Голубцова Ирина

Викторовна, учитель физики

Климщина

2016

Оглавление

I .Введение.........................................................................................................3

II .Основная часть

    Атомная энергетика……………………………………………………4

1.1.Получение атомной энергии………………………………………4

1.2. История развития атомной энергетики…………………………..7

1.3.Экономическое значение энергетики……………………………10

1.4. Объёмы производства атомной электроэнергии. ………..……12

1.5.Плюсы атомной энергетики……………………………………...14

1.6.Минусы атомной энергетики…………………………………….15

2.Результаты социологического опроса…………………………………19

III .Заключение……………………………………………………………..22

IV .Список использованной литературы………………………………….24

Введение

26 апреля исполняется 30 лет со дня катастрофы на Чернобыльской АЭС.

В небо взлетело и рассеялось огромное количество радиоактивных веществ. Люди в Чернобыле подверглись облучению в 90 раз большему, чем при падении бомбы на Хиросиму. По подсчетам Российской академии наук, чернобыльская катастрофа обернулась гибелью 60 тысяч человек в России и 140 тысяч в Беларуси и Украине.30 лет – большой срок для человека, но не для человечества. Эта трагедия заставила людей задуматься: «Атомная энергия-это добро или зло?»

Я тоже попытался найти ответ на этот вопрос, чтобы в дальнейшем помочь разобраться в нём моим сверстникам.

Цель исследования: выявить отношение людей к атомной энергетике.

Задачи:

- изучение процессов получения атомной энергии

Изучение истории развития атомной энергетики

Изучение значения атомной энергетики

Выявление проблем атомной энергетики

Разработка диагностического материала по проблеме исследования

Проведение соц.опроса среди людей разного возраста

Анализ результатов соц.опроса

Предмет исследования: отношение человека к вопросам атомной энергетики

1.Атомная энергетика

1.1.Получение атомной энергии

Атомная энергетика ( ядерная энергетика ) - это отрасль энергетики , занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.

Обычно для получения ядерной энергии используют или . Ядра делятся при попадании в них , при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой . В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в .

Топливный цикл

Атомная энергетика основана на использовании , совокупность промышленных процессов которого составляют топливный ядерный цикл. Хотя существуют различные типы топливных циклов, зависящие как от типа реактора, так и от характеристик конечной стадия цикла, в целом у него существуют общие этапы.

    Добыча урановой руды.

    Измельчение урановой руды

    Отделение диоксида урана, т. н. жёлтого хека, идущих в отвал.

    Преобразование в газообразный .

    Процесс повышения концентрации урана-235, производится на специальных заводах по разделению изотопов.

    Обратное превращение гексафторида урана в диоксид урана в виде топливных таблеток.

    Изготовление из таблеток тепловыделяющих элементов (сокр. ), которые в скомпанованном виде вводятся в активную зону ядерного реактора АЭС.

    Извлечение .

    Охлаждение отработанного топлива.

    Захоронение отработанного топлива в специальном хранилище.

В ходе эксплуатации в процессах технического обслуживания удаляются образующиеся низкорадиоактивные отходы. С окончанием срока службы производится самого реактора, демонтаж сопровождается дезактивацией и удалением в отходы деталей реактора.

Ядерный реактор

Ядерный реактор - устройство, предназначенное для организации управляемой самоподдерживающейся , которая всегда сопровождается выделением энергии.

Первый ядерный реактор построен и запущен в декабре 1942 года в под руководством . Первым реактором, построенным за пределами США, стал , запущенный в . В Европе первым ядерным реактором стала установка , заработавшая в Москве под руководством . К в мире работало уже около сотни ядерных реакторов различных типов.

Существуют разные типы реакторов, основные отличия в них обусловлены используемым топливом и теплоносителем, применяемым для поддержания нужной температуры активной зоны, и замедлителем, используемым для снижения скорости нейтронов, которые выделяются в результате распада ядер, для поддержания нужной скорости цепной реакции.

    Наиболее распространенным типом является легководный реактор, использующий в качестве топлива обогащённый уран, в нём в качестве и теплоносителя, и замедлителя используется обычная или «легкая» вода. У него есть две основные разновидности:

    1. Где пар, вращающий , образуется непосредственно в активной зоне.

      Где пар образуется в контуре, связанном с активной зоной теплообменниками и парогенераторами.

    С графитовым замедлителем получил широкое распространения благодаря возможности эффективно вырабатывать оружейный плутоний и возможности использовать необогащённый уран.

    В в качестве и теплоносителя, и замедлителя используется тяжелая вода, а топливом является необогащённый уран, используется в основном в Канаде, имеющей собственные месторождения урановых руд.

1.2.История развития атомной энергетики

Впервые цепная реакция ядерного распада была осуществлена 2 декабря 1942 году в с использованием урана в качестве топлива и графита в качестве замедлителя. Первая электроэнергия из энергии ядерного распада была получена 20 декабря 1951 года в Национальной лаборатории Айдахо с помощью реактора на быстрых нейтронах EBR-I (Experimental Breeder Reactor-I). Произведённая мощность составляла около 100 кВт.

9 мая 1954 года на ядерном реакторе в г. была достигнута устойчивая цепная ядерная реакция. Реактор мощностью 5 МВт работал на обогащённом уране с графитом в качестве замедлителя, для охлаждения использовалась вода с обычным изотопным составом. 26 июня в 17:30 энергия, выработанная здесь, стала поступать в потребительскую .

А́томная электроста́нция (АЭС) - для производства в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (), предназначенная для производства электрической энергии).

Атомная транспортная энергетика

Атомоход (атомное судно) - общее название с , обеспечивающей ход судна. Различают атомоходы гражданские ( , транспортные суда) и ( , тяжёлые).

Военные корабли - атомные и , и первый в мире авианосец , самое длинное в мире военное , в 1964 году во время рекордного кругосветного путешествия, в течение которого они преодолели 49,190 км за 65 дней без дозаправки.

В декабре 1954 года в вошла в строй первая .

Российский 1994 г.

В 1958 начала выдавать электроэнергию первая очередь второй советской АЭС - , мощностью 100 Мвт. В 1959 году в спущено на воду первое в мире невоенное атомное судно - .

Атомная энергетика, как новое направление в энергетике, получила признание на проходившей в Женеве в августе 1955 года 1-й Международной научно-технической конференции по мирному использованию атомной энергии, положившей начало международному сотрудничеству в области мирного использования ядерной энергии.

В начале 1970-х годов существовали видимые предпосылки для развития ядерной энергетики. Потребность в электроэнергии росла, гидроэнергетические ресурсы большинства развитых стран были практически полностью задействованы, соответственно росли цены на основные виды топлива.

В 1975 году в Смоленской области (г.Десногорск) было начато строительство атомной электростанции, которая была введена в эксплуатацию в 1982 году.

В промышленной эксплуатации на САЭС находится три с уран-графитовыми канальными реакторами . Электрическая мощность каждого энергоблока - 1 ГВт, тепловая 3,2 ГВт. Энергоблоки с реакторами РБМК-1000 одноконтурные. Связь с осуществляется шестью напряжением 330 кВ (Рославль-1, 2), 500 кВ ( , ), 750 кВ (Ново-Брянская, Белорусская).

1.3.Экономическое значение атомной энергетики

Доля атомной энергетики в общем производстве электроэнергии в различных странах.

В 2014 году ядерная энергия обеспечивала 2,6 % всей потребляемой человечеством энергии. Ядерный сектор энергетики наиболее значителен в промышленно развитых странах, где недостаточно природных во , и . Эти страны производят от 20 до 74 % (во Франции) электроэнергии на .

В 2013 году мировое производство ядерной энергии выросло впервые с 2010 года - по сравнению с 2012 годом произошёл рост на 0,5 % - до 6,55 млрд МВт ч (562,9 млн тонн нефтяного эквивалента). Наибольшее потребление энергии атомных станций в 2013 году составило в США - 187,9 млн тонн нефтяного эквивалента. В России потребление составило 39,1 млн тонн нефтяного эквивалента, в Китае - 25 млн тонн нефтяного эквивалента, в Индии - 7,5 млн тонн.

Согласно отчёту (МАГАТЭ), на 2013 год насчитывалось436 действующих ядерных энергетических , то есть производящих утилизируемую электрическую и/или тепловую энергию, реакторов в 31 стране мира (кроме энергетических, существуют также исследовательские и некоторые другие).

Примерно половина мирового производства электроэнергии на АЭС приходится на две страны - США и Францию. на АЭС производят только 1/8 своей электроэнергии, однако это составляет около 20 % мирового производства.

Абсолютным лидером по использованию ядерной энергии являлась . Единственная , расположенная на её территории, вырабатывала электрической энергии больше, чем потребляла вся республика (например, в 2003 году в Литве всего было выработано 19,2 млрд , из них - 15,5 Игналинской АЭС). Обладая её избытком (а в Литве есть и другие электростанции), «лишнюю» энергию отправляли на экспорт.
Однако, под давлением (из-за сомнений в её безопасности - ИАЭС использовала энергоблоки того же типа, что и ), с Игналинская АЭС была окончательно закрыта (предпринимались попытки добиться продолжения эксплуатации станции и после 2009 года, но они не увенчались успехом), сейчас решается вопрос о строительстве на той же площадке АЭС современного типа.

1.4.Объёмы производства атомной электроэнергии по странам

Страны с атомными электростанциями.

Эксплуатируются АЭС, строятся новые энергоблоки. Эксплуатируются АЭС, планируется строительство новых энергоблоков. Нет АЭС, станции строятся. Нет АЭС, планируется строительство новых энергоблоков. Эксплуатируются АЭС, строительство новых энергоблоков пока не планируется. Эксплуатируются АЭС, рассматривается сокращение их количества. Гражданская ядерная энергетика запрещена законом. Нет АЭС.

На 2014 год суммарно АЭС мира выработали 2,410 энергии, что составило 10,8 % всемирной генерации электричества.

Мировыми лидерами в производстве ядерной электроэнергии на 2014 год являются:

В мире людей, далеких от атомной энергетики существует почти конспирологическая идея о том, что ТОРИЙ - это то, что злобные атомные буратины скрывают от пушистых потребителей электричества. Дешевый, безопасный и не оставляющий радиоактивных отходов - он мог бы привести атомную энергетику на вершины могущества, но по каким-то причинам не привел.


Сегодняшний парк промышленных ядерных реакторов, целиком и полностью использует урановое топливо, а конкретно изотоп U235. Произошло это по простой причине - это единственный природный изотоп, который способен поддерживать цепную реакцию распада. Остальные природные тяжелые элементы, например U238 и Th232 (тот самый торий) цепную ядерную реакцию не поддерживают . Есть еще несколько искусственно получаемых которые способны работать в реакторе - например всем известный Pu239 или U233 - получаемые путем трансмутации тех самых U238, Th232.


Тяжеловодные реакторы - один из трех главных дизайнов (наряду с газоохлаждаемыми и жидкосолевыми), в которых может быть применен ториевый цикл.

Таким образом, первый момент, почему мы не видим сотни реакторов на тории, весело снабжающих мир электричеством - торий не является ядерным топливом. Он имеет смысл только в составе замкнутого ядерного топливного цикла(ЗЯТЦ), который полноценно так нигде и не был воплощен. Так же как и ЗЯТЦ на уране, торию будут нужны быстрые реакторы с коэффициентом воспроизводства больше 1, радиохимические перерабатывающие заводы и прочие фишки ЗЯТЦ.
Фактически Th232 - это конкурент U238 - вещество, которое можно превратить в ядерное топливо. Если говорить в общем у каждого из кандидатов в ядерное топливо есть свои плюсы и минусы:

  • 1. В земной коре тория в несколько раз больше, чем урана. Это плюс торию.
  • 2. У тория нет проблем с минорными актиноидами, топливо на основе ториевого цикла становится не радиоактивным уже через несколько сот лет против сотен тысяч у уранового цикла. Это его главный плюс, об этом ниже.
  • 3. Однако торий надо добыть, в то время как 3,5 млн тонн урана уже лежат на складах
  • 4. При трансмутации Th232->U233 образуется промежуточный Pa233, который довольно долго распадается и является нейтронным ядом. Это огромный минус, о нем мы поговорим ниже.
  • 5. Побочный изотоп U232, который будет нарабатываться в топливе с торием дает при распаде цепочку жестких гамма-излучателей , которые резко осложняют переработку ОЯТ.

Понятно, что с таким гандикапом (пункт 3) и отсутствием ЗЯТЦ у тория не очень-то много шансов на реализацию, как минимум на сегодня. Да и в остальном у тория нет каких-то недостатков или преимуществ. Часто ему приписывают, например, что он не имеет проблем распространения ядерно-оружейных технологий. Это не так. Да, тут нет плутония, но есть U233, из которого отлично получаются ядерные бомбы.


Превращение материалов в топливе современного реактора: 3,5% U235 распадается в продукты деления, паралельно из U238 нарабатывается 3% Pu, 2% из которых тоже распадается, давая тепло и нейтроны.

Теперь давайте поговорим о пунктах 2 и 4 поподробнее, т.к. они являются определяющими для будущего тория.

Итак, что за проблема минорных актиноидов? При работе ядерного реактора на обычном, человеческом топливе из 3-5% U235 и 95-97% U238 при поглощении нейтронами образуются разнообразные неприятные вещества - минорные актиноиды. К ним относят нептуний Np-237, изотопы америция Am-241, -243, кюрия Cm-242, -244, -245. Все они радиоактивны, и довольно неприятно - мощные гамма излучатели. Однако в свежем ОЯТ их будет совсем немного - несколько килограмм на тонну, против десятков килограмм продуктов деления (типа знаменитого Cs-137), которые еще более активны. В чем же проблема?


Превращения изотопов в урановом топливе в реакторе.

Проблема в периоде полураспада. Самый длинный период полураспада продуктов деления как раз у Cs-137 - и он составляет ~30 лет. За 300 лет его активность уменьшится в 1000 раз, а за 900 - в миллиард. Это значит, что за исторически обозримое время можно перестать беспокоиться о коррозии ОЯТ и охранять его от нехороших любителей радиоактивности.


Оценки для ядерной энергетики: мощности в ГВт Pel, исторической выработки энергии в ГВт*годах Qel, массы ОЯТ в тоннах, массы плутония в этом ОЯТ MPu в тонных, и остальных изотопах в килограммах

А вот для минорных актиноидов периоды полураспада составляют тысячи лет. Это значит, что сроки хранения удлиняются с сотен лет до десятков тысяч. Такое время уже довольно сложно представить, зато можно представить, что при интенсивной работе атомной энергетики через несколько тысяч лет ОЯТом будет заставлена довольно большая территория, а самой популярной профессией будет “охранник хранилища ОЯТ”.


А шведы уже захоранивают ядерное топливо навсегда по такой схеме в хранилище Forsmark.

Ситуация меняется, если вместо цикла с однократным использованием топлива (который существует сейчас) мы переходим к замкнутому циклу - нарабатывая из U238 или Th232 ядерное топливо и сжигая его в реакторе. С одной стороны объем ОЯТ по понятным причинам резко уменьшается, а вот с другой - количество минорных актиноидов будет расти и расти. Проблема уничтожения (путем трансмутации и расщепления) минорных актиноидов в ядерных реакторов с 70х является одной из существенных на пути к разворачиванию ЗЯТЦ.

И вот тут Th232 на коне. В его ЯТЦ не будут образовываться МА, а значит нет и проблем с хранением ОЯТ “вечно”, и проблем с обращением с этими очень сложными и неприятными субстанциями в ходе переработки уранового ОЯТ. Таким образом торий получает важное преимущество - ЗЯТЦ на нем чем-то может быть проще.


Жидкосолевой реактор - вечный спутник идеи ториевой энергетики.




FLiBe с примесью фторида U233 в твердом и жидком виде имеет правильный для ядерного реактора цвет.

Такой реактор управляется с помощью контроля утечки нейтронов из активной зоны, и фактически не имеет никаких исполнительных механизмов внутри АЗ, а главное - постоянно очищается радиохимическим способом от Pa233 и продуктов распада U233. Идея ЖСР - святой грааль ядерной инженерии, но одновременно кошмар материаловедов - в этом расплаве быстро образуется вся таблица менделеева в буквальном смысле, и сделать материал, который будет удерживать такую смесь без коррозии в условиях высокой температуры и радиации пока не получается.


Разрез индийского AHWR - единственного в мире промышленного реактора, планируемого к работе на Th/U233 и Th/Pu239 MOX.

Таким образом можно резюмировать: пока у атомной индустрии нет ни особых потребностей, ни возможностей по строительству ториевой энергетики. Экономически это выглядит так - торий не интересен, пока стоимость килограмма урана не превысит 300$, как это сформулировано в выводах отчета МАГАТЭ по ториевому циклу. Даже индусы, в условиях ограничения поставок урана (и отсутствия его ресурсов внутри страны) сделавшие в 80х ставку на ториевый ЗЯТЦ сегодня постепенно сворачивают усилия по его запуску. Ну а у нашей страны есть только интересно наследие из эпохи, когда плюсы и минусы тория были непонятны - склады с 80 тысячами тонн монацитового песка (ториевой руды) в Красноуфимске, но нет больших экономически оправданных месторождений тория и планов по его освоению для ядерной энергетики.

Теги: Добавить метки