Самые крупные тэс. Крупнейшие электростанции России: список, типы и особенности

Несмотря на бурное развитие возобновляемой энергетики, тепловые электростанции (ТЭС) остаются главными генераторами в мире. Суммарно они обеспечивают порядка 2/3 от общей выработки всей электроэнергии на планете, и, по мнению специалистов, в ближайшие десятилетия данное соотношение сохранится. В тепловой энергетике, как и в любой другой промышленной сфере, есть свои уникальные объекты. «Переток» собрал интересные факты о тепловых электростанциях-рекордсменах.

Крупнейшая в мире ТЭС Tuoketuo


Монстры мира энергетики

Крупнейшей ТЭС в мире является китайская Tuoketuo установленной мощностью 6600 МВт. Станция состоит из пяти энергоблоков, каждый из которых включает в себя два блока мощностью 600 МВт. Помимо основного оборудования на станции установлены два блока суммарной мощностью 600 МВт для собственных нужд. Ежегодно станция производит 33,3 млрд кВт⋅ч электрической энергии.

Кстати

Китай является мировым лидером по числу ТЭС, работающих на угле. Он потребляет около половины мирового объёма энергетического угля, а доля угольной генерации в стране превышает 70%. В десятку крупнейших ТЭС мира входят пять станций из Поднебесной.

Второе место принадлежит Тайчжунской ТЭС на острове Тайвань с установленной мощностью 5824 МВт. Кстати, данная станция считается самым крупным загрязнителем атмосферы на Земле. На ней установлены десять энергоблоков по 550 МВт каждый, которые используют в качестве топлива уголь, привезённый из Австралии, и четыре дополнительных блока по 70 МВт на природном газе. Среднегодовая выработка Тайчжунской ТЭС составляет 42 млрд кВт⋅ч.

Фрагменты статьи

Где жгут больше всего топлива

Всего тепловыми электростанциями России в 1998 г. использовано 330,2 млн тут* (73% от уровня 1990 г.).
Выделим регионы - «теплоэнергетические гиганты» , сжигающие более 7 млн тут ежегодно. Среди них, в первую очередь, «сверхгиганты»: Москва (более 20 млн тут), Ханты-Мансийский а. о. и Свердловская обл. (более 15 млн тут), Красноярский край, Башкирия, Кемеровская область и Татария (свыше 10 млн тут). За ними следуют Самарская, Пермская, Московская и Челябинская обл. В большинстве этих регионов - по 3-5 крупных ГРЭС и около десяти ТЭЦ. Исключения составляют Москва, у которой нет ГРЭС, но наибольшее число ТЭЦ - 14, а также Самарская область и Башкирия, где лишь по одной ГРЭС, но соответственно 7 и 10 ТЭЦ.
Все эти регионы - промышленно развитые. В 90-е годы здесь отмечено сравнительно небольшое сокращение потребления топлива по сравнению с 1990 г., причем 2 региона (Ханты-Мансийский а. о. и Красноярский край) даже увеличили топливопотребление - на 5 и 2 млн тут соответственно.
В группе регионов - «энергетических гигантов» сконцентрирована треть крупнейших ГРЭС и ТЭЦ страны.
На долю 10 регионов, лидирующих в России по потреблению топлива в электроэнергетике, приходится половина потребленного топлива и 46% суммы валового регионального продукта.
В десятке первых выделяются:

а) крупнейшие угольные регионы (Красноярский край, Кемеровская обл.);
б) регионы, на территории которых растут мощные городские агломерации-миллионеры со 100-процентной теплофикацией, базирующейся на сжигании природного газа (Москва, Московская, Самарская, Пермская обл.);
в) регион, в котором добывается 96% российского газа (Ханты-Мансийский а. о.);
г) высокоразвитые промышленные регионы с диверсифицированным топливным балансом, где наряду с газом используется местное или близко добываемое топливо - уголь в Свердловской обл. и мазут в Башкирии и Татарии.

За 90-е годы серьезных изменений в составе десятки главных топливопотребителей не произошло. Лишь Москва и Ханты-Мансийский а. о. обогнали Свердловскую обл. Это и понятно: московская электроэнергетика - это в основном ТЭЦ (а они в первую очередь снабжают теплом жилые и деловые районы, и выработка энергии на них не упала одновременно со спадом промышленного производства), Сургутская ГРЭС-2, ориентируясь на местное топливо, увеличивает свою мощность до сих пор, а промышленная Свердловская обл. в условиях экономического кризиса снизила потребление электроэнергии и соответственно ее выработку. Изменение позиции Красноярского края в таблице связано с тем, что на 1990 г. данные были неполными - в общий итог по краю не включались данные о трех норильских ТЭЦ.

Регионы с высокими объемами потребления топлива , сжигающие от 2 до 7 млн тут ежегодно. Это прежде всего Оренбургская обл., Ставропольский край, Рязанская, Костромская, Новосибирская, Ростовская обл., Хабаровский край, Нижегородская, Тверская, Саратовская, Волгоградская, Ленинградская обл., Приморский край и Якутия*. В большинстве этих регионов - по 1-2 ГРЭС и в среднем по 5 ТЭЦ (в некоторых отсутствие ГРЭС компенсируется большим количеством ТЭЦ: например, в Иркутской обл.
14 ТЭЦ, в Санкт-Петербурге - 8, в Омской обл. и Республике Коми - по 5, в Тюменской, Волгоградской, Кировской обл., а также в Алтайском и Краснодарском краях - по 3-4.
С начала 90-х годов топливопотребление в этой группе регионов сократилось в среднем на 20%, причем наименьшее сокращение отмечено в Краснодарском крае (всего на 2%), а наибольшее - в Иркутской обл. (с 10,5 млн тут до 6 млн тут).

Регионы со средними объемами потребления топлива - ежегодно1-2 млн тут: Ярославская, Архангельская, Ульяновская, Липецкая, Читинская, Астраханская, Вологодская, Сахалинская, Смоленская и Томская обл., Чувашия и Бурятия.
В каждом из этих регионов - по 2-4 ТЭЦ, в некоторых - одна ГРЭС. В большинстве регионов этой группы за 90-е годы произошло сокращение потребления топлива на 20-30%. Исключения: небольшой рост (на 1%) в Читинской обл. и весьма существенный рост (на 53%) в Астраханской обл.

Регионы с небольшими объемами потребления топлива - ежегодно до 1 млн тут.
В верхней части этой группы - депрессивные Ивановская, Воронежская, Владимирская, Курганская, Пензенская и Мурманская обл., которые в 1990 г. потребляли ежегодно более 1 млн тут, но ныне сократили топливопотребление до уровня 700-900 тыс. тут.
Сюда же относятся Орловская, Белгородская, Псковская обл.**, Ямало-Ненецкий а. о., Хакасия, Марий Эл, Дагестан.

* В эту группу, по оценке, должна попасть и Тульская обл. - регион с 3 ГРЭС и 3 крупными ТЭЦ. В 1998 г. здесь только на Черепетской ГРЭС, принадлежащей РАО «ЕЭС России», сожжено 1,2 млн тут. Учитывая, что мощность остальных станций области, вместе взятых, примерно равна мощности Черепетской ГРЭС (и даже немного больше), можно оценить общее топливопотребление в тульской энергетике в 2,4 млн тут (в 1990 г. - 8,2 млн тут). Резкий спад в энергетике области связан в первую очередь с упадком отраслей ВПК. - Прим. ред.

** В Псковской обл. отмечается рост потребления топлива в связи с пуском в 1998 г. 2-го энергоблока на Псковской ГРЭС в Дедовичах.

Таблица 1

Десять крупнейших регионов по количеству сжигаемого топлива на ТЭС в 1990 г.

Таблица 2

Десять крупнейших регионов по количеству сжигаемого топлива на ТЭС в 1998 г.


Крупнейшие ТЭЦ России

В списке 20 крупнейших ТЭС России есть и станции, расположенные в регионах -«энергетических гигантах» (московские, татарстанские, свердловские, кемеровские ТЭС), а есть и крупные ГРЭС, расположенные в экономически маломощных регионах и вырабатывающие электроэнергию главным образом для подачи в общие энергосистемы, в основном для питания более «прожорливых» соседей (таковы ГРЭС в Костромской, Тверской, Рязанской обл., Ставропольском крае). Всего в списке - 5 угольных и 13 газовых электростанций, а также Кармановская и Рязанская ГРЭС, работающие на разных видах топлива (преобладающего вида выделить нельзя).
Из сравнения таблиц 3 и 4 видно, что, хотя все станции снизили объемы потребления топлива, список лидеров мало изменился. Все крупнейшие ТЭЦ, которые помимо электроэнергии вырабатывают еще и тепло (и, следовательно, почти не отреагировали на промышленный спад в стране), остались в списке на своих местах. Покинули в 1998 г. когорту лидеров ГРЭС крупных индустриальных регионов Троицкая, Заинская, Киришская и Пермская. В условиях спада промышленного производства в этих регионах произошло некоторое перераспределение потребления энергии - от электричества к теплу; соответственно упала выработка на ГРЭС, но почти сохранилась на прежнем уровне работа местных ТЭЦ. В частности, в Пермской обл. при сокращении производства электроэнергии на Добрянской ГРЭС увеличилось производство и, следовательно, топливопотребление на городских ТЭЦ и ТЭЦ ПО «Пермьнефтеоргсинтез»*. В соответствии с этой тенденцией на место нескольких ГРЭС, выбывших из списка лидеров 1998 г., пришли две московских ТЭЦ, ТЭЦ ВАЗа**. Симптоматично также появление в списке лидеров Беловской и Назаровской ГРЭС, работающих на угле.

Таблица 3

Таблица 3

Двадцать крупнейших ТЭС по количеству сжигаемого топлива в 1990 г.

Преобладающий вид топлива на тепловых электростанциях в 1998 г.
(по субъектам федерации)

* Это означает, что топливный баланс разделен примерно поровну между двумя или тремя видами топлива
Примечание . Данные по Тульской обл. неполные (в действительности роль газа
в области выше).

Электрической станцией называется энергетическая установка, служащая для преобразования природной энергии в электрическую. Наиболее распространены тепловые электрические станции (ТЭС), использующие тепловую энергию, выделяемую при сжигании органического топлива (твердого, жидкого и газообразного).

На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.

Высокий технический уровень энергетики может быть обеспечен только при гармоничной структуре генерирующих мощностей: в энергосистеме должны быть и АЭС, вырабатывающие дешевую электроэнергию, но имеющие серьезные ограничения по диапазону и скорости изменения нагрузки, и ТЭЦ, отпускающие тепло и электроэнергию, количество которой зависит от потребностей в тепле, и мощные паротурбинные энергоблоки, работающие на тяжелых топливах, и мобильные автономные ГТУ, покрывающие кратковременные пики нагрузки.

1.1 Типы тэс и их особенности.

На рис. 1 представлена классификация тепловых электрических станций на органическом топливе.

Рис.1. Типы тепловых электростанций на органическом топливе.

Рис.2 Принципиальная тепловая схема ТЭС

1 – паровой котёл; 2 – турбина; 3 – электрогенератор; 4 – конденсатор; 5 – конденсатный насос; 6 – подогреватели низкого давления; 7 – деаэратор; 8 – питательный насос; 9 – подогреватели высокого давления; 10 – дренажный насос.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции – это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название – ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн кВт.

Промышленные электростанции – это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС – тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива – мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь – низкокалорийный уголь или отходы добычи высококалорийного каменного угля (антрацитовый штыб - АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину – паровую турбину. ПТУ – основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).

Традиционная современная газотурбинная установка (ГТУ) – это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Парогазовые тепловые электростанции комплектуются парогазовыми установками (ПГУ), представляющими комбинацию ГТУ и ПТУ, что позволяет обеспечить высокую экономичность. ПГУ-ТЭС могут выполняться конденсационными (ПГУ-КЭС) и с отпуском тепловой энергии (ПГУ-ТЭЦ). В настоящее время в России работает четыре новых ПГУ-ТЭЦ (Северо-Западная ТЭЦ Санкт-Петербурга, Калининградская, ТЭЦ-27 ОАО «Мосэнерго» и Сочинская), построена также теплофикационная ПГУ на Тюменской ТЭЦ. В 2007 г. введена в эксплуатацию Ивановская ПГУ-КЭС.

Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок – энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.

По уровню начального давления различают ТЭС докритического давления, сверхкритического давления (СКД) и суперсверхкритических параметров (ССКП).

Критическое давление – это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД – 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам вполняется с промежуточным перегревом и по блочной схеме. К суперсверхкритическим параметрам условно относят давление более 24 МПа (вплоть до 35 МПа) и температуру более 5600С (вплоть до 6200С), использование которых требует новых материалов и новых конструкций оборудования. Часто ТЭС или ТЭЦ на разный уровень параметров строят в несколько этапов – очередями, параметры которых повышаются с вводом каждой новой очереди.

Несмотря на бурное развитие альтернативной энергетики станции, потребляющие ископаемое топливо, продолжают работать и несут на себе большую часть нагрузки энергосистемы в разных странах. В этой статье собраны крупнейшие станции, потребляющие ископаемое топливо.

1. Tuoketuo, Китай

Tuoketuo - является самой крупной станцией в мире. Установленная мощность составляет 6600 МВт.

Tuoketuo

Станция состоит из 5 энергоблоков, каждый из которых включает в себя 2 блока единичной мощностью 600 МВт. Помимо основного оборудования на станции установлено 2 блока суммарной мощностью 600 МВт для собственных нужд.

Этой станции принадлежит рекорд по строительству энергоисточников. Интервал между строительством двух блоков составил 50 дней.

Электростанция в качестве топлива использует уголь, который добывают примерно в 50 км от нее. Потребность в воде удовлетворяется путем откачки воды с Желтой реки, расположенной в 12 км.

Ежегодно станция производит 33,317 млрд кВт*ч электрической энергии. Tuoketuo занимает свыше 2,5 км 2 .

Tuoketuo

2. ТАЙЧЖУНСКАЯ ТЭС, Тайвань Китай

Эта станция возглавляла рейтинг самых крупных тепловых электростанций в мире до 2011. Затем она уступила это место Сургутской ГРЭС-2 и Tuoketuo. Но после установки дополнительных блоков она заняла свое почетное место. Общая установленная мощность данной станции 5824 МВт, что в 2,4 раза больше самой крупной в Беларуси Лукомльской ГРЭС.

ТАЙЧЖУНСКАЯ ТЭС

На ТЭС установлено десять энергоблоков по 550 МВт каждый, которые используют в качестве топлива уголь и четыре дополнительных блока по 70 МВт на природном газе. Помимо традиционных источников энергии на станции установлены 22 ветровые турбины суммарной мощностью 44 МВт. Среднегодовая выработка электроэнергии составляет 42 млрд. кВт*ч.

Электростанция потребляет 14,5 миллионов тонн угля в год. Большая часть угля поставляется из Австралии. Из-за потребления такого количества ископаемого топлива данная станция является самым крупным производителем атмосферного диоксида углерода:36336000 тон СО 2 в год (Источник: CARMA, Carbon Monitoring for Action).

ТАЙЧЖУНСКАЯ ТЭС

Вся станция занимает территорию 2,5 х 1,5 км. К 2016 году планируется добавление двух энергоблоков по 800 МВт.

3. СУРГУТСКАЯ ГРЭС-2, Россия

Сургутская ГРЭС-2 - крупнейшая тепловая электростанция в России и третья в мире. Установленная электрическая мощность Сургутской ГРЭС-2 составляет 5 597,1​ МВт.

Сургутская ГРЭС-2

На Сургутской ГРЭС-2 установлено 8 энергоблоков: 6х800 МВт и 2х400 МВт. По первоначальному проекту всего должно было быть введено 8 энергоблоков по 800 МВт, после чего суммарная мощность станции должна была составить 6400 МВт.

ГРЭС работает на попутном нефтяном газе (попутный продукт добычи нефти) и природном газе. В соотношении 70/30 %.

Годовое производство электричества станцией отличается стабильным ежегодным ростом, в 2012 году было выработано 39,97 млрд. кВт.ч, максимальное количество электрической энергии за всю историю её эксплуатации, в предыдущем году выработка составила 38,83 млрд. кВт.ч. С 2007 года КИУМ Сургутской ГРЭС-2 ежегодно превышал 81 %.

Выработка электроэнергии Сургутской ГРЭС-2

Станция занимает площадь 0,85 км 2 .

4. БЕЛХАТУВСКАЯ ТЭС, Польша

Данная станция является крупнейшей электростанцией в Европе на ископаемом топливе. На сегодняшний день установленная мощность станции составляет 5354 МВт.

БЕЛХАТУВСКАЯ ТЭС

Электростанция производит 27-28 млрд кВт*ч электроэнергии в год, или 20% от общего производства электроэнергии в Польше. На станции установлено 13 энергоблоков: 12х370/380 МВт и 1х858 МВт. Станция работает на буром угле, который добывается в непосредственной близости. Общая площадь вместе с карьером по добыче угля составляет 7,5 км 2 .

Как и любая станция, потребляющая уголь в качестве топлива, Белхатувская ТЭС является крупным источником выбросов СО 2 в атмосферный воздух, 37,2 млн тонн в 2013 году. В 2014 году Европейская комиссия присвоила станции статус, как оказывающей наибольшее воздействие на изменение климата в Европе.

5. FUTTSU CCGT POWER PLANT , Япония

FUTTSU CCGT POWER PLANT

Станция состоит из четырех блоков:


По количеству крупных электростанций, потребляющих ископаемое топливо, лидирует Китай. Большинство из этих станций работают на угле. Что же касается нашей страны, самым крупным энергоисточником является Лукомльская ГРЭС, установленная мощность 2890 МВт (

Когда в девятнадцатом веке ученые изобрели лампочку и динамо автомобиль, потребность в электроэнергии возросла. В двадцатом веке потребность компенсировали сжиганием угля на электрических станциях, а когда она еще более увеличилась, пришлось искать новые источники. Благодаря инновационным исследованиям ток получают из экологически чистых источников. Существует 5 крупнейших ГЭС, ТЭС и АЭС в России.

ГЭС — гидроэлектростанция. В каждой из них энергия производится от индукционного тока. Он появляется, когда вращается проводник в магните, при этом механическую работу выполняет вода. ГЭС — это плотины, перегораживающие реки, контролирующие течение, из чего и черпается энергия.

5 крупнейших ГЭС в России:

  1. Саяно-Шушенская им. П. С. Непорожнего на р. Енисей в Хакасии: 6 400 МВт. Работает с декабря 1985 г. под руководством ОАО «РусГидро».
  2. Красноярская в 40 км от Красноярска: 6 000 МВт. Работает с 1972 г. под руководством ОАО «Красноярская ГЭС», владельцем которой является Олег Дерипаска.
  3. Братская на р. Ангара в Иркутской области: 4 500 МВт. Работает с 1967 г. под руководством ОАО «Иркутскэнерго» Олега Дерипаска.
  4. Усть-Илимская на р. Ангара: 3 840 МВт. Работает с марта 1979 г. под руководством ОАО «Иркутскэнерго» Олега Дерипаска.
  5. Волжская на р. Волга: 2 592.5 МВт. Работает с сентября 1961 г. под руководством ОАО «РусГидро».

ТЭС — тепловая электростанция. Электрическая энергия вырабатывается за счет сжигания ископаемого топлива. На ТЭС вырабатывают более 40% мировой электроэнергии. В качестве топлива в России используют уголь, газ или нефть.

5 крупнейших ТЭС в России:

  1. Сургутская ГРЭС-2 в Ханты-Мансийском АО: 5 597 МВт. Работает с 1985 г. под руководством ПАО «Юнипро».
  2. Рефтинская ГРЭС в п. Рефтинском (Свердловская область): 3 800 МВт. Работает с 1963 г. под руководством «Энел Россия».
  3. Костромская ГРЭС в. Волгореченске: 3 600 МВт. Работает с 1969 г. под руководством «Интер РАО».
  4. Сургутская ГРЭС-1 в Ханты-Мансийском АО: 3 268 МВт. Работает с 1972 г. под руководством ОГК-2.
  5. Рязанская ГРЭС в г. Новомичуринск: 3 070 МВт. Работает с 1973 г. под руководством ОГК-2.

АЭС — атомная электростанция. Она хоть и опасная, но чистая в отличии от ГЭС и ТЭС. Электроэнергия появляется от потребления небольшого объема топлива — Урана, Плутония. АЭС — это забетонированные камеры, где появляется тепло вследствие распада радиоактивных элементов. Большие температуры приводят к испарению вод, и пар начинает вращать турбины, как на ГЭС.

5 крупнейших АЭС в России:

  1. Балаковская в Балаково (Саратовская область): 4 000 МВт. Работает с 28 декабря 1985 г. под руководством «Росэнергоатом».
  2. Калининская в Удомле (Тверская область): 4 000 МВт. Работает с 9 мая 1984 г. под руководством «Росэнергоатом». Директором является Игнатов Виктор Игоревич.
  3. Курская на Сейме в Курске: 4 000 МВт. Работает с 19 декабря 1976 г. под руководством «Росэнергоатом».
  4. Ленинградская в Сосновом Бору (Ленинградская область): 4 000 МВт. Работает с 23 декабря 1973 г. под руководством «Росэнергоатом».
  5. Нововоронежская: 2 597 МВт, планируемая — 3 796 МВт. Работает с сентября 1964 г. под руководством «Росэнергоатом».