Реактивный двигатель изобретен в году. Реактивный двигатель

Толкающая двигатель в противоположном направлении. Для разгона рабочего тела может использоваться как расширение газа , нагретого тем или иным способом до высокой температуры (т. н. тепловые реактивные двигатели ), так и другие физические принципы, например, ускорение заряженных частиц в электростатическом поле (см. ионный двигатель).

Реактивный двигатель сочетает в себе собственно двигатель с движителем , то есть он создаёт тяговое усилие только за счёт взаимодействия с рабочим телом, без опоры или контакта с другими телами. По этой причине чаще всего он используется для приведения в движение самолётов , ракет и космических аппаратов .

Классы реактивных двигателей

Существует два основных класса реактивных двигателей:

  • Воздушно-реактивные двигатели - тепловые двигатели , которые используют энергию окисления горючего кислородом воздуха , забираемого из атмосферы . Рабочее тело этих двигателей представляет собой смесь продуктов горения с остальными компонентами забранного воздуха.
  • Ракетные двигатели - содержат все компоненты рабочего тела на борту и способны работать в любой среде, в том числе и в безвоздушном пространстве.

Составные части реактивного двигателя

Любой реактивный двигатель должен иметь, по крайней мере, две составные части:

  • Камера сгорания («химический реактор») - в нем происходит освобождение химической энергии топлива и её преобразование в тепловую энергию газов .
  • Реактивное сопло («газовый туннель») - в котором тепловая энергия газов переходит в их кинетическую энергию , когда из сопла газы вытекают наружу с большой скоростью, тем создавая реактивную тягу .

Основные технические параметры реактивного двигателя

Основным техническим параметром, характеризующим реактивный двигатель, является тяга (иначе - сила тяги) - усилие, которое развивает двигатель в направлении движения аппарата.

Ракетные двигатели помимо тяги характеризуются удельным импульсом , являющимся показателем степени совершенства или качества двигателя. Этот показатель является также мерой экономичности двигателя. В приведённой ниже диаграмме в графической форме представлены верхние значения этого показателя для разных типов реактивных двигателей, в зависимости от скорости полёта, выраженной в форме числа Маха , что позволяет видеть область применимости каждого типа двигателей.

История

Реактивный двигатель был изобретен Гансом фон Охайном (Dr. Hans von Ohain), выдающимся немецким инженером-конструктором и Фрэнком Уиттлом (Sir Frank Whittle). Первый патент на работающий газотурбинный двигатель был получен в 1930 году Фрэнком Уиттлом. Однако первую рабочую модель собрал именно Охайн.

2 августа 1939 года в Германии в небо поднялся первый реактивный самолет - Хейнкель He 178 , оснащённый двигателем HeS 3 , разработанный Охайном.

См. также


Wikimedia Foundation . 2010 .

  • Воздушно-реактивный двигатель
  • Газотурбинный двигатель

Смотреть что такое "Реактивный двигатель" в других словарях:

    РЕАКТИВНЫЙ ДВИГАТЕЛЬ - РЕАКТИВНЫЙ ДВИГАТЕЛЬ, двигатель, который обеспечивает продвижение вперед, быстро выпуская струю жидкости или газа в направлении, противоположном направлению движения. Чтобы создать высокоскоростной поток газов, в реактивном двигателе горючее… … Научно-технический энциклопедический словарь

    Реактивный двигатель - двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела (См. Рабочее тело); в результате истечения рабочего тела из сопла двигателя образуется… … Большая советская энциклопедия

    РЕАКТИВНЫЙ ДВИГАТЕЛЬ - (двигатель прямой реакции) двигатель, тяга которого создается реакцией (отдачей) вытекающего из него рабочего тела. Подразделяются на воздушно реактивные и ракетные двигатели … Большой Энциклопедический словарь

    Реактивный двигатель - двигатель, преобразующий какой либо вид первичной энергии в кинетическую энергию рабочего тела (реактивной струи), которая создает реактивную тягу. В реактивном двигателе сочетаются собственно двигатель и движитель. Основной частью любого… … Морской словарь

    РЕАКТИВНЫЙ ДВИГАТЕЛЬ - РЕАКТИВНЫЙ двигатель, двигатель, тяга которого создается прямой реакцией (отдачей) истекающего из него рабочего тела (например, продуктов сгорания химического топлива). Подразделяются на ракетные двигатели (если запасы рабочего тела размещаются… … Современная энциклопедия

    Реактивный двигатель - РЕАКТИВНЫЙ ДВИГАТЕЛЬ, двигатель, тяга которого создается прямой реакцией (отдачей) истекающего из него рабочего тела (например, продуктов сгорания химического топлива). Подразделяются на ракетные двигатели (если запасы рабочего тела размещаются… … Иллюстрированный энциклопедический словарь

    РЕАКТИВНЫЙ ДВИГАТЕЛЬ - двигатель прямой реакции, реактивная (см.) которого создаётся отдачей вытекающей из него струи рабочего тела. Различают воздушно реактивные и ракетные (см.) … Большая политехническая энциклопедия

    реактивный двигатель - — Тематики нефтегазовая промышленность EN jet engine … Справочник технического переводчика

    реактивный двигатель - двигатель, тяга которого создаётся реакцией (отдачей) вытекающей из него струи рабочего тела. Под рабочим телом применительно к двигателям понимают вещество (газ, жидкость, твёрдое тело), с помощью которого тепловая энергия, выделяющаяся при… … Энциклопедия техники

    реактивный двигатель - (двигатель прямой реакции), двигатель, тяга которого создаётся реакцией (отдачей) вытекающего из него рабочего тела. Подразделяются на воздушно реактивные и ракетные двигатели. * * * РЕАКТИВНЫЙ ДВИГАТЕЛЬ РЕАКТИВНЫЙ ДВИГАТЕЛЬ (двигатель прямой… … Энциклопедический словарь

Книги

  • Авиамодельный пульсирующий воздушно-реактивный двигатель , В. А. Бородин. В книге освещаются конструкция, эксплуатация и элементарная теория пульсирующего ВРД. Книга иллюстрирована схемами реактивных летающих моделей самолетов. Воспроизведено в оригинальной…

ВНИМАНИЕ! Устаревший формат новостей. Возможны проблемы с корректным отображением контента.

Реактивный двигатель

Ранние самолёты с реактивными двигателями: Me.262 и Як-15

Идеи создания теплового двигателя, к которому относится и реактивный двигатель, известны человеку с древнейших времен. Так, в трактате Герона Александрийского под названием «Пневматика» присутствует описание Эолипила - шара «Эола». Данная конструкция представляла собой не что иное, как паровую турбину, в которой пар подавался через трубки в бронзовую сферу и, вырываясь из нее, эту сферу и раскручивал. Вероятнее всего, устройство использовалось для развлечений.

Не обошел стороной идею и великий Леонардо, вознамерившийся при помощи горячего воздуха, подаваемого на лопасти, вращать вертел для жарки.

Впервые идею газотурбинного двигателя предложил в 1791 году английский изобретатель Дж. Барбер: конструкция его ГТД была оснащена газогенератором, поршневым компрессором, камерой сгорания и газовой турбиной.

Использовал в качестве силовой установки для своего самолета, разработанного в 1878 году, тепловой двигатель и А.Ф. Можайский: два паросиловых двигателя приводили в движение пропеллеры машины. Из-за низкого КПД желаемого эффекта достичь не удалось.

Другой русский инженер - П.Д. Кузьминский - в 1892 году разработал идею газотурбинного двигателя, в котором топливо сгорало при постоянном давлении. Начав реализацию проекта в 1900 году, он решил установить ГТД с многоступенчатой газовой турбиной на небольшой катер. Однако смерть конструктора помешала закончить начатое.

Более интенсивно за создание реактивного двигателя принялись лишь в ХХ веке: сначала теоретически, а через несколько лет - уже и практически.

В 1903 году в работе «Исследование мировых пространств реактивными приборами» К.Э. Циолковским были разработаны теоретические основы жидкостных ракетных двигателей (ЖРД) с описанием основных элементов реактивного двигателя, использующего жидкое топливо.

Идея создания воздушно-реактивного двигателя (ВРД) принадлежит Р. Лорину, запатентовавшему проект в 1908 году. При попытке создания двигателя, после обнародования чертежей устройства в 1913 году, изобретатель потерпел неудачу: скорости, необходимой для функционирования ВРД, достигнуть так и не удалось.

Попытки создания газотурбинных двигателей продолжались и далее. Так, в 1906 году русский инженер В.В. Караводин разработал, а через два года и построил бескомпрессорный ГТД с четырьмя камерами прерывистого сгорания и газовой турбиной. Однако мощность, развиваемая устройством, даже при 10000 об/мин не превышала 1,2 квт (1,6 л.с.).

Создал газотурбинный двигатель прерывистого горения и немецкий конструктор Х. Хольварт. Построив ГТД в 1908 году, к 1933 году, после многолетних работ по его совершенствованию, он довёл КПД двигателя до 24%. Тем не менее, идея не нашла широкого применения.

Идея же турбореактивного двигателя была озвучена в 1909 году русским инженером Н.В. Герасимовым, получившим патент на газотурбинный двигатель для создания реактивной тяги. Работы по реализации этой идеи не прекращались в России и впоследствии: в 1913 году М.Н. Никольской проектирует ГТД мощностью 120 квт (160 л.с.) с трёхступенчатой газовой турбиной; в 1923 году В.И. Базаров предлагает принципиальную схему газотурбинного двигателя, близкую по схеме современным турбовинтовым двигателям; в 1930 году В.В. Уваров совместно с Н.Р. Брилингом проектирует, а в 1936 году и реализует газотурбинный двигатель с центробежным компрессором.

Огромный вклад в создание теории реактивного двигателя внесли работы русских ученых С.С. Неждановского, И.В. Мещерского, Н.Е. Жуковского. французского учёного Р. Эно-Пельтри, немецкого учёного Г. Оберта. На создание воздушно-реактивного двигателя повлияла и работа известного советского ученого Б.С. Стечкина, который опубликовал в 1929 году свой труд «Теория воздушно-реактивного двигателя».

Не останавливались работы по созданию и жидкостного реактивного двигателя: в 1926 году американский ученый Р. Годдард осуществил запуск ракеты на жидком топливе. Работы над этой темой происходили и в Советском Союзе: в период с 1929 по 1933 год В.П. Глушко разработал и испытал в действии в Газодинамической лаборатории электротермический реактивный двигатель. Им же в этот период были созданы и первые отечественные жидкостные реактивные двигатели - ОРМ, ОРМ-1, ОРМ-2.

Наибольший вклад в практическое воплощение реактивного двигателя внесли немецкие конструкторы и ученые. Имея поддержку и финансирование со стороны государства, рассчитывавшего этим путем добиться технического превосходства в грядущей войне, инженерный корпус III Рейха с максимальной отдачей и в короткие сроки подошел к созданию боевых комплексов, имевших в своей основе идеи реактивного движения.

Концентрируя внимание на авиационной составляющей, можно сказать, что уже 27 августа 1939 года летчик-испытатель фирмы Heinkel флюг-капитан Э. Варзиц поднял в воздух He.178 - реактивный самолет, технологические наработки которого были впоследствии использованы при создании истребителей Heinkel He.280 и Messerschmitt Me.262 Schwalbe.

Установленный на Heinkel He.178 двигатель Heinkel Strahltriebwerke HeS 3 конструкции Х.-И. фон Охайна хоть и не обладал высокой мощностью, но сумел открыть эру реактивных полетов боевой авиации. Достигнутая He.178 максимальная скорость в 700км/ч с использованием двигателя, мощность которого не превышала 500 кгс, говорила о многом. Впереди лежали безграничные возможности, которые лишали будущего поршневые моторы.

Созданная в Германии целая серия реактивных двигателей, например, Jumo-004 производства фирмы Junkers, позволила ей уже в конце Второй мировой войны обладать серийными реактивными истребителями и бомбардировщиками, опередив другие страны в этом направлении на несколько лет. После поражения III Рейха именно немецкие технологии дали толчок развитию реактивного самолетостроения во многих странах мира.

Единственной страной, сумевшей ответить на немецкий вызов, была Великобритания: созданный Ф. Уиттлом турбореактивный двигатель Rolls-Royce Derwent 8 был установлен на истребителе Gloster Meteоr.


Трофейный Jumo 004

Первым в мире турбовинтовым двигателем стал венгерский двигатель Jendrassik Cs-1 конструкции Д. Ендрашика, построившего его в 1937 году на заводе Ganz в Будапеште. Несмотря на возникшие в ходе внедрения проблемы, двигатель предполагалось устанавливать на венгерский двухмоторный штурмовик Varga RMI-1 X/H, специально сконструированный для этого авиаконструктором Л. Варго. Однако довести работы до конца венгерские специалисты так и не сумели - предприятие было перенацелено на выпуск немецких моторов Daimler-Benz DB 605, выбранных для установки на венгерские Messerschmitt Me.210.

Перед началом войны в СССР продолжались работы по созданию различных типов реактивных двигателей. Так, в 1939 году прошли испытания ракеты, на которых стояли прямоточные воздушно-реактивные двигатели конструкции И.А. Меркулова.

В том же году на ленинградском Кировском заводе начались работы по постройке первого отечественного турбореактивного двигателя конструкции А.М. Люльки. Однако начавшаяся война прекратила опытные работы над двигателем, направив всю мощность производства на нужды фронта.

Настоящая эра реактивных двигателей началась после завершения Второй мировой войны, когда за короткий промежуток времени был покорен не только звуковой барьер, но и земное притяжение, что позволило вывести человечество в космическое пространство.

Еще в начале XX в. российский ученый К.Э. Циолковский предсказал, что вслед за эрой винтовых аэропланов наступит эра аэропланов реактивных. Он считал, что только с реактивным двигателем можно достичь сверхзвуковых скоростей.

В 1937 г. молодой и талантливый конструктор A.M. Люлька предложил проект первого советского турбореактивного двигателя. По его расчетам, такой двигатель мог разогнать самолет до небывалых в ту пору скоростей — 900 км/ч! Это казалось фантастикой, и к предложению молодого конструктора отнеслись настороженно. Но, тем не менее, работы по этому двигателю начались, и к середине 1941 г. он был уже практически готов. Однако началась война, и конструкторское бюро, где работал A.M. Люлька, эвакуировали в глубь СССР, а самого конструктора переключили на работу над танковыми двигателями.

Но A.M. Люлька был не одинок в своем стремлении создать реактивный авиационный двигатель. Перед самой войной инженеры из конструкторского бюро В.Ф. Болховитинова — А.Я. Березняк и А.М. Исаев — предложили проект истребителя-перехватчика «БИ-1» с жидкостным реактивным двигателем.

Проект был одобрен, и конструкторы приступили к работе. Несмотря на все трудности первого периода Великой Отечественной войны, опытный «БИ-1» все же был построен.

15 мая 1942 г. первый в мире ракетный истребитель был поднят в воздух летчиком-испытателем ЕЯ. Бахчиванджи. Испытания продолжались до конца 1943 г. и, к сожалению, закончились катастрофой. В одном из испытательных полетов Бахчиванджи достиг скорости 800 км/ч. Но на этой скорости самолет вдруг вышел из повиновения и устремился к земле. Новая машина и ее отважный испытатель погибли.

Первый самолет с реактивным двигателем «Messer-schmitt Ме-262» появился в небе перед самым концом второй мировой войны. Он производился на хорошо замаскированных заводах, размешенных в лесу. Один из таких заводов в Горгау — в 10 км к запалу от Аугсбурга по автобану — поставлял крылья, носовую и хвостовую секции самолета на другой «лесной» завод неподалеку, который осуществлял финальную сборку и поднимал готовые самолеты прямо с автобана. Крыша строений красилась в зеленый цвет, и обнаружить такой «лесной» завод с воздуха было почти невозможно. Хотя союзникам удалось засечь взлеты «Ме-262» и разбомбить несколько неукрытых самолетов, расположение завода они смогли установить только, после того, как заняли лес.

Первооткрыватель реактивного двигателя англичанин Фрэнк Уитл получил свой патент еще в 7 930 г. Первый реактивный самолет «Gloster» был построен в 1941 г. ив мае прошел испытания. Правительство от него отказалось — недостаточно мощный. Полностью раскрыли потенциал этого изобретения лишь немцы, в 1942 г. собравшие «Messerschmitt Ме-262», на котором и воевали вплоть до конца войны. Первым советским реактивным самолетом был «МиГ-9», а его «потомок» — «МиГ-15» — вписал много славных страниц в боевую историю войны в Корее (1950—1953).

В эти же годы в фашистской Германии, утратившей на советско-германском фронте превосходство в воздухе, все более интенсивно развертываются работы над реактивными самолетами. Гитлер надеялся, что с помощью этих самолетов он снова перехватит инициативу в войне и добьется победы.

В 1944 г. самолет «Messerschmitt Ме-262», оснащенный реактивным двигателем, был запущен в серийное производство и вскоре появился на фронте. Немецкие летчики с большой опаской относились к этой необычной машине, не имеющей привычного винта. Кроме этого на скорости, близкой к 800 км/ч, ее затягивало в пикирование, и вывести машину из этого состояния было невозможно. В авиационных частях далее появилась строжайшая инструкция — ни в коем случае не доводить скорость до 800 км/ч.

Тем не менее, даже с таким ограничением «Ме-262» превосходил по скорости все другие истребители тех лет. Это позволило командующему гитлеровской истребительной авиацией генералу Голланду заявить, что «Ме-262» — «единственный шанс организовать реальное сопротивление противнику».

На Восточном фронте «Ме-262» появились в самом конце войны. В связи с этим конструкторские бюро получили срочное задание создать аппараты для борьбы с немецкими реактивными самолетами.

А.И. Микоян и П.О. Сухой в помощь обычному поршневому мотору, расположенному в носовой части аппарата, добавили мотокомпрессорный мотор конструкции К.В. Холщевникова, установив его в хвосте самолета. Дополнительный двигатель должен был запускаться, когда самолету требовалось придать значительное ускорение. Это было продиктовано тем обстоятельством, что двигатель К.В. Холщевникова работал не более трех-пяти минут.

Первым закончил работу над скоростным истребителем А.И. Микоян. Его самолет «И-250» совершил полет в марте 1945 г. В ходе испытаний этой машины была зарегистрирована рекордная скорость 820 км/ч, впервые достигнутая в СССР. Истребитель П.О. Сухого «Су-5» поступил на испытания в апреле 1945 г., и на нем после включения дополнительного хвостового двигателя была получена скорость, превышающая 800 км/ч.

Однако обстоятельства тех лет не позволили запустить новые скоростные истребители в серийное производство. Во-первых, война закончилась, даже хваленый «Ме-262» не помог вернуть фашистам утраченное превосходство в воздухе.

Во-вторых, мастерство советских пилотов позволило доказать всему миру, что даже реактивные самолеты можно сбивать, управляя обыкновенным серийным истребителем.

Параллельно с разработкой самолета, оснащенного «толкающим» мотокомпрессорным двигателем, в конструкторском бюро П.О. Сухого был создан истребитель «Су-7», в котором совместно с поршневым мотором работал жидкостно-реактивный «РД-1», разработанный конструктором В.П. Глушко.

Полеты на «Су-7» начались в 1945 г. Испытывал его пилот Г. Комаров. При включении «РД-1» скорость самолета увеличивалась в среднем на 115 км/ч. Это был неплохой результат, однако вскоре испытания пришлось прекратить из-за частого выхода из строя реактивного двигателя.

Аналогичная ситуация сложилась в конструкторских бюро С.А. Лавочкина и АС. Яковлева. На одном из опытных самолетов «Ла-7Р» ускоритель взорвался в полете, летчику-испытателю чудом удалось спастись. А вот при испытании «Як-3» с ускорителем «РД-1» самолет взорвался и его пилот погиб. Участившиеся катастрофы привели к тому, что испытания самолетов с «РД-1» были прекращены. К тому же стало ясно, на смену поршневым должны были прийти новые двигатели — реактивные.

После поражения Германии в качестве трофеев СССР достались немецкие реактивные самолеты с двигателями. Западным же союзникам попали не только образцы реактивных самолетов и их двигателей, но и их разработчики и оборудование фашистских заводов.

Для накопления опыта в реактивном самолетостроении было принято решение использовать немецкие двигатели «JUMO-004» и «BMW-003», а затем на их основе создать собственные. Эти двигатели получили наименование «РД-10» и «РД-20». Кроме этого конструкторам A.M. Люльке, А.А. Микулину, В.Я. Климову было поручено создать «полностью советский» авиационный реактивный двигатель.

Пока у «двигателистов» шла работа, П.О. Сухой разработал реактивный истребитель «Су-9». Его конструкция была выполнена по схеме двухмоторных самолетов — два трофейных двигателя «JUMO-004» («РД-10») размещались под крыльями.

Наземные испытания реактивного мотора «РА- 7» проводились на летном поле аэродрома в Тушино. Во время работы он издавал страшный шум и выбрасывал из своего сопла клубы дыма и огня. Грохот и зарево от пламени были заметны даже у московской станции метро «Сокол». Не обошлось и без курьеза. Однажды на аэродром примчалось несколько пожарных машин, вызванных москвичами тушить пожар.

Самолет «Су-9» трудно было назвать просто истребителем. Летчики обычно называли его «тяжелым истребителем», так как более точное название — истребитель-бомбардировщик — появилось только к середине 50-х гг. Но по своему мощному пушечному и бомбовому вооружению «Су-9» вполне можно было считать прототипом такого самолета.

У такого размещения моторов были как недостатки, так и преимущества. К недостаткам можно отнести большое лобовое сопротивление, создаваемое расположенными под крыльями моторами. Но с другой стороны, размещение двигателей в специальных подвесных мотогондолах открывало к ним беспрепятственный доступ, что было немаловажно при ремонте и регулировке.

Кроме реактивных двигателей самолет «Су-9» содержал много «свежих» конструкторских решений. Так, например, П.О. Сухой установил на свой самолет стабилизатор, управляемый специальным электромеханизмом, стартовые пороховые ускорители, катапультируемое сиденье летчика и устройство по аварийному сбросу фонаря, прикрывающего кабину летчика, воздушные тормоза с посадочным щитком, тормозной парашют. Можно сказать, что «Су-9» был целиком создан из новшеств.

Вскоре опытный вариант истребителя «Су-9» был построен. Однако было обращено внимание на то, что выполнение виражей на нем для летчика физически тяжелое.

Стало очевидным, что с возрастанием скоростей и высоты полета летчику все труднее будет справляться с управлением, и тогда в систему управления самолетом было введено новое устройство — бустер-усилитель, наподобие гидроусилителя руля. Но в те годы применение сложного гидравлического устройства на самолете вызвало споры. Даже опытные авиаконструкторы отнеслись к нему скептически.

И все же бустер установили на «Су-9». Сухой первым полностью переложил усилия с ручки управления самолетом на гидросистему. Положительная реакция пилотов не заставила себя ждать. Управление самолетом стало более приятным и неутомительным. Маневр упростился и стал возможен на всех скоростях полета.

Следует добавить, что добиваясь совершенства конструкции, П.О. Сухой «проиграл» в соревновании бюро Микояна и Яковлева. Первые реактивные истребители СССР — «МиГ-9» и «Як-15» взлетели в воздух в один день — 26 апреля 1946 г. Они приняли участие в воздушном параде в Тушино и тут же были запущены в серию. А «Су-9» появился в воздухе только в ноябре 1946 г. Однако он очень понравился военным и в 1947 г. был рекомендован для серийного производства. Но в серию он не пошел — авиационные заводы уже были загружены работой по выпуску реактивных «МиГов» и «Яков». Да и П.О. Сухой к тому времени уже заканчивал работу над новой, более совершенной машиной — истребителем «Су-11».

К концу первого десятилетия XX в. англичане значительно отставали в области авиастроения от своих французских коллег. К моменту объявления мобилизации в 1914 г. большая часть авиационного парка страны состояла из самолетов иностранного производства, в основном французских. Однако такое отставание было недолгим. Большой экономический, технический и научный потенциал страны позволил уже к середине первой мировой войны…

Наступила вторая половина XX в. Конструкция самолета, претерпев множество изменений, приобрела наконец привычный для нас вид. Ушли в небытие квадропланы, трипланы и практически не используются аппараты, построенные по схеме биплана. И поэтому, если в тексте встретится термин «крыло», мы не будем рисовать в своем воображении фантастические «этажерки», поднимавшиеся в небо в начале XX в., а…

Летчиков всего мира кроме любви к полетам объединяет еще одно обстоятельство — вне зависимости от того, служат они сейчас в военной или гражданской авиации, начинался их путь в небо с управления небольшим тренировочным самолетом-учителем. Самолет «АИР-14» был создан под руководством А.С. Яковлева в 1937 г. Это был одноместный учебно-тренировочный и спортивный самолет, который пошел в…

Дальнейшее развитие вертолетостроения было прервано первой мировой войной. Так как этот удивительный аппарат не успел до ее начала доказать свою «полезность» для военных, про винтокрылые машины на время забыли и все силы бросили на развитие самолетостроения. Но едва человечество покончило с кровопролитной войной, из разных стран мира все чаще и чаще стали поступать сведения о…

«Человек полетит, опираясьне на силу своих мускулов,а на силу своего разума». Н.Е. Жуковский Термин «воздухоплавание» обозначал таюке и летание на аппаратах тяжелее воздуха (самолетах, планерах). Однако мечтать о полетах человек начал гораздо раньше. Построив машины, способные передвигаться по суше, обгоняя самых быстрых животных, и корабли, спорящие с жителями водной стихии, он длительное время продолжал с…

Пережив ужасы кровавой первой мировой войны люди считали, что теперь-то мир на земле установится надолго, ведь очень большая цена была заплачена за него. Но это была лишь попытка выдать желаемое за действительное. Историки, политики, военные понимали, что это еще не мир, а, скорее всего, передышка между двумя войнами. И на это были свои причины. Вначале…

Если кому-нибудь из вас приходилось стрелять в тире из винтовки, то вы знаете, что обозначает термин «отдача». Для остальных поясню. Вы, наверно, не раз видели, как ныряльщик, прыгая в воду с лодки, отталкивает ее в противоположном направлении. По такому же, но более сложному принципу летает ракета, а упрощенный вариант этого процесса как раз и представляет…

Площадь поверхности нашей планеты равна 510,2 млн. км2, из них лишь 29,2% приходится на сушу. Вся остальная территория Земли покрыта Мировым океаном, что создает идеально ровную поверхность площадью в сотни миллионов квадратных километров. Взлетно-посадочную полосу таких гигантских размеров трудно себе даже вообразить. И самое главное — никаких препятствий: взлетай там, где тебе удобней, садись не…

Первый советский вертолет был построен в стенах ЦАГИ под руководством A.M. Черемухина в августе 1930 г. Там же в присутствии пожарного А.М. Черемухин — по совместительству пилот экспериментального аппарата «ЦАГИ 1-ЭА» — провел первые, наземные, испытания. После этого аппарат был перевезен на один из подмосковных военных аэродромов. Весной 1925 г. один из старейших вертолетчиков России…

К сожалению, никому не известно, когда человек впервые поднял голову к небу и обратил внимание на его пугающие размеры и вместе с тем фантастическую красоту. Не известно нам и то время, когда человек впервые заметил парящих в воздухе птиц и в голове его возникла мысль последовать за ними. Как любой, даже самый длинный путь начинается с…

Вы задумывались когда-нибудь о том, как работает двигатель реактивного самолета? О реактивной тяге, которая приводит его в действие, знали еще в Античные времена. Применить же ее на практике смогли только в начале прошлого века, в результате гонки вооружений между Англией и Германией.

Принцип работы двигателя реактивного самолета довольно прост, но имеет некоторые нюансы, которые строго соблюдаются при их производстве. Чтобы самолет смог надежно держаться в воздухе, они должны работать идеально. Ведь от этого зависят жизни и безопасность всех, кто находится на борту самолета.

Его приводит в действие реактивная тяга. Для этого нужна какая-то жидкость, выталкиваемая из задней части системы и придающая ей движение вперед. Здесь работает третий закон Ньютона , который гласит: “Любое действие вызывает равное противодействие”.

У реактивного двигателя вместо жидкости применяется воздух . Он создает силу, обеспечивающую движение.

В нем используются горячие газы и смесь воздуха со сгораемым топливом. Эта смесь выходит из него с высокой скоростью и толкает самолет вперед, давая ему лететь.

Если говорить об устройстве двигателя реактивного самолета, то оно представляет из себя соединение четырех самых важных деталей:

  • компрессора;
  • камеры горения;
  • турбины;
  • выхлопа.

Компрессор состоит из нескольких турбин , которые засасывают воздух и сжимают его по мере прохождения через расположенные под углом лопасти. При сжатии температура и давление воздуха повышаются. Часть сжатого воздуха попадает в камеру горения, где смешивается с топливом и поджигается. Это увеличивает тепловую энергию воздуха.

Реактивный двигатель.

Горячая смесь на высокой скорости выходит из камеры и расширяется. Там она проходит через еще одну турбину с лопастями, которые вращаются, благодаря энергии газа.

Турбина соединена с компрессором в передней части двигателя , и таким образом приводит его в движение. Горячий воздух выходит через выхлоп. К этому моменту температура смеси очень высока. И еще увеличивается, благодаря эффекту Дросселирования . После этого воздух выходит из него.

Разработка самолетов с реактивным двигателем началась в 30х годах прошлого века. Англичане и немцы начали разрабатывать подобные модели. В этой гонке победили немецкие ученые. Поэтому первым самолетом с реактивным двигателем стала “Ласточка” в Люфтваффе. “Глостерский метеор” поднялся в воздух немного позднее. О первых самолетах с такими двигателями подробно рассказано

Двигатель сверхзвукового самолета — тоже реактивный, но уже в совершенно другой модификации.

Как работает турбореактивный двигатель?

Реактивные двигатели применяются повсеместно, а турбореактивные устанавливаются больших . Отличие их в том, что первый несет с собой запас топлива и окислителя, а конструкция обеспечивает их подачу из баков.

Турбореактивный двигатель самолета несет с собой лишь топливо, а окислитель — воздух — нагнетается турбиной из атмосферы. В остальном принцип его работы совпадает с тем же, что и у реактивного.

Одна из самых важных деталей у них — это лопасть турбины. От нее зависит мощность двигателя.

Схема турбореактивного двигателя.

Именно они вырабатывают тяговые усилия, необходимые для самолета. Каждый из лопастей производит в 10 раз больше энергии, чем самый обычный, автомобильный двигатель. Они устанавливаются позади камеры сгорания, в той части двигателя, где самое высокое давление, а температура доходит до 1400 градусов по Цельсию.

В процессе производства лопастей они проходят через процесс монокристаллизации , что придает им твердости и прочности.

Перед тем, как установить на самолет, каждый двигатель проверяется на полное тяговое усилие. Он должен пройти сертификацию Европейского совета по безопасности и компанией, которая его произвела. Одной из самых крупных фирм по их производству является Роллс-Ройс.

Что такое самолет с атомным двигателем?

Во время Холодной войны были предприняты попытки создания реактивного двигателя не на химической реакции, а на тепле, который бы вырабатывал ядерный реактор. Его ставили вместо камеры сгорания.

Воздух проходит через активную зону реактора, понижая его температуру и повышая свою. Он расширяется и истекает из сопла со скоростью, большей чем скорость полета.

Комбинированный турбреактивно-атомный двигатель.

В СССР проводились его испытания на базе ТУ-95. В США тоже не отставали от ученых в Советском Союзе.

В 60х годах исследования в обеих сторонах постепенно прекратились. Основными тремя проблемами, которые помешали разработке, стали:

  • безопасность летчиков во время полета;
  • выброс радиоактивных частиц в атмосферу;
  • в случае падения самолета, радиоактивный реактор может взорваться, нанеся непоправимый вред всему живому.

Как производят реактивные двигатели для моделей самолетов?

Их производство для моделей самолетов занимает около 6 часов. Сначала вытачивается базовая пластина из алюминия , к которой крепятся все остальные детали. По размеру она совпадает с хоккейной шайбой.

К ней прикрепляют цилиндр , поэтому получается что-то вроде консервной банки. Это будущий двигатель внутреннего сгорания. Далее устанавливается система подачи . Чтобы его закрепить, в основную пластину вкручиваются шурупы, предварительно опущенные в специальный герметик.

Двигатель для модели самолета.

Каналы стартера крепятся с другой стороны камеры , чтобы перенаправлять выбросы газа в турбинное колесо. В отверстие сбоку от камеры сгорания устанавливается спираль накаливания. Она поджигает топливо внутри двигателя.

Потом ставят турбину и центральную ось цилиндра. На нее ставят колесо компрессора , которое нагнетает воздух в камеру сгорания. Его проверяют с помощью компьютера, прежде чем закрепить пусковую установку.

Готовый двигатель еще раз проверяют на мощность. Его звук немногим отличается от звука двигателя самолета. Он, конечно, меньшей силы, но полностью напоминает его, придавая больше схожести модели.

Реактивные авиадвигатели во второй половине XX века открыли новые возможности в авиации: полеты на скоростях, превышающих скорость звука, создание самолетов с высокой грузоподъемностью, сделали возможным массовые путешествия на большие расстояния. Турбореактивный двигатель по праву считается одним из самых важных механизмов ушедшего века, несмотря на простой принцип работы.

История

Первый самолет братьев Райт, самостоятельно оторвавшийся от Земли в 1903 году, был оснащен поршневым двигателем внутреннего сгорания. И на протяжении сорока лет этот тип двигателя оставался основным в самолетостроении. Но во время Второй мировой войны стало ясно, что традиционная поршнево-винтовая авиация подошла к своему технологическому пределу – как по мощности, так и по скорости. Одной из альтернатив был воздушно-реактивный двигатель.

Идею применения реактивной тяги для преодоления земного притяжения впервые довел до практической осуществимости Константин Циолковский. Еще в 1903 году, когда братья Райт запускали свой первый самолет «Флайер-1», российский ученый опубликовал свой труд «Исследование мировых пространств реактивными приборами», в котором он разработал основы теории реактивного движения. Опубликованная в «Научном обозрении» статья утвердила за ним репутацию мечтателя и не была воспринята всерьез. Циолковскому потребовались годы трудов и смена политического строя, чтоб доказать свою правоту.

Реактивный самолет Су-11 с двигателями ТР-1, разработки КБ Люльки

Тем не менее, родиной серийного турбореактивного двигателя суждено было стать совсем другой стране – Германии. Создание турбореактивного двигателя в конце 1930-х было своеобразным хобби немецких компаний. В этой области отметились практически все известные ныне бренды: Heinkel, BMW, Daimler-Benz и даже Porsche. Основные лавры достались компании Junkers и ее первому в мире серийному турбореактивному двигателю 109-004, устанавливаемому на первый же в мире турбореактивный самолет Me 262.

Несмотря на невероятно удачный старт в реактивной авиации первого поколения, немецкие решения дальнейшего развития нигде в мире не получили, в том числе и в Советском Союзе.

В СССР разработкой турбореактивных двигателей наиболее удачно занимался легендарный авиаконструктор Архип Люлька. Еще в апреле 1940 года он запатентовал собственную схему двухконтурного турбореактивного двигателя, позже получившую мировое признание. Архип Люлька не нашел поддержки у руководства страны. С началом войны ему вообще предложили переключиться на танковые двигатели. И только когда у немцев появились самолеты с турбореактивными двигателями, Люльке было приказано в срочном порядке возобновить работы по отечественному турбореактивному двигателю ТР-1.

Уже в феврале 1947 года двигатель прошел первые испытания, а 28 мая свой первый полет совершил реактивный самолет Су-11 с первыми отечественными двигателями ТР-1, разработки КБ А.М. Люльки, ныне филиала Уфимского моторостроительного ПО, входящего в Объединенную двигателестроительную корпорацию (ОДК).

Принцип работы

Турбореактивный двигатель (ТРД) работает на принципе обычной тепловой машины. Не углубляясь в законы термодинамики, тепловой двигатель можно определить как машину для преобразования энергии в механическую работу. Этой энергией обладает так называемое рабочее тело – используемый внутри машины газ или пар. При сжатии в машине рабочее тело получает энергию, а при последующем его расширении мы имеем полезную механическую работу.

При этом понятно, что работа, затрачиваемая на сжатие газа должна быть всегда меньше работы, которую газ может совершить при расширении. Иначе никакой полезной «продукции» не будет. Поэтому газ перед расширением или во время него нужно еще и нагревать, а перед сжатием – охладить. В итоге за счет предварительного нагрева энергия расширения значительно повысится и появится ее излишек, который можно использовать для получения необходимой нам механической работы. Вот собственно и весь принцип работы турбореактивного двигателя.

Таким образом, любой тепловой двигатель должен иметь устройство для сжатия, нагреватель, устройство для расширения и охлаждения. Все это есть у ТРД, соответственно: компрессор, камера сгорания, турбина, а в роли холодильника выступает атмосфера.



Рабочее тело – воздух, попадает в компрессор и сжимается там. В компрессоре на одной вращающейся оси укреплены металлические диски, по венцам которых размещены так называемые «рабочие лопатки». Они «захватывают» наружный воздух, отбрасывая его внутрь двигателя.

Далее воздух поступает в камеру сгорания, где нагревается и смешивается с продуктами сгорания (керосина). Камера сгорания опоясывает ротор двигателя после компрессора сплошным кольцом, либо в виде отдельных труб, которые называются жаровыми трубами. В жаровые трубы через специальные форсунки и подается авиационный керосин.

Из камеры сгорания нагретое рабочее тело поступает на турбину. Она похожа на компрессор, но работает, так сказать, в противоположном направлении. Ее раскручивает горячий газ по тому же принципу, как воздух детскую игрушку-пропеллер. Ступеней у турбины немного, обычно от одной до трех-четырех. Это самый нагруженный узел в двигателе. Турбореактивный двигатель имеет очень большую частоту вращения – до 30 тысяч оборотов в минуту. Факел из камеры сгорания достигает температуры от 1100 до 1500 градусов Цельсия. Воздух здесь расширяется, приводя турбину в движение и отдавая ей часть своей энергии.

После турбины – реактивное сопло, где рабочее тело ускоряется и истекает со скоростью большей, чем скорость встречного потока, что и создает реактивную тягу.

Поколения турбореактивных двигателей

Несмотря на то, что точной классификации поколений турбореактивных двигателей в принципе не существует, можно в общих чертах описать основные типы на различных этапах развития двигателестроения.

К двигателям первого поколения относят немецкие и английские двигатели времен Второй мировой войны, а также советский ВК-1, который устанавливался на знаменитый истребитель МИГ-15, а также на самолеты ИЛ-28 и ТУ-14.

Истребитель МИГ-15

ТРД второго поколения отличаются уже возможным наличием осевого компрессора, форсажной камеры и регулируемого воздухозаборника. Среди советских примеров двигатель Р-11Ф2С-300 для самолета МиГ-21.

Двигатели третьего поколения характеризуются увеличенной степенью сжатия, что достигалось увеличением ступеней компрессора и турбин, и появлением двухконтурности. Технически это самые сложные двигатели.

Появление новых материалов, которые позволяют значимо поднять рабочие температуры, привело к созданию двигателей четвертого поколения. Среди таких двигателей – отечественный АЛ-31 разработки ОДК для истребителя Су-27.

Сегодня на уфимском предприятии ОДК начинается выпуск авиационных двигателей пятого поколения. Новые агрегаты установят на истребитель Т-50 (ПАК ФА), который приходит на смену Су-27. Новая силовая установка на Т-50 с увеличенной мощностью сделает самолет еще более маневренным, а главное – откроет новую эпоху в отечественном авиастроении.