Приборы для обнаружения пустот, подземных ходов, захоронений, полиэтиленовых газопроводов и немагнитных боеприпасов. Ремонтные «Ужастики Как искать пустоты в земле звуком ударом

Цена: от 100 руб./п.м.

Владеть полной информацией об участке - его рельефе, гидрологических условиях, геофизических характеристиках (особенностях и строении грунта), означает, с минимальными затратами времени и финансов, произвести (или начать) необходимые работы. Качественно и квалифицированно выполняют исследования грунта геологи нашего предприятия «Изыскания МСК». Мы решаем и более конкретные задачи, такие как определение пустот в земле, поиск металлических и неметаллических трубопроводов, поиск водяных жил.

Определение пустот в земле различного происхождения – важная задача

Полости под слоем грунта могут возникнуть по разным причинам. Рассмотрим наиболее распространенные.

  • Карстовые процессы (вымывание и растворение известняковых пород грунтовыми водами) вызвали появление пустот, немалую часть которых обнаруживают сегодня и в городах, нередко - в местах застройки. Упустить такую важную особенность территории - значит, подвергнуть объект опасности появления провалов, просадок и разрушений. Вовремя обратиться к услугам специалистов, которые знают, как найти пустоту в земле, означает, предотвратить деформации и разрушения сооружения.
  • Пустоты под землей могут образоваться в результате техногенных аварий. Несоблюдение технологий прокладки трубопроводов вызывает порывы и течи, которые вымывают полости под землей, асфальтовым или бетонным покрытием.
  • Определение пустот в земле производят наши специалисты и в местах старинной застройки, где древний культурный слой скрыт под толщей земли и современными сооружениями. Старые подвалы, погреба, которых нет ни на одной карте города могут стать неприятным «сюрпризом» для застройщика или владельца участка.

Когда заказывают определение пустот в земле?

от 100 руб./п.м.

Самая распространенная цель, которую преследует Заказчик, заказав в нашей компании поиск пустот под землей - это обезопасить будущее строительство от оползневых процессов, появления провалов и просадок почвы. Для этого мы проводим геологические изыскания, в состав которых входит определение полостей в грунте. Нами выполняется также поиск пустот целенаправленно, без привязки к комплексным исследованиям.

Нередко определение карстовых пустот в грунте нашими специалистами происходит по заявке Заказчика для объекта, находящегося в эксплуатации, когда повреждения конструкций, перекосы проемов и трещины наглядно указывают на проблемы с фундаментом или основанием здания (сооружения).

ВНИМАНИЕ! Своевременно обнаружить проблему, а именно пустоты в земле, и принять радикальные меры к ее устранению в денежном выражении будет гораздо выгоднее, чем в аварийном режиме спасать сооружение.

Работают наши специалисты и по заказу археологов, поисковых исторических экспедиций, спелеологов, работники которых не обладают необходимыми приборами и навыками.

Фото 1. Определение пустот в земле в Москве и области

Как найти пустоту под землей?

Каждая исследовательская работа требует не только теоретических знаний и большого старания, - качество исследований во многом зависят от профессионализма наших сотрудников, которые из собственного опыта знают, как найти пустоту под землей. Используя многолетние навыки изысканий, мы с большой точностью отыскиваем полости, применяя в работе специализированные приборы и методики для изучения земных глубин:

  • приборы, принцип действия которых в излучении собственных и приеме отраженных электромагнитных импульсов;
  • сейсмоакустический метод;
  • с использованием принципа электрических сопротивлений (вертикальное электрическое зондирование).

Современный георадар подповерхностного радиолокационного зондирования с высокой разрешающей способностью позволяет передавать на приемное устройство непрерывные данные об изучаемом профиле. После преобразования в цифровой вид и обработки специальными программами компьютер выдает нашим специалистам подробную «картинку» разреза грунта:

  • глубину расположения пустотного образования;
  • размеры полости в плане и по вертикали.
ВНИМАНИЕ! Точные данные мы получаем, исследуя земную толщу до 30 метров глубиной.

Подробнее об услуге вы можете узнать у наших специалистов, воспользовавшись обратной связью на сайте или по телефонам нашей компании.

Изобретение относится к горной промышленности и может быть использовано для обнаружения пустот в зоне ведения открытых горных работ. Цель изобретения - снижение затрат на оконтуривание пустот преимущественно вытянутой по простиранию формы при повышении безопасности работы. Со стороны карьера в зону предполагаемой пустоты перпендикулярно ее простиранию бурят вертикальный веер скважин. После обнаружения пустоты определяют граничные точки распространения пустоты путем бурения горизонтальных скважин на горизонте, пересекающей пустоту. При необнаружении пустоты вертикальным веером скважин проводят веер скважин под углом к плоскости вертикального веера скважины. При этом скважины располагают в шахматном порядке относительно скважины предыдущего веера скважины. А затем бурят вертикальные веера скважин вкрест простирания пустоты между граничными точками горизонта обнаружения. 2 з.п. ф-лы, 2 ил.

Изобретение относится к горной промышленности и может быть использовано для обнаружения пустот в зоне выделения открытых горных работ. Цель изобретения - снижение затрат на оконтуривание пустоты преимущественно вытянутой по простиранию формы при повышении безопасности работ. На фиг. 1 показан борт карьера с подземной выработкой, а также веера вертикальных скважин и рудное тело в зоне влияния подземных разработок, разрез; на фиг.2 - борт карьера в плане. Способ осуществляется следующим образом. Со стороны карьера в направлении центра предполагаемой пустоты 1 перпендикулярно ее простиранию с площадки 2 уступа 3 бурят вертикальный веер скважин 4. Не обнаружив пустоту, вертикальным веером скважин 4 бурят дополнительно веер скважин 5 наклонно к плоскости веера скважин 4, располагая скважины вееров 4 и 5 в шахматном порядке относительно друг друга. При условии обнаружения пустоты одной из скважин вееров 4 и 5 бурят веер скважин 6 на горизонт пустоты, прослеживая пустоту по простиранию. По крайним граничным точкам пересечения пустоты с веером скважин 6 бурят вертикальные веера скважин 7-10 вдоль простирания пустоты прослеживания ее вкрест простирания. По точкам пересечения скважин вееров 7-10 с границами пустоты определяют ее контур, геометрические размеры и зону обрушения 11. После гашения пустоты 1 производят разнос борта и отработку рудного тела 12.

Формула изобретения

1. СПОСОБ ОБНАРУЖЕНИЯ ПОДЗЕМНЫХ ПУСТОТ, включающий бурение скважин на горизонт предполагаемой пустоты, пересечение скважиной и ее оконтуривание, отличающийся тем, что, с целью снижения затрат на оконтуривание пустот преимущественно вытянутой по простиранию формы при повышении безопасности работ, бурение производят с уступа карьера, сначала перпендикулярно простиранию предполагаемой пустоты в вертикальной плоскости проводят веер скважин, после обнаружения пустоты определяют граничные точки распространения пустоты путем проведения из той же точки горизонтального веера скважин на горизонте скважины, пересекающей пустоту, а затем бурением вееров скважин вкрест простирания пустоты между граничными точками горизонта обнаружения. 2. Способ по п.1, отличающийся тем, что при необнаружении пустоты вертикальным веером скважин следующий веер скважин располагают в плоскости под углом к плоскости вертикального веера скважин. 3. Способ по п.2, отличающийся тем, что скважины в наклонных плоскостях располагают в шахматном порядке относительно скважин предыдущего веера скважин.

РИСУНКИ

,

MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Все большее распространение получают дома сделанные монолитным способом. Да и в частных домах монолит приходит на смену бетонным плитам

перекрытия. Да, метод дает повышенную прочность. Никто не спорит. Однако…

– звучит рекламный слоган одной из фирм. Как поверить? Скорее не верить, а проверить надо обязательно. Ведь при заливке бетона могут возникнуть ряд изъянов. При этом если некоторые из дефектов могут отразиться лишь на внешнем виде и убираются они косметическим образом. То некоторые дефекты не поддаются визуальному осмотру, при этом существенно влияя прочность конструкции, а в некоторых случаях напрямую угрожая безопасности.

Одним из видов таких дефектов является образование пустот в толще бетона. Пустоты образуются из-за непрохождения бетона на каком-то отдельном участке. Причем иногда пустоты могут быть таких размеров, что возможно оголение арматуры или даже сквозные пустоты. Что не может не отразиться на прочности монолита.

В отдельных случаях пустоты можно выявить путем простукивания монолита молотком. В местах пустот звук будет заметно глуше. Но, как правило, его используют на малых объектах и малых толщинах монолита. Плюс пустоты можно обнаружить, если они находятся довольно близко к поверхности.

Как же быть, если толщина монолита отличается изрядностью и/или пустоты расположены довольно глубоко? В этих случаях используют приборы неразрушающего контроля (НК). В основном используют для этих целей ультразвук. Ультразвук наиболее подходит для сквозного контроля. Прибор УК 1401. Довольно прост в использовании, предназначен как для поверхностного, так и сквозного сканирования бетона. Дает отличную картинку. Через ИК порты может передавать изображение на компьютер.

После того, как обнаружены пустоты, данный дефект следует незамедлительно устранить. Для этого поверхность пустот зачищают от старого рыхлого бетона, промывают водой. Заполняют пустоты бетоном с мелкой фракцией, с тщательной вибрацией. Чтобы ускорить созревание бетона используют паро- и электрообогрев места заливки. Зимой рекомендуют применять, перед и после заливки, инфракрасные лампы. Обязательно при заделке пустот присутствие лаборанта и прораба. Они проверяют тщательность заделки вибрированием или штыкованием.

Классификация подземных пустот. В результате разработки месторождений или под воздействием различных природных фак­торов в массиве горных пород образуются полости (камеры, пустоты), заполненные воздухом, газом, водой, рассолом, глини­стым раствором и т. д. С точки зрения маркшейдерской съемки образовавшиеся пустоты условно разделяются. на доступные и недоступные. К недоступным относятся такие пустоты, к стенкам которых невозможен, непосредственный доступ наблюдателя или этот доступ сопряжен с большой опасностью, хотя в отдельных случаях при этом возможно нахождение исполнителя в камере. Все остальные пустоты относятся к категории доступных. Марк­шейдерская съемка очистных забоев, представляющих собой до­ступные пустоты, рассмотрена ранее. Здесь остановимся на во­просах, связанных со съемками недоступных пустот.

В соответствии с характером съемочных работ недоступные пустоты можно разделить на три группы.

В пределах пустот первой группы возможно и до­пустимо нахождение маркшейдера с инструментом. К точности съемок предъявляются обычно более высокие требования, которые могут быть выполнены благодаря возможности надежного кон­троля методов съемки.

В пределы пустот второй группы маркшейдер попасть не может или его пребывание там запрещено существующими пра­вилами безопасности. Съемка может быть выполнена измеритель­ными устройствами, доставленными в пределы пустот через какие- либо каналы.

При разработке рудных месторождений наиболее часто встречаются пустоты третьей группы, в которые невозможен доступ ни маркшейдера, ни инструмента. В этих слу­чаях при съемке точку установки инструмента выбирают в подходных выработках (чтобы была видна часть пустоты) или в окраин­ной части пустоты на специальных выносных конструкциях.

Классификация методов съемки подземных пустот. Выбор ме­тода съемки недоступных пустот осуществляют, исходя из на­личия доступа к снимаемой пустоте, его характеристики, а также цели и назначения съемки. Выбор инструмента для съемки обус­ловлен особенностями снимаемой пустоты, а именно: числом и расположением подходных выработок к очистному пространству, соотношением линейных размеров камеры, углами наклона сте­нок камеры, прилегающих к точке стояния инструмента. В прак­тике разработки рудных месторождений применяются различные принципы и методы съемки очистного пространства.

Классификация методов съемки может быть проведена на основе физико-геометрических принципов и горнотехнических условий применения приборов.



Тахеометрический метод основан на приме­нении инструментов и способов съемки (в комплексе, с осветите­лями и проекторами светового излучения), дающих возможность определить полярные координаты съемочных точек недоступных пустот. Метод используется для съемок пустот первой и третьей групп.

Фотограмметрический метод основан на при­менении инструментов и способов съемки, использующих принцип фотографирования недоступных пространств, освещаемых спе­циальными осветителями, светового пятна, движущегося по стенкам очистного пространства или следов лазерного излучения. Этим методом можно выполнять съемку пустот всех трех групп.

Локационный метод основан на применении аппа­ратуры, позволяющей определять координаты путем измерения и преобразования физических величин в величины, характери­зующие параметры недоступного пространства. Приборы этого метода основаны на принципах звуколокации, радиолокации, фотограмметрии и телеметрии. Метод используется для съемки пустот второй и частично третьей групп. При съемке пустот вто­рой группы прибор должен иметь дистанционное управление и автоматическую запись показаний.

Съемка очистного пространства должна быть обязательно ориентирована относительно пунктов опорной или съемочной сети. Ориентирование осуществляется обычной маркшейдерской привязкой съемки или применением специальных устройств в ин­струментах (буссолей, гироскопических приборов), позволяющих производить ориентирование.

Съемка подземных камер и пустот производится так же, как и обычная тахеометрическая съемка. В подходных выработках подэтажей намечают и закрепляют маркшейдерскими знаками точки установки инструмента таким образом, чтобы с них была видна возможно большая часть сни­маемой камеры. Для ориентирования съемки осуществляют при­вязку этих точек относительно сторон и пунктов съемочных сетей на подэтажах. При этом выполняют все угловые и линейные из­мерения, необходимые для вычисления координат X, Y, Z точек стояния инструмента.



При съемке инструмент устанавливают на точку в подходной выработке, наводят трубу угломера на задний пункт (пункт съемочной сети данного подэтажа) и берут отсчет по горизон­тальному кругу. Затем последовательно наводят трубу на характерные точки камеры (пикетные или съемочные точки) и, при каждом наведении берут отсчеты по горизонтальному и верти­кальному кругам, а также по шкале дальномера. Перед наведе­нием трубы угломера на съемочные точки на них наводят световую марку или освещают снимаемый участок камеры (при отсутствии проекционного устройства). Объектами съемки в камерах являются выступы, впадины, контакты пород, геологические нарушения, выходы скважин в камеру и т. д.

Подобным образом съемку производят на каждой намеченной подходной выработке пока не будет снята вся камера. При этом предусматривают некоторое перекрытие съемок, выполненных с разных установок инструмента. Чаще всего при съемочных ра­ботах снимаемые точки набирают по вертикальным сечениям через определенный интервал. Величина интервалов между сечениями и между снимаемыми точками в сечении зависит от многих фактов ров. Специальные расчеты и данные съемок на различных место­рождениях показывают, что для съемок масштабов 1: 500, 1: 200 и 1: 100 целесообразно соблюдать соответственно интервалы 5-6 м, 2-3 м и около 1 м. В процессе съемки ведут абрис.

При камеральной обработке съемки вычисляют горизонталь­ные расстояния (если они не получены при измерении) от под­ходных до съемочных точек и отметки последних. По этим данным составляют план подземной камеры и вертикальные разрезы.

Фотограмметрические методы съемки подземных камер и пустот. Фотограмметрический метод съемки в подземных условиях основан на оп­ределении координат точек очистной камеры посредством преобразования фотографических координат в истин­ные, что осуществляется обработкой фотографических снимков на специ­альных приборах. Для съемки под­земных камер и пустот при разра­ботке рудных месторождений приме­няются следующие фотограмметриче­ские методы: короткобазисная, стереофотосъемка, съемка подготовь короткобазисной стереосъемки тельных и очистных выработок боль­шой площади сечения с помощью светопрофиля, дистанционная фотостереосъемка горизонтальных сечений недоступных горных пустот.

Съёмка горных выработок

Съёмка горных выработок возможна способом перпендикуляров, когда в створе выставляются точки и измеряются расстояния между точками в створе, а также расстояния до контуров выработки перпендикулярно створу (лево, право) и полярным способом с установкой теодолита на маркшейдерской точке и измерением горизонтального угла и расстояния до контуров в характерных точках выработки (рисунок 11.2 и 11.3 соответственно).

Сущность способа перпендикуляров заключается в следующем.

1) если имеются маркшейдерские точки выставленные в створе направления выработки (направленческие точки, как правило заложенные в кровле выработки), то без использования теодолита выставляются точки, примерно на расстоянии от 7 до 10 м от которых под прямым углом к створу направления измеряются расстояния до боков выработки.

Один человек становится за отвесы, опущенные с точек и выставляет другого, причем в шахтных условиях пользуются фонариками. Первый светит в сторону отвесов, последний относительно створа отвесов выставляет его, используя условные знаки поступательные движения влево, вправо и круговые движения фонарём, означающие соответственно влево, вправо и установку точки. Точки устанавливают временные: либо, отмечая мелом, либо укладывают камни, либо другим способом, позволяющим вести дальнейшие измерения. На Артемьевском руднике, расстояния измеряют "лазерной рулеткой" производства фирмы "Leica", позволяющей измерять расстояния до 80 м, что с запасом обеспечивает возможности и точность для данного вида съёмки.

Рисунок 11.1 – Лазерная рулетка Disto Plus

Рисунок 11.2 - Схема съёмки горной выработки способом

Перпендикуляров

На рисунке 11.1 изображена лазерная рулетка "Leica". Своими качествами, мобильностью и рядом функций прибор практически вытеснил металлические и тесмянные мерные ленты.

В процессе съёмки составляется подробный эскиз, на котором отображается ситуация и записываются все данные съёмки. Все зарисовки и цифровые пометки должны быть выполнены аккуратно.

2) в тех случаях когда направленческая точка утрачена и имеется подходная точка проведение съёмки выполняют с использованием теодолита для выставления створа (если же нет и подходной точки, то прокладывается теодолитный ход с временно закрепляемыми точками в почве).

На подходной точке устанавливается теодолит, приводится в рабочее положение. Отсчёт по горизонтальному кругу обнуляется, алидаду горизонтального круга закрепляют, наводят на отвес опущенный с маркшейдерской точки теодолитного хода, лимб закрепляют и открепив алидаду выставляют зрительную трубу в створе снимаемой выработки. После этого лимб закрепляют зажимным винтом, снимают отсчёт по горизонтальному кругу и записывают в полевой журнал. По данному

направлению в створе выставляются точки через от 7 до 10 м и производятся измерения длин вышеописанным способом, с занесением данных съёмки и зарисовкой эскиза в тот же полевой журнал.

Сущность полярного способа в следующем: на подходной, направленческой или любой другой маркшейдерской точке имеющей известные координаты подвешивается отвес, устанавливается теодолит и приводится в рабочее положение.

Зрительную трубу визируют на заднюю точку теодолитного хода, обнуляют отсчёт по горизонтальному кругу, закрепляют лимб и вращением алидады наводятся на характерные места горной выработки, снимая отсчёты и записывая их в журнал теодолитных съёмок (в столбце примечания рисуется подробный эскиз и делаются необходимые пометки). Вместе с измерением углов измеряются расстояния до контуров выработки, с округлением значений до дециметров.

Рисунок 11.3 - Схема съёмки горной выработки полярным способом

На руднике для проведения съёмки данным способом используются маркшейдерские теодолиты 2Т30М, 2Т30П, "лазерная рулетка", в тех случаях когда выносится подходная точка расстояния измеряют стальной мерной лентой со взятием отсчётов до миллиметров.

12 Съемочные работы (продолжение)

7 Подземные вертикальные съемки

8 Передача координаты z на подэтажные выработки

9 Тригонометрическое нивелирование

10 Передача высотной отметки дальномером ДА-2

1) Название проекта:

Приборы для обнаружения пустот, подземных ходов, захоронений, полиэтиленовых газопроводов и немагнитных боеприпасов .

2) Краткое описание проекта:

Актуальность данной тематики заключается в том, что в настоящее время нет портативных и надежных приборов позволяющих определить существующими методами расположение аномалий грунта, и по характеру аномалий производить обнаружения пустот, подземных ходов и захоронений . Поиск и обнаружение биологических останков в настоящее время является не решенной мировой проблемой. В настоящее время отечественные и импортные радиоволновые миноискатели могут только обнаружить неметаллический предмет , т. е. нет селекции немагнитных мин от камней и предметов близкого размера . Также имеется острая необходимость для армии и спецслужб в обнаружении тонкого не запитанного кабеля при разминировании (от фугаса до радиовзрывателя), такие приборы в настоящее время в нашей стране и за рубежом отсутствуют.

В период 1990...2010 г. были разработаны и опробованы ряд модификаций приборов ИГА-1 для измерения сверхслабых электромагнитных полей естественного поля Земли и искажений этих полей вносимых от поглощения и переизлучения различными объектами. Приборы, представляют из себя селективные приемники электромагнитных полей в диапазоне 5...10 кгц, с вычислением интеграла фазового сдвига на измеряемой частоте (http:// www. *****). Принцип действия прибора ИГА-1 похож на радиоволновые миноискатели, только нет излучателя, которым является естественный фон Земли и более низкий диапазон частот. ИГА-1 фиксирует искажение электромагнитного поля в местах неоднородностей грунта при наличии под землей каких либо предметов, и предназначен для поиска неметаллических предметов, пустот, водяных жил, трубопроводов, человеческих останков по изменению фазового сдвига на границе перехода сред. В качестве выходного параметра прибора используется интеграл фазового сдвига на частоте приема, величина которого изменяется на границе перехода сред (грунт-труба, грунт-пустота). Прибор выполнен в виде переносного измерительного датчика с визуальной индикацией. Питание прибора осуществляется от аккумулятора. Вес всей аппаратуры в чемодане не превышает 5 кг, вес измерительного датчика не более 1 кг.


3) Характер проекта:

Расширение действующего производства

Выполнение НИОКР

Продажа лицензий на производство новых вариантов приборов другим производителям.

4) Отрасль применения:

· Высокие технологии, наукоемкие технологии

6) Объем требуемых инвестиций, в рублях

100 млн. руб

7) Срок окупаемости, лет

8) Период реализации проекта, лет

9) Форма сотрудничества:

· Акционерный капитал

· Долевое участие

10) Степень готовности проекта

Фирмой "Лайт-2" с 1994 г организовано производство приборов ИГА-1 на базе оборонных предприятий, выпущено более 300 приборов, которые используются в России и за рубежом. Варианты приборов ИГА-1 для обнаружения водных жил отработаны и не требуют дополнительных инвестиций. Обнаружение полиэтиленовых газопроводов отработано в ручном(не автоматизированном) режиме и предполагает работу хорошо обученного оператора.

Требуется модернизация и дальнейшая отработка приборов ИГА-1 для обнаружения пустот, подземных ходов, захоронений и немагнитных боеприпасов, полиэтиленовых газопроводов согласно полученных патентов на изобретения:

Патент РФ N 2119680 от 01.01.2001 г. Способ геоэлектромагнитной разведки и устройство для его реализации. , и др.

Патент РФ № 000 от 01.01.2001 г. Способ обнаружения местонахождения засыпанных биообъектов или их останков и устройство для его осуществления. , и др.

Патент РФ № 000 от 01.01.01 г. «Устройство для поиска и идентификации пластиковых мин», и др.

Патент РФ № 000 от 01.01.01 г."Устройство для поиска подземных трубопроводов", и др.

По поиску человеческих останков прибор ИГА-1 впервые прошел апробацию в поселке Нефтегорск (1995 г.), после землетрясения было найдено около 30 погибших. Отзыв главы администрации поселка Нефтегорск на сайте http:// www. ***** . В Екатеринбурге (1996 г) по линии МВД проведена работа по обнаружению трупов замурованных в автодорогу «Сибирский тракт» и захоронений в лесу в районе Нижнеисетского кладбища. Справки из уголовного дела № 000. г. Екатеринбург, 1996 г. на сайте http:// www. ***** .

В гг. с помощью прибора ИГА-1 удалось обнаружить могилы 100-150 летней давности при рестоврации и восстановлдении храмов: Георгиевского монастыря «Святые Кустики» Благовещенского района Башкирии, храма «Святой Троицы» села Красный Яр в Башкортостане (http:// www. *****), а также и и других храмов Башкортостана и Татарстана .

В 2008 году по просьбе жителя г. Туймазы были произведены поиски заброшенной могилы его отца Ивана Безымянникова, участника войны, бывшего секретаря райкома. Могила находилась в городском парке, после реконструкции парка в 1991 г. следы захоронения были потеряны. После раскопок было произведено перезахоронение останков на городском кладбище. Фотографии на сайте http:// www. *****.
При проведении поисковых исследований (2003 г.) в районе боев 1-й отдельной горно-стрелковой бригады в период Великой Отечественной войны, в Кировском районе Ленинградской области с помощью прибора ИГА-1 было опробована возможность обнаружения засыпанных окопов, блиндажей и захоронений, а также боеприпасов. Было установлено, что прибор ИГА-1 реагирует на боеприпасы и металлические предметы аналогично миноискателю ИПМ. Для обнаружения пустот и захоронений, вначале необходимо обнаружить и убрать весь металл с исследуемого места, затем производится обнаружение пустот и захоронений. Для селективной избирательности (только пустоты или человеческие останки) необходимо проводить дальнейшую модернизацию и совершенствование прибора ИГА-1


По поводу применения приборов ИГА-1 для инженерно-саперных целей была переписка с Советом безопасности РФ и Минобороной - направление по обнаружению не магнитных мин. Данное изобретение рассматривалось Комиссией по научно-техническим вопросам Совета безопасности РФ (1995 г,), в отделе изобретательства Минобороны (), в/ч 52684-А (Исх.565/ 2139 от 3.12.1996 г.), ЦНИИ 15 МО (исх 1131 от 1.09.1998 г.). Летом 2000 г. экспериментальный образец прибора ИГА-1 в варианте миноискателя проходил испытания в ЦНИИ 15 МО на предмет возможности обнаружения противотанковых, противопехотных немагнитных мин и залегающих на большой глубине неразорвавшихся фугасов, получен положительный отзыв (http:// www. *****),. Отмечены также и недостатки, для их устранения требуется дальнейшая доводка аппаратуры, которая требует дополнительных инвестиций. Учитывая, то, что существующие в мире миноискатели не магнитных мин не отличают их от камней близкого размера, дальнейшее развитие нашего метода позволит проводить такую селекцию по частоте приема путем снятия спектральных характеристик обнаруженных предметов. Для определения возможности фиксации не запитанных кабелей при разминировании (от фугаса до радиовзрывателя) один из приборов ИГА-1 был настроен под эту задачу и проведено опробование на берегу р. Белой в Уфе, в месте где больше нет ни каких коммуникаций, в результате получено подтверждение о возможности использования ИГА-1 для этих задач.

По обнаружению подземных ходов, в которых могут скрываться террористы, к прибору ИГА-1 был большой интерес у западных военных специалистов на выставке российских разработок и оборудования для разминирования местности и утилизации боеприпасов, которая проводилась 29-30 апреля 2002 г. в г. Москва на предприятии «Базальт». Несколько приборов ИГА-1 были проданы организациям и кладоискателям под эти задачи и успешно используются.

· Исследования и разработки

· Закупка оборудования

· Внедрение новых технологий

12) Имеется поддержка органами власти

На данный момент финансовой поддержки нет

13) наличие подготовленного бизнес-плана

В стадии разработки

14) Финансовое обеспечение проекта:

· Собственные средства в настоящий момент отсутствуют.

· Государственное финансирование отсутствует.

· Ранее привлеченные собственные средства с 1994 г. 10 млн руб. в современном исчислении

· Недостающие средства 100 млн руб. на 5 лет.

15) Предоставление прав инвестору:

· Приобретение акций 48 %

· Доли от объема полученной прибыли при продаже лицензий на производство новых отработанных вариантов приборов 50 %

16) Контактная информация:

Адрес контактного лица: г. Уфа, ул. К. Маркса 65\1 кв 74

E-mail контактного лица: *****@***ru

Контактное лицо:

Телефоны контактного лица: 0-69

17) Владелец проекта (выберите только один вариант в зависимости от владельца проекта)