Области применения и конъюнктура рынка циркония и гафния. Диоксид циркония: свойства и области применения

Производство циркония и его сплавов, содержащих бор, требует тщательного контроля. Так как в литературе химические методы определения бора в металлическом цирконии и его сплавах описаны не были, то целью настоящей работы явилась разработка простого химического метода определения содержания бора в металлическом цирконии и его сплавах, в частности в сплавах с небольшим содержанием ниобия.
В производстве циркония йодидный метод имеет в отличие от производства титана промышленное значение.
Содержится в выбросах производств циркония, катализаторов органического синтеза.
Гафний получают только как побочный продукт производства циркония реакторного сорта. Основное его применение - изготовление регулирующих стержней в ядерных реакторах. Общее потребление не превышает в настоящее время 75 % производства. Однако исследование новых областей применения: изготовление высокотемпературных сплавов, нитей накаливания, геттеров, порошка для ламп-вспышек, детонаторов - может сущесг-венно увеличить спрос на металл. Отделение гафния от циркония - дорогостоящий процесс, причем обычно расходы по отделению распределяются поровну между стоимостью обоих металлов.
Полной аналогии в свойствах продуктов плазменно-фторидной и экстракционно-фторидной технологий производства циркония нет, поскольку в экстракционно-фторидной технологии цирконий и гафний разделяют на гидрохимической стадии с помощью экстракции. В случае использования плазменно-фторидной технологии переработки циркона при сублимационной очистке циркония от примесей, указанных в табл. 3.4, гафний в основном следует за цирконием.
Метод разделения циркония и гафния электролизом расплавов представляет интерес для производства циркония, так как одновременно с получением металлического циркония происходит очистка его от гафния.
Сырьем для получения гафния служат циркониевые концентраты или продукты и полупродукты производства циркония.
Схема получения циркония по методу Кролля на заводе в Олбани. Все эти трудности вызывают необходимость тщательной очистки реагентов, применяемых при производстве циркония и гафния, особенно от кислорода, воды и азота, и ограничивают выбор мето дов, которые можно использовать для получения этих металлов.
Аппарат для получения. Металлический гафний можно получить теми же методами, которые применяются при производстве циркония. Тетрахлорид гафния подвергают очистке перегонкой в атмосфере водорода и затем восстанавливают магнием. Очистку гафниевой губки от хлорида магния производят на установках для очистки циркониевой губки, поскольку при этой операции нет серьезной опасности для загрязнения гафния цирконием или наоборот. Губчатый гафний переплавляют в дуге и разливают в медные изложницы.
Металлический гафний получают такими же способами, которые применяются и в производстве циркония: способ Кроля, видоизмененный способ Кроля с применением натрия в качестве восстановителя и способ де Бура, или иодидный процесс.
Иодидный процесс получения мягкого, ковкого гафния аналогичен таковому, применяемому в производстве циркония, поэтому аппаратура, с помощью которой получают иодидный гафний, примерно такая же, как и в случае получения циркония. По данным , температура осаждения гафния из тетраиодида составляет 1600 С, а циркония - 1400 С.
Обстоятельное изучение процесса Кроля в применении к титану может дать возможность внести некоторые изменения и в технологическую схему производства циркония; в частности, это касается упрощения аппаратуры, сокращения ряда операций и увеличения размеров агрегатов.
Для получения более чистых порошков ниобия и тантала лучше проводить восстановление газообразных хлоридов жидким магнием аналогично тому, как это делается в производстве циркония.

В 1945 г. в США было произведено всего 0 07 кг циркония, однако начиная с 1948 г. в связи с работами по созданию атомных реакторов производство циркония резко возросло и через несколько лет достигло нескольких десятков тонн.
Залежи руд циркония, который гораздо шире распространен в природе, чем, например, бериллий, имеются, по данным зарубежной печати, в США, Индии, Бразилии, Австралии, в ряде государств Африки. Производство циркония в США с 1947 по 1958 г. возросло в 3 тыс. раз.
Благодаря высоким антикоррозионным свойствам цирконий может применяться для изготовления деталей химической аппаратуры, медицинского инструмента и в других областях техники. Однако вряд ли производство циркония так быстро достигло бы современного уровня, если бы он не обладал еще одним специфическим свойством - малым поперечным сечением поглощения тепловых нейтронов.
Технология и оборудование, применяемые для получения гафния по способу Кроля, по существу такие же, как и в производстве металлического циркония. Видоизменения по сравнениюс технологическим процессом производства циркония определяются заменой или изменением отдельных аппаратов, технологических операций и сорта исходных материалов. Здесь следует иметь в виду большую чувствительность тетрахлорида гафния к атмосферной влаге, большую устойчивость гафнилхлорида и несколько большую пирофорностк свежеполученной металлической губки.
Поскольку гафний извлекают попутн при получении реакторного циркония, его производство расте пропорционально выпуску последнего, причем на 50 кг циркони; получают приблизительно 1 кг гафния. Пользуясь этим расчетом i обрывочными сведениями о производстве циркония в отдельны. По прогноза ] Горного бюро США, опубликованным в 1975 г., потребность это страны в гафнии на рубеже XX - - XXI вв.
Спектра л ь н ы и а н а л и з циркония на примеси в значительной степени затруднен из-за того, что на фоне многолинейчатого спектра циркония трудно выделить слабые линии спектров малых концентраций примесей. Этот метод позволяет также определять малые концентрации фтора в металлическом цирконии, что весьма существенно в контроле производства электролитического циркония.
Поскольку гафний извлекают попутно при получении реакторного циркония, его производство растет пропорционально выпуску последнего, причем на 50 кг циркония получают приблизительно 1 кг гафния. За текущее десятилетие (1970 - 1980 гг.) мировая мощность атомных электростанций возрастет в 5 - 8 раз, соответственно возрастет производство циркония и гафния. Ведь каждый мегаватт мощности АЭС требует от 45 до 79 кг циркония для изготовления труб и других деталей. Кроме того, 25 - 35 % циркониевых труб в действующих реакторах необходимо ежегодно заменять. В результате для этих целей уже в середине 70 - х годов будет расходоваться примерно столько же циркония, как и для новых реакторов.
Фторидно-сублимационная технология очистки тетрафто-рида циркония от фторидов Al, Ca, Cu, Fe, Mg была хорошо освоена в СССР в 80 - х годах на Приднепровском химическом заводе при разработке и освоении экстракционно-фторидной технологии производства ядерно-чистого циркония.
Са, Си, Fe, Mg, Th) находится в виде фторидной композиции, получаемой при сублимационной очистке циркония. При крупнотоннажном плазменном производстве циркония и кремния накопленная масса этих отходов может стать со временем значительной; для их переработки можно использовать плазменные и частотные технологии извлечения указанных компонентов в виде дисперсных оксидов или металлов (см. гл.
При переработке 1 т циркона и извлечении из него циркония и кремния в виде фторидов в отходах остаются 4 6 кг А1; 0 1 кг Са; 0 4 кг Си; 1 3 кг Fe; 1 1 кг Mg; 0 3 - 0 4 кг Th; 0 3 - 0 4 кг U; 0 3 кг Ti; т.е. 8 6 кг металлов, из которых основная часть (А1, Са, Си, Fe, Mg, Th) находится в виде фторидной композиции, получаемой при сублимационной очистке циркония. При крупнотоннажном плазменном производстве циркония и кремния накопленная масса этих отходов может стать со временем значительной; для их переработки можно использовать плазменные и частотные технологии извлечения указанных компонентов в виде дисперсных оксидов или металлов (см. гл.
В 1945 г. в США было произведено всего 0 07 кг циркония, однако начиная с 1948 г. в связи с работами по созданию атомных реакторов производство циркония резко возросло и через несколько лет достигло нескольких десятков тонн. В результате технология производства циркония, который несколько лет назад был редкостью, ныне более прогрессивна, чем технология получения многих других металлов, известных и применяющихся уже в течение десятилетий.
По принципу нагрева вакуумные дуговые печи относятся к дуговым печам прямого действия. Вакуумные дуговые печи являются одним из новых видов электротермического оборудования. Появление их вызвано увеличением производства циркония, титана, молибдена и некоторых других тугоплавких и химически активных материалов.
Но и в этом случае он не может быть применен без предварительной химической очистки (см. раздел 15.5) от всегда сопутствующего ему в природе элемента гафния, обладающего сходными с цирконием химическими свойствами. Гафний, извлекаемый в производстве циркония реакторного сорта, является отличным материалом для изготовления регулирующих стержней реактора.
Гафний находится в IV группе периодической системы элементов Д. И. Менделеева и входит в подгруппу титана. Он относится к рассеянным элементам, не имеющим собственных минералов; в природе сопутствует цирконию. В настоящее время его получают в виде побочного продукта при производстве циркония. По химическим и физическим свойствам гафний близок к цирконию, но значительно отличается от последнего по ядерным свойствам.
В химической промышленности молибден используют в виде прокладок и болтов для горячего ремонта (заправки) футерованных стеклянной плиткой сосудов, применяющихся при работе с серной кислотой и кислыми средами, в которых происходит выделение водорода. В изделиях, работающих в серной кислоте, применяют также молибденовые термопары и вентили, а молибденовые сплавы служат в качестве футеровки реакторов в установках, предназначенных для производства и-бутилхлорида путем реакций с участием соляной и серной кислот при температурах, превышающих 170 С. К числу разнообразных применений, в которых используется молибден, относят также процессы жидкофазного гидрохлорирования, производства циркония и сверхчистого тория.

За государственной границей остались предприятия, на которых созданы пилотные и промышленные установки, работающие по новым электротехнологиям. Например, наУльбинском металлургическом заводе (Казахстан) осталась промышленная установка по плазменной конверсии обогащенного по изотопу U-235 гексафторида урана на оксиды урана для изготовления оксидного ядерного топлива и плавиковую кислоту ; на Приднепровском химическом заводе (Украина) - промышленное оборудование для производства циркония и гафния из фторидного сырья по технологии холодный тигель; в НИИ стабильных изотопов (Грузия) - пилотная высокочастотная установка по получению изотопно-обогащенного (по изотопу В-10) карбида бора методом прямого индукционного нагрева; высокочастотная установка такого же типа осталась в НПО Порошковой металлургии в Белоруссии. Не лучшим образом обстоят дела и на предприятиях, оставшихся в РФ.
За государственной границей остались предприятия, на которых созданы пилотные и промышленные установки, работающие по новым электротехнологиям. Например, на Ульбинском металлургическом заводе (Казахстан) осталась промышленная установка по плазменной конверсии обогащенного по изотопу U-235 гексафторида урана на оксиды урана для изготовления оксидного ядерного топлива и плавиковую кислоту ; на Приднепровском химическом заводе (Украина) - промышленное оборудование для производства циркония и гафния из фторидного сырья по технологии холодный тигель; в НИИ стабильных изотопов (Грузия) - пилотная высокочастотная установка по получению изотопно-обогащенного (по изотопу В-10) карбида бора методом прямого индукционного нагрева; высокочастотная установка такого же типа осталась в НПО Порошковой металлургии в Белоруссии. Не лучшим образом обстоят дела и на предприятиях, оставшихся в РФ.
Рассеянные редкие металлы объединены по признаку рассеяния их в земной коре. Обычно рассеянные элементы находятся в виде изоморфной примеси в решетках других минералов и извлекаются попутно из отходов металлургич. Ga - из отходов алюминиевого производства, In - из отходов производства цинка и свинца, Т1 - из пылей обжига различных сульфидных концентратов, Ge - из от-ходов цинкового и медного производств, а также отходов переработки углей, Re - из полупродуктов молибденового производства, Ш извлекают попутно в производстве циркония. Рассеянные элементы Se и Те, встречающиеся как примеси в различных природных сульфидах, извлекаются либо из отходов сернокислотного производства, либо при металлургич.
Сырьевая база циркония включает два богатых им минерала - циркон и бадделеит, содержащие 45 6 % и 69 1 % циркония соответственно. В этих минералах цирконию сопутствует гафний - металл, имеющий высокое сечение поглощения тепловых нейтронов. Поэтому любая технология выделения и аффинажа циркония предусматривает очистку его от гафния. В начале 80 - х годов в СССР была создана новая технология производства циркония, включающая спекание циркона с карбонатом натрия, последующее выщелачивание силиката натрия, растворение циркония в азотной кислоте, экстракционное отделение от гафния и аффинаж:; затем цирконий реэкстрагируют и доводят технологический цикл до производства тетрафторида циркония, из которого при кальцийтермической плавке восстанавливают цирконий. Полученный цирконий направляют на производство сплавов для изготовления труб ТВЭЛов.
Сырьевая база циркония включает два богатых им минерала - циркон и бадделеит, содержащие 45 6 % и 69 1 % циркония соответственно. В этих минералах цирконию сопутствует гафний - металл, имеющий высокое сечение поглощения тепловых нейтронов. Поэтому любая технология выделения и аффинажа циркония предусматривает очистку его от гафния. В начале 80 - х годов в СССР была создана новая технология производства циркония, включающая спекание циркона с карбонатом натрия, последующее выщелачивание силиката натрия, растворение циркония в азотной кислоте, экстракционное отделение от гафния и аффинаж; затем цирконий реэкстрагируют и доводят технологический цикл до производства тетрафторида циркония, из которого при кальцийтермической плавке восстанавливают цирконий. Последующая технология включает электронно-лучевой аффинаж. Полученный цирконий направляют на производство сплавов для изготовления труб ТВЭЛов.
Цирконий соответственно строению электронной оболочки и, следовательно, своему месту в периодической системе элементов Д. И. Менделеева является аналогом титана в физико-химическом отношении. Для металла циркония это выражается в подобии его титану в отношении физических, механических, технологических, коррозионных свойств и характера образуемых сплавов. Поэтому в последние 15 - 20 лет происходит широкое освоение циркония: разработка методов получения и осуществление производства циркония высокой чистоты, детальное исследование его свойств и сплавов.
Для карботермического восстановления урана из оксидного сырья можно использовать технику и технологию холодного тигля, основанную на прямом частотном индукционном нагреве шихты UsOg xCj при котором используется ее собственная или индуцированная проводимость. Высокочастотная технология холодного тигля разработана в настоящее время применительно к синтезу бескислородной керамики (карбиды, нитриды и различные керамические композиции; см. гл. В главах 7, 8 и 14 показаны схемы индукционных установок и металлургических печей для синтеза бескислородных керамических материалов, для плавки и рафинирования металлов в дискретном и непрерывно-последовательном режимах по технологии холодный тигель. Эта технология и разработанная техника могут быть, в принципе, использованы в крупномасштабной технологии карботермического восстановления урана из оксидного сырья, однако необходимо проведение НИОКР для решения технологических и аппаратурных проблем. В результате комплекса НИОКР, проведенных в 70 - 80 - х годах, в настоящее время арсенал плазменного и частотного оборудования стал значительно богаче. Так, в 80 - х годах появилось металлургическое оборудование типа холодный тигель, работающее на частоте несколько килогерц, применяемое для производства циркония, гафния, редких и редкоземельных металлов, включая скандий; появились металлодиэлектрические реакторы, прозрачные к электромагнитному излучению в области радиочастот, используемые для высокотемпературных синтезов бескислородной керамики, для плавления оксидной керамики и даже для остекловывания радиоактивных отходов. Кроме того, проведены НИОКР по созданию комбинированного плазменно-частотного оборудования для решения химико-технологических и металлургических проблем, для некоторых металлургических приложений оборудование мегаваттной мощности уже создано и нашло практическое применение. Результаты этих НИОКР будут изложены в последующих главах; очень вероятно, что такое оборудование будет использовано и для внедрения в промышленное производство технологии карботермического восстановления урана из оксидного сырья.
Для карботермического восстановления урана из оксидного сырья можно использовать технику и технологию холодного тигля, основанную на прямом частотном индукционном нагреве шихты UsOg хС, при котором используется ее собственная или индуцированная проводимость. Высокочастотная технология холодного тигля разработана в настоящее время применительно к синтезу бескислородной керамики (карбиды, нитриды и различные керамические композиции; см. гл. В главах 7, 8 и 14 показаны схемы индукционных установок и металлургических печей для синтеза бескислородных керамических материалов, для плавки и рафинирования металлов в дискретном и непрерывно-последовательном режимах по технологии холодный тигель. Эта технология и разработанная техника могут быть, в принципе, использованы в крупномасштабной технологии карботермического восстановления урана из оксидного сырья, однако необходимо проведение НИОКР для решения технологических и аппаратурных проблем. В результате комплекса НИОКР, проведенных в 70 - 80 - х годах, в настоящее время арсенал плазменного и частотного оборудования стал значительно богаче. Так, в 80 - х годах появилось металлургическое оборудование типа холодный тигель, работающее на частоте несколько килогерц, применяемое для производства циркония, гафния, редких и редкоземельных металлов, включая скандий; появились металлодиэлектрические реакторы, прозрачные к электромагнитному излучению в области радиочастот, используемые для высокотемпературных синтезов бескислородной керамики, для плавления оксидной керамики и даже для остекловывания радиоактивных отходов. Кроме того, проведены НИОКР по созданию комбинированного плазменно-частотного оборудования для решения химико-технологических и металлургических проблем, для некоторых металлургических приложений оборудование мегаваттной мощности уже создано и нашло практическое применение. Результаты этих НИОКР будут изложены в последующих главах; очень вероятно, что такое оборудование будет использовано и для внедрения в промышленное производство технологии карботермического восстановления урана из оксидного сырья.

В свободном состоянии представляет собой блестящий металл. Не содержащий примесей цирконий пластичен и легко поддаeтся горячей и холодной обработке. О дно из наиболее ценных свойств циркония - его высокая стойкость против коррозии в различных средах.

Химический элемент IV гр. периодической системы Менделеева. Назван по минералу циркону. Серебристо-белый металл, твердый, тугоплавкий. Химически очень стоек (на воздухе покрывается защитной пленкой ZrO2). Промышленные источники - минералы циркон и бадделеит. Содержание в земной коре 0,025 % по массе.

Развернутая в 50-х гонка ядерных вооружений вынудила Советский Союз направить свои основные ресурсы на спешное увеличение их арсеналов. Но все же к июню 1954 года в СССР удалось осуществить строительство и пуск первой в мире атомной электростанции в г. Обнинске. Энергетическая мощность Обнинской АЭС при тепловой мощности реактора в 30 тысяч киловатт достигала отметки всего 5000 квт. Однако, ее эксплуатация позволила не только решить многие вопросы повышения надежности работы энергетических реакторов, но и наметить основные направления в дальнейшем развитии атомной энергетики в целом.

Одно из них – повышение экономичности АЭС. С этой целью было решено снизить уровень обогащения уранового топлива до 2-2,5%. В этом случае особую важность приобрела проблема выбора материала для оболочки тепловыделяющего элемента (ТВЭЛа) и других элементов активной зоны реактора, так как применявшаяся ранее для этой цели нержавеющая сталь поглощала слишком много столь необходимых в ядерной реакции нейтронов. Достаточно низким поперечным сечением поглощения нейтронов обладают алюминий, магний, бериллий и цирконий, но условия их возможного использования оказались разными. Так, алюминий и магний в качестве основного конструкционного материала активной зоны реактора были бы приемлемы только при невысокой температуре теплоносителя. Использование для этой цели бериллия было признано нецелесообразным в связи с недостаточными запасами бериллиевых руд в стране и рядом присущих этому металлу качеств, слишком усложняющих и удорожающих его производство.

Благодаря своим уникальным свойствам – нейтронной прозрачности (крайне низкое сечение поглощения нейтронов), прочности и высокой коррозионной стойкости – цирконий незаменимый конструкционный материал для атомных реакторов электростанций и ядерных установок морского флота. Одна из главных проблем применения циркония в ядерной энергетике – очистка циркония от примеси гафния (присутствие даже 1,5% которой в двадцать раз повышает сечение захвата нейтронов циркония). В России производство полного цикла, начиная с переработки рудного концентрата до готовых изделий из циркониевых сплавов, было создано на Чепецком механическом заводе (г. Глазов, Удмуртия). Всего несколько стран в мире владеют завершенным циклом изготовления циркониевых изделий: США, Канада, Франция, Япония и Россия.

Специалистами АО ЧМЗ совместно с учеными научно-исследовательских институтов ведется систематическая работа по модернизации производства. Совершенствуются процессы изготовления циркониевых изделий, разрабатываются и внедряются новые, более эффективные технологии. Это способствует снижению затрат, улучшению качества продукции, повышению эксплуатационных характеристик топлива и безопасности АЭС.

Завод выпускает слитки циркония , иодидный цирконий в виде прутков, трубы различного диаметра . Среди продукции данного ряда есть трубы для оболочек тепловыделяющих элементов, проволока, листы, концевые и комплектующие изделия для ТВЭЛ и ТВС.

Кроме того на предприятии освоено производство бижутерии, столовых приборов, сервизов, сувенирной продукции из сплавов циркония, керамики на основе диоксида циркония.

Действующая на предприятии система качества охватывает собой все стадтии производства, начиная с маркетинга, постановки продукции на производство и заканчивая ее реализацией. Для соблюдения качества изделий широко применяются современные методы неразрушающего контроля, металлографии, проводятся механические и корозионные испытания.

Цирконий, его сплавы и соединения используют в различных областях техники: атомной энергетике, электронике, пиротехнике, машиностроении, производстве сталей и сплавов с цветными металлами, огнеупоров, керамики и эмалей, литейном производстве.

Пиротехника и производство боеприпасов. Порошки циркония, имеющие низкую температуру воспламенения и высокую скорость сгорания, применяют в качестве воспламенителя в смесях капсулей-детонаторов, а также в смесях для фотовспышки. В смеси с окислителями }