Ч то такое оптоволокно как он устроен. Как устроен оптоволоконный кабель

Оптоволоконный кабель стал стандартным компонентом в большинстве современных кабельных инфраструктур. Его устойчивость к электромагнитным и радиочастотным помехам сделали его одним из лучших для передачи сигнала. Он способен транспортировать сигналы на значительные расстояния в большинстве сетей. В настоящее время, оптоволоконный кабель используется на многих жилых улицах и ведет непосредственно к домам. Тем не менее, для многих людей, само значение оптоволокна, как оно работает и используется, по-прежнему не очень понятно. В этой статье мы рассмотрим ответы на некоторые из основных вопросов об , поможем его выбрать и расскажем о том, когда и как он должен быть использован.

Что такое оптоволокно?

Оптическое волокно, или оптическое стекло, по существу, очень тонкие нити из стекла , через которое передается импульс света. Стекло с тонкой рубашкой называют оболочкой, через нее проходит сигнал. Эти оптоволоконные пряди собирают вместе общей рубашкой с образованием кабеля. Если вы попробуете растянуть пряди волокна во время установки, скорее всего, это приведет к их повреждению. В некоторых кабельных конструкциях можно увидеть твердый стержень из композитных материалов для придания дополнительной защиты. Для передачи сигнала по стеклянным нитям, электрические устройства, называемые оптическими передатчиками, преобразовывают электрические сигналы (электроны) в импульсы света (фотоны) . Импульсы модулированы так, чтобы приемный конец смог интерпретировать полученный сигнал от передающего конца. После того, как сигнал получен, он преобразуется обратно из фотонов в электроны, а затем передается в сеть. Обычно оптический канал требуется две нити волокна, одну для отправки и одну для приема .

Есть два типа оптического волокна, многомодовое и одномодовое

Многомодовое волокно позволяет сигналу пройти в нескольких режимах вдоль внутренней поверхности стекла нити или стержня . Сердцевина волокна бывает диаметром 62,5 и 50 микрон. Мкм составляет 1 миллионная часть метра. Для сравнения, человеческие волосы около 100 мкм в диаметре. В многомодовом волокне, свет генерируется из недорогого источника света, светоизлучающего диода. В цифровых часах используется схожая технология. Этот оптический передатчик на светодиодной основе обычно называют медиа конвертером. Поскольку сигнал от конвертера проходит через стекло, он отскакивает вперед и назад вдоль внутренней стенки оболочки до тех пор, пока не достигнет своего пункта назначения. Этот процесс, происходит в миллионы в секунду и обеспечивает скорость передачи данных, 10 Мбит / с или 100 Мбит / с. Медленнее светодиоды уже почти не используются, так как спрос на большой пропускной канал данных возросла. Для достижения более высокой скорости передачи данных, рынок создал вертикальный резонатор поверхностного излучающего лазера. ВИЛ фокусирует свет в более узкой полосе в стекле и работает на более высоких скоростях. Технология позволяет увеличивать скорость передачи до 1 Гбит / с и 10 Гбит / с при небольших затратах, с использованием соответствующего волокна. Специально разработанное стекло работает лучше на более высоких скоростях передачи данных и позволяет сигналам путешествовать дальше. Например, самое лучшее 50 мкм волокно, может вместить 10 Гбит / с на расстоянии до 550 метров. Одномодовое оптическое волокно обычно имеет сердечник , 8,3 мкм в диаметре. Для одномодового волокна требуется лазерная технология для передачи и приема данных. Хотя используется лазер, свет в одномодовом волокне преломляется от оболочки волокна. Одиночный режим имеет возможность передачи сигнала на много километров, что делает его идеальным для телефона и кабельного телевидения. Электроника, необходимая для передачи одномодового сигнала, значительно дороже, чем для многомодовых, поэтому они не часто используется в локальной сети. Хотя основные размеры многомодового и одномодового волокна различаются, оба типа волокон имеют наружный диаметр около 250 мкм . С такими кабелями проще работать.

Где используется оптоволоконный кабель?

Оптоволоконные кабели могут передавать больше данных на огромные расстояние, больше, чем обычные медные кабели. Волокно используется для связи сетей зданий вместе, к примеру, связь общежития и здания на территории университетского кампуса, и на сегодняшний день ими пользуются большое количество бытовых потребителей телевизионных и телефонных услуг. В большинстве коммерческих зданий, волокно используется для соединений стационарного кросса MDF, там, где находятся обычно сетевые серверы, и телекоммуникационные шкафы. Например, небольшая группа из пользователей может быть расположена в 500 метров от MDF. Примером, по сути, является соединение всех своих компьютеры в сеть. Так, стандартные связи ограничены 100 метрами, на больших расстояниях они просто не будут работать. Размещая сетевые коммутаторы и в том числе медиа конвертер в одном корпусе, вы можете использовать оптоволоконный кабель для преодоления этих 100 метров. Конвертер данных на другом конце оптоволоконного кабеля завершает канал. Оптоволоконный кабель может быть установлен даже в небольших помещениях, так как один оптический кабель может заменить сотни медных кабелей связи .

Какое оптическое волокно выбрать, 50 микрон или 62,5 мкм?

Хотя 62,5 мкм волокно было на пике популярности лишь несколько лет назад, 50 микрон быстро завоевало значительную долю рынка. 50 мкм волокно может иметь в 20 раз большую пропускную способность (пропускную способность данных) чем 62,5 микрон. Для целей идентификации, многомодовое и одномодовое волокно часто разделяют как по уровню производительности, так и по определенным стандартом ISO / IEC, которые зависят от ширины полосы пропускания. 62,5 мкм многомодовое волокно называют OM1. 50 мкм волокно называют OM2, OM3 и недавно появилось еще и OM4. Как вы можете себе представить, OM4 имеет большую пропускную способность, чем OM3, а OM3 имеет большую пропускную способность, чем OM2. Пятьдесят мкм OM3 волокно рассчитано на 10 Гбит полосу, передаваемую на расстояние до 300 метров, а OM4 может передавать на 550 метров. Таким образом, многие пользователи сейчас предпочитают OM3 и OM4 по сравнению с другими типами стекол. Почти 80% из 50 мкм волокна это волокно типа OM3 или OM4. Если вам требуется более высокие скорости передачи данных или у вас есть план по модернизации сети, рекомендую выбрать OM3 или OM4.

Какие типы разъемов следует использовать?

Существуют разъемы LC, FC, MT-RJ, ST и SC. Есть также MT / MTP типа, которые вмещают до 12 нитей волокна и занимают гораздо меньше места, чем другие разъемы. Самые популярные - разъемы SC типа , также известные, как разъемы общего назначения, которые нужно нажать и повернуть для блокировки. Производители отдают предпочтение SC и ST разъемам.

Какой дизайн кабеля выбрать?

Существуют многочисленные проекты оптических кабелей и уникальный дизайн практически у любого из них. Закрытый или открытый кабель с жесткими буферными волокнами очень популярен, если при установке кабель должен покинуть здание на небольшое расстояние, а затем повторно вернуться в другой корпус. Есть закрытые бронированные кабели, которые могут быть использованы в производственных помещениях или местах, где кабель может подвергаться механическому воздействию. Этот тип кабеля может сэкономить деньги, поскольку бронирование является альтернативой металлической трубе или пластиковому кабельному туннелю.

  • Как видите, при выборе соответствующего дизайна оптоволоконного кабеля, вы должны тщательно проанализировать все пути кабеля и определить, какая нужна защита нитей волокна, как вы хотите разместить их в помещении и как вы намерены их спрятать.

Волоконно-оптический кабель активно используется для прокладки линий связи и считается наиболее современным и эффективным проводником информации на сегодняшний день. Всё время растущие запросы человечества в сфере коммуникаций подталкивают разработчиков изобретать новые и новые способы передачи информации на максимально возможных скоростях. И все новейшие решения в области интернета и телефонии не обходятся без использования оптического кабеля.

Волоконно-оптический кабель представляет собой конструкцию, основой которой являются тончайшие волокна из чистого кварцевого стекла, облаченные в специальные изолирующие материалы и внешнюю оболочку. На рынке телекоммуникационного оборудования и кабельно-проводниковой продукции оптические кабели связи представлены широчайшей линейкой моделей с различными техническими параметрами, структурой и функционалом. Но все эти модели объединяет принцип передачи сигнала: по сути, оптическое волокно является световой трубкой, в которой световая волна распространяется согласно законам оптики.

Для чего нужен оптический кабель и почему нельзя обойтись имеющимися медножильными проводниками? Дело в том, что за последнее десятилетие многократно возрос спор на высокоскоростной интернет и качественную мобильную связь. Зачастую медные кабели связи просто не в состоянии отвечать всё время растущим аппетитам абонентов. Возможности же волоконно-оптического кабеля безграничны. Малогабаритные оптические кабели способны заменить громоздкие медные аналоги при этом значительно улучшая качество и скорость передачи данных.

Оптоволоконные технологии применимы как в промышленности, так и в быту. Помимо возможности передачи информации на высоких скоростях при использовании современных оптических решений, волоконно-оптический кабель является диэлектриком, что делает его наиболее безопасным для применения на различных объектах промышленности.

Оптические кабели способны передавать информацию на длинные расстояния, при этом сохраняя максимально возможное качество передачи данных. Широкая линейка модификаций оптического кабеля позволяет подбирать модели идеально подходящие для построения конкретной кабельной трассы при сохранении параметров передачи.

Оптический кабель необходим в тех случаях, когда высок уровень электромагнитных помех, т.к. оптоволокно вовсе нечувствительно к внешним электромагнитным влияниям.
Также стоит отметить, что сам материал проводника, стекло, химически устойчиво к процессам коррозии, что увеличивает срок службы изделия.

Оптические технологии - это принципиально новый подход к передаче информации. Соответственно, пока что построение оптических линий связи обходится дороже работ с медножильными аналогами. Цена на оптический кабель всё же выше стоимости медных кабелей связи. И на сегодняшний день применение оптоволокна оправдано, скорее, на больших расстояниях.

На сайте компании «Вионет» представлен широчайший ассортимент оптического кабеля проверенных заводов-производителей по выгодным ценам. Мы предлагаем

Оптоволокно

Связка оптоволокна. Теоретически, использование передовых технологий, таких как DWDM , со скромным количеством волокон, которое представлено здесь, может дать достаточную пропускную способность , с помощью которой легко было бы передать всю необходимую информацию, в которой нуждается вся планета (около 100 терабит в секунду в одном оптоволокне.)

Оптоволокно - это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения . Волоконная оптика - раздел прикладной науки и машиностроения, описывающий такие волокна. Оптоволокна используются в оптоволоконной связи , которая позволяет передавать цифровую информацию на большие расстояния и с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков .

Простой принцип действия позволяет использовать различные методы, дающие возможность создавать самые разнообразные оптоволокна:

  • Одномодовые оптоволокна
  • Многомодовые оптоволокна
  • Оптоволокна с градиентным показателем преломления
  • Оптоволокна со ступенчатым профилем распределения показателей преломления.

Из-за физических свойств оптоволокна необходимы специальные методы для их соединения с оборудованием. Оптоволокна являются базой для различных типов кабелей , в зависимости от того, где они будут использоваться.

Принцип передачи света внутри оптоволокна был впервые продемонстрирован во времена королевы Виктории ( - гг.), но развитие современных оптоволокон началось в 1950-х годах. Они стали использоваться в связи несколько позже, в 1970-х; с этого момента технический прогресс значительно увеличил диапазон применения и скорость распространения оптоволокон, а также уменьшил стоимость систем оптоволоконной связи.

Применение

Оптоволоконная связь

Оптоволокно может быть использовано как средство для дальней связи и построения компьютерной сети , вследствие своей гибкости, позволяющей даже завязывать кабель в узел. Несмотря на то, что волокна могут быть сделаны из прозрачного пластичного оптоволокна или кварцевого волокна, волокна, использующиеся для передачи информации на большие расстояния, всегда сделаны из кварцевого стекла , из-за низкого оптического ослабления электромагнитного излучения . В связи используются многомодовые и одномодовые оптоволокна; многомодовое оптоволокно обычно используется на небольших расстояниях (до 500 м), а одномодовое оптоволокно - на длинных дистанциях. Из-за строгого допуска между одномодовым оптоволокном, передатчиком, приемником, усилителем и другими одномодовыми компонентами, их использование обычно дороже, чем применение мультимодовых компонентов.

Оптоволоконный датчик

Оптоволокно может быть использовано как датчик для измерения напряжения, температуры, давления и других параметров. Малый размер и фактическое отсутствие необходимости в электрической энергии, дает оптоволоконным датчикам преимущество перед традиционными электрическими в определенных областях.

Оптоволокно используется в гидрофонах в сейсмических или гидролокационных приборах. Созданы системы с гидрофонами, в которых на волоконный кабель приходится более 100 датчиков. Системы с гидрофоновым датчиком используются в нефтедобывающей промышленности, а также флотом некоторых стран. Немецкая компания лазерный микроскоп, работающий с лазером и оптоволокном .

Оптоволоконные датчики, измеряющие температуры и давления, разработаны для измерений в нефтяных скважинах. Оптоволоконные датчики хорошо подходят для такой среды, работая при температурах, слишком высоких для полупроводниковых датчиков (Оптоволоконное измерение температуры).

Разработаны устройства дуговой защиты с волоконно-оптическими датчиками, основными преимуществами которых перед традиционными устройствами дуговой защиты являются: высокое быстродействие, нечувствительность к электромагнитным помехам, гибкость и лёгкость монтажа, диэлектрические свойства.

Другое применение оптоволокна - в качестве датчика в лазерном гироскопе , который используется в Boeing 767 и в некоторых моделях машин (для навигации). Специальные оптические волокна используются в интерферометрических датчиках магнитного поля и электрического тока. Это волокна полученные при вращении заготовки с сильным встроеным двойным лучепреломлением.

Оптоволокно применяется в охранной сигнализации на особо важных объектах (например, ядерное оружие). Когда злоумышленик пытается переместить боеголовку, условия прохождения света через световод изменяются, и срабатывает сигнализация.

Другие применения оптоволокна

Оптоволокна широко используются для освещения. Они используются как световоды в медицинских и других целях, где яркий свет необходимо доставить в труднодоступную зону. В некоторых зданиях оптоволокна используются для обозначения маршрута с крыши в какую-нибудь часть здания. Оптоволоконное освещение также используется в декоративных целях, включая коммерческую рекламу, искусство и искусственные ёлки.

Оптоволокно также используется для формирования изображения. Когерентный пучок, передаваемый оптоволокном, иногда используется совместно с линзами - например, в эндоскопе , который используется для просмотра объектов через маленькое отверстие.

Примечания

См. также

Литература

  • Gambling, W. A., «The Rise and Rise of Optical Fibers», IEEE Journal on Selected Topics in Quantum Electronics , Vol. 6, No. 6, pp. 1084–1093, Nov./Dec. 2000
  • Gowar, John, Optical Communication Systems , 2 ed., Prentice-Hall, Hempstead UK, 1993 (ISBN 0-13-638727-6)
  • Hecht, Jeff, City of Light, The Story of Fiber Optics , Oxford University Press, New York, 1999 (ISBN 0-19-510818-3)
  • Hecht, Jeff, Understanding Fiber Optics , 4th ed., Prentice-Hall, Upper Saddle River, NJ, USA 2002 (ISBN 0-13-027828-9)
  • Nagel S. R., MacChesney J. B., Walker K. L., «An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance», IEEE Journal of Quantum Mechanics , Vol. QE-18, No. 4, April 1982
  • Ramaswami, R., Sivarajan, K. N., Optical Networks: A Practical Perspective , Morgan Kaufmann Publishers, San Francisco, 1998 (ISBN 1-55860-445-6)

Ссылки

  • Физические характеристики полимерных оптических волокон
Накаливания: Лампа накаливания - Галогенные лампы - Флуоресцентные:

В современном мире необходимо качественно и быстро передавать информацию. Сегодня нет более совершенного и эффективного способа передачи данных, чем оптоволоконный кабель. Если кто-то думает, что это уникальная разработка, то он глубоко ошибается. Первые оптические волокна появились еще в конце прошлого столетия, и до сих пор ведутся работы по развитию этой технологии.

На сегодняшний день мы уже имеем передающий материал, уникальный по свойствам. Его применение получило широкую популярность. Информация в наше время имеет большое значение. С помощью нее мы общаемся, развиваем экономику и быт. Скорость передачи информации при этом должна быть высокой для того, чтобы обеспечить необходимый темп современной жизни. Поэтому сейчас многие интернет провайдеры внедряют оптоволоконный кабель.

Этот тип проводника предназначен только на передачу импульса света, несущего часть информации. Поэтому его применяют для передачи информативных данных, а не для подключения питания. Оптоволоконный кабель дает возможность повысить скорость в несколько раз, в сравнении с проводами из металла. При эксплуатации он не имеет побочных явлений, ухудшения качества на расстоянии, перегрева провода. Достоинством кабеля на основе оптических волокон является невозможность влияния на передаваемый сигнал, поэтому ему не нужен экран, блуждающие токи на него не действуют.

Классификация

Оптоволоконный кабель имеет большие отличия от витой пары, исходя из области применения и места монтажа. Выделяют основные виды кабелей на основе оптического волокна:

  • Для внутреннего монтажа.
  • Установки в кабельные каналы, без брони.
  • Установки в кабельные каналы, бронированный.
  • Укладки в грунт.
  • Подвесной, не имеющий троса.
  • Подвесной, с тросом.
  • Для подводного монтажа.

Устройство

Самое простое устройство имеет оптоволоконный кабель для внутреннего монтажа, а также кабель обычного исполнения, не имеющего брони. Наиболее сложная конструкция у кабелей для подводного монтажа и для монтажа в грунт.

Кабель для внутреннего монтажа

Внутренние кабели делят на абонентские, для прокладки к потребителю, и распределительные для создания сети. Оптику проводят в кабельных каналах, лотках. Некоторые разновидности прокладывают по фасаду здания до распредкоробки, либо до самого абонента.

Устройство оптоволокна для внутренней прокладки состоит из оптического волокна, специального защитного покрытия, силовых элементов, например, троса. К кабелю, прокладываемому внутри зданий, предъявляются требования пожарной безопасности: стойкость к горению, низкое выделение дыма. Материал оболочки кабеля состоит из полиуретана, а не полиэтилена. Кабель должен быть легким, тонким и гибким. Многие исполнения оптоволоконного кабеля облегчены и защищены от влаги.

Внутри помещений кабель обычно прокладывается на небольшие расстояния, поэтому о затухании сигнала и влиянии на передачу информации речи не идет. В таких кабелях количество оптоволокна не более двенадцати. Существуют и гибридные оптоволоконные кабели, имеющие в составе витую пару.

Кабель без брони для кабельных каналов

Оптика без брони применяется для монтажа в кабельные каналы, при условии, что не будет механических воздействий снаружи. Такое исполнение кабеля применяется для тоннелей и коллекторов домов. Его укладывают в трубы из полиэтилена, вручную или специальной лебедкой. Особенностью такого исполнения кабеля является наличие гидрофобного наполнителя, гарантирующего нормальную эксплуатацию в кабельном канале, защищает от влаги.

Кабель с броней для кабельных каналов

Оптоволоконный кабель с броней применяется тогда, когда присутствуют нагрузки снаружи, например, на растяжение. Броня выполняется по-разному. Броня в виде ленты применяется, если нет воздействия агрессивных веществ, в, тоннелях и т.д. Конструкция брони состоит из стальной трубы (гофрированная, либо гладкая), с толщиной стенки 0,25 мм. Гофрирование выполняют тогда, когда это является одним слоем защиты кабеля. Оно защищает оптическое волокно от грызунов, увеличивает гибкость кабеля. При условиях с большим риском повреждений применяют броню из проволоки, например, на дне реки, или в грунте.

Кабель для укладки в грунт

Для монтажа кабеля в грунт применяют оптоволокно с броней из проволоки. Могут использоваться также кабели с ленточной броней, усиленные, но они не нашли широкого применения. Для прокладки оптоволокна в грунт задействуют кабелеукладчик. Если монтаж в грунт осуществляется в холодное время при температуре менее -10 градусов, то кабель заранее нагревают.

Для мокрого грунта применяют кабель с герметичным оптоволокном в металлической трубке, а броня из проволоки пропитывается водоотталкивающим составом. Специалисты делают расчеты по укладке кабеля. Они определяют допустимые растяжения, нагрузки на сдавливание и т. д. Иначе по истечении определенного времени оптические волокна повредятся, и кабель придет в негодность.

Броня оказывает влияние на величину допускаемой нагрузки на растяжение. Оптоволокно с броней из проволоки выдерживает нагрузку до 80 кН, с ленточной броней нагрузка может быть не более 2,7 кН.

Подвесной оптоволоконный кабель без брони

Такие кабели устанавливаются на опоры линий связи и питания. Так производить монтаж проще и удобнее, чем в грунт. При этом есть важное ограничение – во время монтажа температура не должна опускаться ниже -15 градусов. Сечение кабеля имеет круглую форму. Благодаря этому уменьшаются нагрузки от ветра на кабель. Расстояние между опорами должно быть не больше 100 метров. В конструкции есть силовой элемент в виде стеклопластика.

Благодаря силовому элементу кабель может выдержать большие нагрузки, направленные вдоль него. Силовые элементы в виде арамидных нитей применяют при расстояниях между столбами до 1000 метров. Достоинством арамидных нитей, кроме малой массы и прочности, являются диэлектрические свойства арамида. При ударе молнии в кабель, никаких повреждений не будет.

Сердечники подвесных кабелей бывают разными. По их типу кабели делят на:

  • Кабель с сердечником в виде профиля, оптоволокно устойчиво к сдавливанию и растяжению.
  • Кабель с модулями скрученного вида, оптические волокна проложены свободно, имеется устойчивость к растяжению.
  • С оптическим модулем, сердечник кроме оптоволокна ничего в составе не имеет. Недостаток такого исполнения – неудобно идентифицировать волокна. Преимущество – малый диаметр, низкая стоимость.
Оптоволоконный кабель с тросом

Тросовое оптоволокно является самонесущим. Такие кабели применяются для прокладки по воздуху. Трос бывает несущим или навивным. Есть модели кабеля, в котором оптоволокно находится внутри молниезащитного троса. Кабель, усиленный профильным сердечником, обладает достаточной эффективностью. Трос состоит из стальной проволоки в оболочке. Эта оболочка соединена с оплеткой кабеля. Свободный объем заполнен гидрофобным веществом. Такие кабели прокладывают с расстоянием между столбами не более 70 метров. Ограничением кабеля является невозможность прокладки на линию электропитания.

Кабели с тросом для грозовой защиты устанавливаются на высоковольтных линиях с фиксацией на заземление. Тросовый кабель используется при рисках его повреждения животными, либо на большие дистанции.

Оптоволоконный кабель для укладки под водой

Такой тип оптоволокна обособлен от остальных, потому что его укладка проходит в особых условиях. Все подводные кабели имеют броню, конструкция которой зависит от глубины прокладки и рельефа дна водоема.

Некоторые виды подводного оптоволокна по исполнению брони с:

  • Одинарной броней.
  • Усиленной броней.
  • Усиленной двойной броней.
  • Без брони.

1› Изоляция из полиэтилена.
2› Майларовое покрытие.
3› Двойная броня из проволоки.
4› Гидроизоляция алюминиевая.
5› Поликарбонат.
6› Центральная трубка.
7› Заполнитель гидрофобный.
8› Оптоволокно.

Размер брони не зависит от глубины прокладки. Армирование защищает кабель только от обитателей водоема, якорей, судов.

Сварка оптоволокна

Для сварки используется сварочный аппарат специального типа. В его составе содержится микроскоп, зажимы для фиксации волокон, дуговая сварка, камера термоусадки для нагрева гильз, микропроцессор для управления и контроля.

Краткий техпроцесс сварки оптоволокна:

  • Снятие оболочки стриппером.
  • Подготовка к сварке. На концы надеваются гильзы. Концы волокон обезжириваются спиртом. Конец волокна скалывается специальным приспособлением под определенным углом. Волокна укладываются в аппарат.
  • Сварка. Волокна выравниваются. При автоматическом управлении положение волокон устанавливается автоматически. После подтверждения сварщика, волокна свариваются аппаратом. При ручном управлении все операции проводятся вручную специалистом. При сварке волокна плавятся дугой электрического тока, совмещаются. Затем свариваемое место прогревается во избежание внутренних напряжений.
  • Проверка качества. Автомат сварки проводит анализ картинки места сварки по микроскопу, определяет оценку работы. Точный результат получают рефлектометром, который выявляет неоднородность и затухание на линии сварки.
  • Обработка и защита свариваемого места. Надетая гильза сдвигается на сварку и закладывается в печь для термоусадки на одну минуту. После этого гильза остывает, ложится в защитную пластину муфты, накладывается запасное оптическое волокно.
Достоинства оптоволоконного кабеля

Основным достоинством оптоволокна является повышенная скорость передачи информации, практически нет затухания сигнала (очень низкое), а также, безопасность передачи данных.

  • Невозможно подключиться к оптической линии без санкций. При любом включении в сеть оптические волокна повредятся.
  • Электробезопасность. Она повышает популярность и область применения таких кабелей. Их все больше используют в промышленности при опасности взрывов на производстве.
  • Имеет хорошую защиту от помех природного происхождения, электрооборудования и т.д.

Рассказывалось о самых распространенных типах оптоволоконного кабеля, применяемых на Украине. А сегодня - кабель в разрезе, и по ходу повествования - некоторые практические моменты его монтажа.

Мы не будем останавливаться на подробной структуре всех видов кабеля. Возьмем некий усредненный типовой ОК:

  1. Центральный (осевой) элемент.
  2. Оптическое волокно.
  3. Пластиковые модули для оптических волокон.
  4. Пленка с гидрофобным гелем.
  5. Полиэтиленовая оболочка.
  6. Броня.
  7. Внешняя полиэтиленовая оболочка.

Что же представляет каждый слой при подробном рассмотрении?

Центральный (осевой) элемент

Стеклопластиковый прут в полимерной оболочке или без нее. Основное назначение - придает жесткость кабелю . Стеклопластиковые стержни без оболочки плохи тем, что легко ломаются при изгибе и повреждают расположенное вокруг них оптоволокно.

Оптическое волокно

Нити оптического волокна чаще всего имеют толщину в 125 микрон (примерно с волос). Они состоят из сердечника (по которому, собственно, идет передача сигнала) и стеклянной же оболочки немного другого состава, обеспечивающей полное преломление в сердечнике.

В маркировке кабеля диаметр сердечника и оболочки обозначается цифрами через слэш. К примеру: 9/125 - сердцевина 9 мкм, оболочка - 125 мкм.

Количество волокон в кабеле варьируется от 2 до 144, это также фиксируется цифрой в маркировке.

В зависимости от толщины сердечника оптоволокно подразделяется на одномодовое (тонкий сердечник) и многомодовое (большего диаметра). В последнее время многомод применяется все реже, поэтому останавливаться на нем не будем. Отметим только, что предусмотрен он для использования на небольшие расстояния. Оболочку многомодового кабеля и патчкордов обычно делают оранжевого цвета (одномодовый - желтый).

В свою очередь одномодовое оптическое волокно бывает:

  • Стандартное (маркировка SF, SM или SMF );
  • Со смещенной дисперсией (DS, DSF );
  • С ненулевой смещенной дисперсией (NZ, NZDSF или NZDS).

В общих чертах - оптоволоконный кабель со смещенной дисперсией (в т.ч. с ненулевой) применяется на гораздо большие расстояния, чем обычный.

Поверх оболочки стеклянные нити покрыты лаком, и этот микроскопический слой тоже играет важную роль. Оптоволокно без лакового покрытия повреждается, крошится и ломается при малейшем воздействии. В то время как в лаковой изоляции его можно скручивать и подвергать некоторой нагрузке. На практике оптоволоконные нити неделями выдерживают вес кабеля на опорах, если в процессе эксплуатации рвутся все остальные силовые стержни.

Однако не стоит возлагать на прочность волокон слишком большие надежды - даже покрытые лаком они легко ломаются. Поэтому при монтаже оптических сетей, особенно при ремонте действующих магистралей, требуется предельная аккуратность.

Пластиковые модули для оптических волокон

Это пластиковые оболочки, внутри которых - пучок оптоволоконных нитей и гидрофобная смазка. В кабеле может быть либо одна такая туба с оптоволокном, либо несколько (последнее - чаще, особенно если волокон много). Модули выполняют функцию защиты волокон от механических повреждений и попутно - их объединения и маркировки (если модулей в кабеле несколько). Однако нужно помнить, что пластиковый модуль при изгибе довольно просто переламывается, и ломает находящиеся в нем волокна.

Какого-то одного стандарта на цветную маркировку модулей и волокон нет, но каждый производитель прикрепляет к барабану с кабелем паспорт, в котором это обозначено.

Пленка и полиэтиленовая оболочка

Это элементы дополнительной защиты волокон и модулей от трения, а также влаги - в некоторых видах оптического кабеля под пленкой содержится гидрофоб. Пленка сверху может быть дополнительно армирована переплетением нитей и пропитана гидрофобным гелем.

Пластиковая оболочка выполняет те же функции, что и пленка, плюс служит прослойкой между броней и модулями. Есть модификации кабеля, где ее вообще нет.

Броня

Это может быть либо кевларовая броня (сплетенные нити), либо кольцо стальных проволок, либо лист гофрированной стали:

  • Кевлар применяется в тех видах оптоволоконного кабеля, где содержание металла недопустимо или если нужно снизить его вес.
  • Кабель с броней из стальных проволочек предназначен для подземной укладки непосредственно в грунт - прочная броня защищает от многих повреждений, в т.ч. от лопаты.
  • Кабель с гофроброней прокладывают в трубах или кабельной канализации, защитить такая броня может лишь от грызунов.

Внешняя полиэтиленовая оболочка

Первый и практически самый важный уровень защиты. Плотный полиэтилен призван выдерживать все нагрузки, выпадающие на долю кабеля, поэтому если он повреждается, существенно увеличивается риск порчи кабеля. Нужно следить, чтобы оболочка:

a) Не была повреждена при монтаже - иначе попавшая внутрь влага увеличит потери на линии;

b) Не касалась в процессе эксплуатации о дерево, стену, угол или ребро конструкции и т.д., если есть риск возникновения трения в этом месте при ветровых и иных нагрузках.